Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Evidence for multiple loci from a genome scan of autism kindreds

Abstract

We performed a genome-wide linkage scan using highly polymorphic microsatellite markers. To minimize genetic heterogeneity, we focused on sibpairs meeting the strict diagnosis of autism. In our primary analyses, we observed a strong linkage signal (P=0.0006, 133.16 cM) on chromosome 7q at a location coincident with other linkage studies. When a more relaxed diagnostic criteria was used, linkage evidence at this location was weaker (P=0.01). The sample was stratified into families with only male affected subjects (MO) and families with at least one female affected subject (FC). The strongest signal unique to the MO group was on chromosome 11 (P=0.0009, 83.82 cM), and for the FC group on chromosome 4 (P=0.002, 111.41 cM). We also divided the sample into regression positive and regression negative families. The regression-positive group showed modest linkage signals on chromosomes 10 (P=0.003, 0 cM) and 14 (P=0.005, 104.2 cM). More significant peaks were seen in the regression negative group on chromosomes 3 (P=0.0002, 140.06 cM) and 4 (P=0.0005, 111.41 cM). Finally, we used language acquisition data as a quantitative trait in our linkage analysis and observed a chromosome 9 signal (149.01 cM) of P=0.00006 and an empirical P-value of 0.0008 at the same location. Our work provides strong conformation for an autism locus on 7q and suggestive evidence for several other chromosomal locations. Diagnostic specificity and detailed analysis of the autism phenotype is critical for identifying autism loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Werner E, Dawson G . Validation of the phenomenon of autistic regression using home videotapes. Arch Gen Psychiatry 2005; 62: 889–895.

    Article  CAS  PubMed  Google Scholar 

  2. Folstein S, Rutter M . Infantile autism: a genetic study of 21 twin pairs. J Child Psychol Psychiatry 1977; 18: 297–321.

    Article  CAS  PubMed  Google Scholar 

  3. Ritvo ER, Freeman BJ, Mason-Brothers A, Mo A, Ritvo AM . Concordance for the syndrome of autism in 40 pairs of afflicted twins. Am J Psychiatry 1985; 142: 74–77.

    Article  CAS  PubMed  Google Scholar 

  4. Folstein S, Rutter M . Genetic influences and infantile autism. Nature 1977; 265: 726–728.

    Article  CAS  PubMed  Google Scholar 

  5. Bailey A, Le Couteur A, Gottesman I, Bolton P, Simonoff E, Yuzda E et al. Autism as a strongly genetic disorder: evidence from a British twin study. Psychol Med 1995; 25: 63–77.

    Article  CAS  PubMed  Google Scholar 

  6. Steffenburg S, Gillberg C, Hellgren L, Andersson L, Gillberg I, Jakobsson G et al. A twin study of autism in Denmark, Finland, Iceland, Norway, and Sweden. J Child Psychol Psychiatry 1989; 30: 405–416.

    Article  CAS  PubMed  Google Scholar 

  7. August GJ, Stewart MA, Tsai L . The incidence of cognitive disabilities in the siblings of autistic children. Br J Psychiatry 1981; 138: 416–422.

    Article  CAS  PubMed  Google Scholar 

  8. Bailey A, Phillips W, Rutter M . Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J Child Psychol Psychiatry 1996; 37: 89–126.

    Article  CAS  PubMed  Google Scholar 

  9. Smalley SL, Asarnow RF, Spence A . Autism and genetics. Arch Gen Psychiatry 1988; 45: 953–961.

    Article  CAS  PubMed  Google Scholar 

  10. Delong GR, Dwyer JT . Correlation of family history with specific autistic subgroups: Aspergers and bipolar affective disease. J Autism Dev Disord 1988; 18: 593–600.

    Article  CAS  PubMed  Google Scholar 

  11. Vorstman JA, Staal WG, Hochstenbach PF, Franke L, van Daalen E, van Engeland H . Overview of cytogenetic regions of interest (CROIs) associated with the autism phenotype across the human genome. Mol Psychiatry 2006; 11: 18–28.

    Article  CAS  Google Scholar 

  12. Auranen M, Vanhala R, Varilo T, Ayers K, Kempas E, Ylisaukko-oja T et al. A genomewide screen for autism-spectrum disorders: evidence for a major susceptibility locus on chromosome 3q25–27. Am J Hum Genet 2002; 71: 777–790.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Buxbaum JD, Silverman JM, Smith CJ, Kilifarski M, Reichert J, Hollander E et al. Evidence for a susceptibility gene for autism on chromosome 2 and for genetic heterogeneity. Am J Hum Genet 2001; 68: 1514–1520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cantor RM, Kono N, Duvall JA, AlvarezRetuerto A, Stone JL, Alarcon M et al. Replication of autism linkage: fine-mapping peak at 17q21. Am J Hum Genet 2005; 76: 1050–1056.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barrett S, Beck JC, Bernier R, Bisson E, Braun TA, Casavant TL et al. An autosomal genomic screen for autism. Am J Med Genet 1999; 88: 609–615.

