Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas

Abstract

Mice deficient in the Ung uracil-DNA glycosylase have an increased level of uracil in their genome, consistent with a major role of Ung counteracting U : A base pairs arising by misincorporation of dUMP during DNA replication. A complementary uracil-excising activity apparently acts on premutagenic U : G lesions resulting from deamination of cytosine throughout the genome. However, Ung specifically processes U : G lesions targeted to immunoglobulin variable (V) genes during somatic hypermutation and class-switch recombination. Gene-targeted Ung−/− null mice remained tumour-free and showed no overt pathological phenotype up to 12 months of age. We have monitored a large cohort of ageing Ung−/− mice and, beyond 18 months of age, they had a higher morbidity than Ung+/+ controls. Post-mortem analyses revealed pathological changes in lymphoid organs, abnormal lymphoproliferation, and a greatly increased incidence of B-cell lymphomas in older Ung-deficient mice. These are the first data reporting the development of spontaneous malignancies in mice due to deficiency in a DNA glycosylase. Furthermore, they support a specific role for Ung in the immune system, with lymphomagenesis being related to perturbed processing of antibody genes in germinal centre B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Al-Tasaan N, Chmiel NH, Maynard J, Fleming N, Livingston AL, Williams GT, Hodges AK, Davies DR, David SS, Sampson JR and Cheadle JP . (2002). Nat. Genet., 30, 227–232.

  • Aravind L and Koonin EV . (2000). Genome Biol., 1, 1–8.

    Article  Google Scholar 

  • Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G, Wickramasinghe SN, Everson RB and Ames BN . (1997). Proc. Natl. Acad. Sci. USA, 94, 3290–3295.

  • Di Noia J and Neuberger MS . (2002). Nature, 419, 43–48.

    Article  CAS  Google Scholar 

  • Elder RH and Dianov GL . (2002). J. Biol. Chem., 277, 50487–50490.

    Article  CAS  Google Scholar 

  • Elder RH, Jansen JG, Weeks RJ, Willington MA, Deans B, Watson PJ, Mynett KJ, Bailey JA, Cooper DP, Rafferty JA, Heeran MC, Wijnhoven SWP, van Zeeland AA and Margison GP . (1998). Mol. Cell. Biol., 1, 5828–5837.

    Article  CAS  Google Scholar 

  • Engelward BP, Weeda G, Wyatt MD, Broekhof JLM, deWit J, Donker I, Allan JM, Gold B, Hoeijmakers JHJ and Samson LD . (1997). Proc. Natl. Acad. Sci. USA, 94, 13087–13092.

  • Faili A, Aoufouchi S, Flatter E, Gueranger Q, Reynaud C-A and Weill J-C . (2002). Nature, 419, 944–947.

    Article  CAS  Google Scholar 

  • Goulian M, Bleile B and Tseng B . (1980). Proc. Natl. Acad. Sci. USA, 77, 1956–1960.

  • Haushalter KA, Stukenberg PT, Kirschner MW and Verdine GL . (1999). Curr. Biol., 9, 174–185.

  • Klungland A, Rosewell I, Hollenbach S, Larsen E, Daly G, Epe B, Seeberg E, Lindahl T and Barnes DE . (1999). Proc. Natl. Acad. Sci. USA, 96, 13300–13305.

  • Küppers R and Dalla-Favera R . (2001). Oncogene, 20, 5580–5594.

    Article  Google Scholar 

  • Kvaløy K, Nilsen H, Steinsbekk KS, Nedal A, Monterotti B, Akbari M and Krokan HE . (2001). Mutat. Res., 461, 325–338.

  • Lindahl T . (2000). Mutat. Res., 462, 129–135.

  • Martin A and Scharff MD . (2002). Proc. Natl. Acad. Sci. USA, 99, 12304–12308.

  • McDonald JP, Frank EG, Plosky BS, Rogozin IB, Masutani C, Hanaoka F, Woodgate R and Gearhart PJ . (2003). J. Exp Med., in press.

  • Millar CB, Guy J, Sansom OJ, Selfridge J, MacDougall E, Hendrich B, Keightley PD, Bishop SM, Clarke AR and Bird A . (2002). Science, 297, 403–405.

  • Minowa O, Arai T, Hirano M, Monden Y, Nakai S, Fukuda M, Itoh M, Takano H, Hippou Y, Aburatani H, Masumura K, Nohmi T, Nishimura S and Noda T . (2000). Proc. Natl. Acad. Sci. USA, 97, 4156–4161.