    Article  CAS  PubMed  Google Scholar 

  16. International Molecular Genetic Study of Autism Consortium. A genomewide screen for autism: strong evidence for linkage to chromosomes 2q, 7q, and 16p. Am J Hum Genet 2001; 69: 570–581.

  17. Lamb JA, Barnby G, Bonora E, Sykes N, Bacchelli E, Blasi F et al. Analysis of IMGSAC autism susceptibility loci: evidence for sex limited and parent of origin specific effects. J Med Genet 2005; 42: 132–137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Philippe A, Martinez M, Guilloudbataille M, Gillberg C, Rastam M, Sponheim E et al. Genome-wide scan for autism susceptibility genes. Hum Mol Genet 1999; 8: 805–812.

    Article  CAS  PubMed  Google Scholar 

  19. Risch N, Spiker D, Lotspeich L, Nouri N, Hinds D, Hallmayer J et al. A genomic screen of autism: evidence for a multilocus etiology. Am J Hum Genet 1999; 65: 493–507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stone JL, Merriman B, Cantor RM, Yonan AL, Gilliam TC, Geschwind DH et al. Evidence for sex-specific risk alleles in autism spectrum disorder. Am J Hum Genet 2004; 75: 1117–1123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCauley JL, Li C, Jiang L, Olson LM, Crockett G, Gainer K et al. Genome-wide and Ordered-Subset linkage analyses provide support for autism loci on 17q and 19p with evidence of phenotypic and interlocus genetic correlates. BMC Med Genet 2005; 6: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu JJ, Nyholt DR, Magnussen P, Parano E, Pavone P, Geschwind D et al. A genomewide screen for autism susceptibility loci. Am J Hum Genet 2001; 69: 327–340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shao YJ, Wolpert CM, Raiford KL, Menold MM, Donnelly SL, Ravan SA et al. Genomic screen and follow-up analysis for autistic disorder. Am J Med Genet 2002; 114: 99–105.

    Article  PubMed  Google Scholar 

  24. Yonan AL, Alarcon M, Cheng R, Magnusson PKE, Spence SJ, Palmer AA et al. A genomewide screen of 345 families for autism-susceptibility loci. Am J Hum Genet 2003; 73: 886–897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. IMGSAC. A full genome screen for autism with evidence for linkage to a region on chromosome 7q. International Molecular Genetic Study of Autism Consortium. Hum Mol Genet 1998; 7: 571–578.

  26. Wassink TH, Brzustowicz LM, Bartlett CW, Szatmari P . The search for autism disease genes. Mental Retard Dev Disabil Res Rev 2004; 10: 272–283.

    Article  Google Scholar 

  27. Molloy CA, Keddache M, Martin LJ . Evidence for linkage on 21q and 7q in a subset of autism characterized by developmental regression. Mol Psychiatry 2005; 10: 741–746.

    Article  CAS  PubMed  Google Scholar 

  28. Alarcon M, Cantor RM, Liu J, Gilliam TC, the Autism Genetic Resource Exchange Consortium, Geschwind DH . Evidence for a language quantitative trait locus on chromosome 7q in multiplex families. Am J Hum Genet 2002; 70: 60–71.

    Article  CAS  PubMed  Google Scholar 

  29. Alarcon M, Yonan AL, Gilliam TC, Cantor RM, Geschwind DH . Quantitative genome scan and Ordered-Subsets Analysis of autism endophenotypes support language QTLs. Mol Psychiatry 2005; 10: 747–757.

    Article  CAS  PubMed  Google Scholar 

  30. Bradford Y, Braun T, Cassavant T, Folstein S, Haines J, Hutcheson H et al. Incorporating language phenotypes strengthens evidence of linkage to autism. Am J Med Genet 2001; 105: 539–547.

    Article  CAS  PubMed  Google Scholar 

  31. Buxbaum JD, Silverman J, Keddache M, Smith CJ, Hollander E, Ramoz N et al. Linkage analysis for autism in a subset families with obsessive-compulsive behaviors: evidence for an autism susceptibility gene on chromosome 1 and further support for susceptibility genes on chromosome 6 and 19. Mol Psychiatry 2004; 9: 144–150.

    Article  CAS  PubMed  Google Scholar 

  32. Lord C, Rutter M, Le Couteur A . Autism Diagnostic Interview Revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord 1994; 24: 659–685.

    Article  CAS  PubMed  Google Scholar 

  33. Lord C, Risi S, Lambrecht L, Cook EH, Leventhal BL, DiLavore P et al. The Autism Diagnostic Observation Schedule-Generic: a standard measure of social and communication deficits associated with the spectrum of autism. J Autism Develop Disord 2000; 30: 205–223.