  • Muramatsu M, Kinoshita K, Fagarasan S, Yamada S, Shunkai Y and Honjo T . (2000). Cell, 102, 553–563.

    Article  CAS  Google Scholar 

  • Nilsen H, Haushalter KA, Robins P, Barnes DE, Verdine GL and Lindahl T . (2001). EMBO J., 20, 4278–4286.

  • Nilsen H, Rosewell I, Robins P, Skjelbred CF, Andersen SB, Slupphaug G, Daly G, Krokan HE, Lindahl T and Barnes DE . (2000). Mol. Cell, 5, 1059–1065.

  • Ocampo MT, Chaung W, Marenstein DR, Chan MK, Altamirano A, Basu AK, Boorstein RJ, Cunningham RP and Teebor GW . (2002). Mol. Cell. Biol., 22, 6111–6121.

  • Otterlei M, Warbrick E, Nagelhus TA, Haug T, Slupphaug G, Akbari M, Aas PA, Steinsbekk K, Bakke O and Krokan HE . (1999). EMBO J., 18, 3834–3844.

  • Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RSK, Küppers R and Dalla-Favera R . (2001). Nature, 412, 341–346.

    Article  CAS  Google Scholar 

  • Peters A and Storb U . (1996). Immunity, 4, 57–65.

    Article  CAS  Google Scholar 

  • Petersen-Mahrt SK, Harris RS and Neuberger MS . (2002). Nature, 41, 99–104.

    Article  CAS  Google Scholar 

  • Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T and Neuberger MS . (2002). Curr. Biol., 12, 1748–1755.

  • Revy P, Muto T, Levy Y, Geissman F, Plebani A, Sanai O, Catalan N, Forveille M, Duforque-Lagelouse R, Gennery A, Tezcan I, Ersoy F, Kayserilli H, Ugazio AG, Brousse N, Muramatsu M, Notarangelo LD, Kinoshita K, Honjo T, Fischer A and Durandy A . (2000). Cell, 102, 565–575.

    Article  CAS  Google Scholar 

  • Sakumi K, Tominaga Y, Furuichi M, Xu P, Tsuzuki T, Sekiguchi M and Nakabeppu Y . (2003). Cancer Res., 63, 902–905.

  • Schärer OD and Jiricny J . (2001). Bioessays, 23, 270–281.

    Article  Google Scholar 

  • Sieber OM, Lipton L, Crabtree M, Heinimann K, Fidalgo P, Phillips RKS, Bisgaard M-L, Orntoft TF, Aaltonen LA, Hodgson SV, Thomas HJW and Tomlinson IPM . (2003). N. Engl. J. Med., 348, 791–799.

  • Stevenson FK, Sahota SS, Ottensmeier CH, Zhu D, Forconi F and Hamblin TJ . (2001). Adv. Cancer Res., 83, 81–116.

  • Takao M, Kanno S, Shiromoto T, Hasegawa R, Ide H, Ikeda S, Sarker AH, Seki S, Xing JZ, Le XC, Weinfeld M, Kobayashi K, Miyazaki J, Muijtjens M, Hoeijmakers JHJ, van der Horst G and Yasui A . (2002). EMBO J., 21, 3486–3493.

  • Verri A, Mazzarello P, Biamonti G, Spadari S and Focher F . (1990). Nucleic Acids Res., 18, 5775–5780.

  • Wong E, Yang K, Kuraguchi M, Werling U, Avdievich E, Fan K, Fazzari M, Jin B, Brown AMC, Lipkin M and Edelmann W . (2002). Proc. Natl. Acad. Sci. USA, 99, 14937–14942.

  • Wright BE, Reimers JM, Schmidt KH and Reschke DK . (2002). Cancer Res., 62, 5641–5644.

Download references

Acknowledgements

We thank Ashfaq Gilkar and Marokh Nohdani for histopathology, Tania Jones for sister chromatid exchange analyses, Michael Bradburn for help with statistical analysis, and Cheryl Young for technical assistance. This work was supported by Cancer Research UK. H Nilsen was the recipient of an EC Marie Curie Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomas Lindahl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsen, H., Stamp, G., Andersen, S. et al. Gene-targeted mice lacking the Ung uracil-DNA glycosylase develop B-cell lymphomas. Oncogene 22, 5381–5386 (2003). https://doi.org/10.1038/sj.onc.1206860

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206860

Keywords

This article is cited by

Search

Quick links