    Article  CAS  Google Scholar 

  34. American Psychiatric Association. Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association: Arlington, VA, 1994, pp 65–78.

  35. Mullen EM . Mullen Scales of Early Learning. Western Psychological Services: Los Angeles, CA, 1997.

    Google Scholar 

  36. Sattler J . Assessment of Children: Cognitive Applications. Jerome Sattle, Publisher, Inc.: La Mesa, CA, 1992.

    Google Scholar 

  37. Epstein MP, Duren WL, Boehnke M . Improved inference of relationship for pairs of individuals. Am J Hum Genet 2000; 67: 1219–1231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Heath SC . Markov chain Monto Carlo segregation and linkage analysis for oligogenic models. Am J Hum Genet 1997; 61: 748–760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abecasis G, Cherny S, Cookson W, Cardon L . Merlin-rapid analysis of dense genetic maps using sparse gene flow trees. Nat Genet 2002; 30: 97–101.

    Article  CAS  PubMed  Google Scholar 

  40. Kong X, Murphy K, Raj T, He C, White PS, Matise TC . A combined linkage-physical map of the human genome. Am J Hum Genet 2004; 75: 1143–1148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Whittemore AS, Halpern J . A class of tests for linkage using affected pedigree members. Biometrics 1994; 50: 118–127.

    Article  CAS  PubMed  Google Scholar 

  42. Kong A, Cox NJ . Allele-sharing models. LOD scores and accurate linkage tests. Am J Hum Genet 1997; 61: 1179–1188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amos C . I. Robust variance-components approach for assessing genetic linkage in pedigrees. Am J Hum Genet 1994; 54: 535–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Daw E, Thompson E, Wijsman E . Bias in multipoint linkage analysis arising from map misspecification. Genet Epidemiol 2000; 19: 336–380.

    Article  Google Scholar 

  45. Shao YJ, Raiford KL, Wolpert CM, Cope HA, Ravan SA, Ashley-Koch AA et al. Phenotypic homogeneity provides increased support for linkage on chromosome 2 in autistic disorder. Am J Hum Genet 2002; 70: 1058–1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Badner JA, Gershon ES . Regional meta-analysis of published data supports linkage of autism with markers on chromosome 7. Mol Psychiatry 2002; 7: 56–66.

    Article  CAS  PubMed  Google Scholar 

  47. Trikalinos TA, Karvouni A, Zintzaras E, Ylisaukkooja T, Peltonen L, Jarvela I et al. A heterogeneity-based genome search meta-analysis for autism-spectrum disorders. Mol Psychiatry 2006; 11: 29–36.

    Article  CAS  PubMed  Google Scholar 

  48. Persico AM, D'Agruma L, Malorano N, Totaro A, Militerni R, Bravaccio C et al. Reelin gene alleles and haplotypes as a factor predisposing to autistic disorder. Mol Psychiatry 2001; 6: 150–159.

    Article  CAS  PubMed  Google Scholar 

  49. Lai CSL, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP . A forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001; 413: 519–523.

    Article  CAS  PubMed  Google Scholar 

  50. Vincent JB, Herbrick J-A, Gurling HMD, Bolton PF, Roberts W, Scherer SW . Identification of a novel gene on chromosome 7q31 that is interrupted by a translocation breakpoint in an autistic individual. Am J Hum Genet 2000; 67: 510–514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wassink TH, Piven J, Vieland VJ, Huang J, Swiderski RE, Pietila J et al. Evidence supporting WNT2 as an autism susceptibility gene. Am J Med Genet 2001; 105: 406–413.

    Article  CAS  PubMed  Google Scholar 

  52. Sultana R, Yu C-E, Yu J, Munson J, Chen D, Hua W et al. A candidate gene for autism on chromosome 7. Genomics 2002; 80: 129–134.

    Article  CAS  PubMed  Google Scholar 

  53. Benayed R, Gharani N, Rossman I, Mancuso V, Lazar G, Kamdar S et al. Support for the homeobox transcription factor gene ENGRAILED 2 as an autism spectrum disorder susceptibility locus. Am J Hum Genet 2005; 77: 851–868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. O'Brien EK, Zhang XY, Nishimura C, Tomblin JB, Murray JC . Association of specific language impairment (SLI) to the region of 7q31. Am J Hum Genet 2003; 72: 1536–1543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kaminen N, Hannula-Jouppi K, Kestila M, Lahermo P, Muller K, Kaaranen M et al. A genome scan for developmental dyslexia confirms linkage to chromosome 2p11 and suggests a new locus on 7q32. J Med Genet 2003; 40: 340–345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Baron-Cohen S, Knickmeyer RC, Belmonte MK . Sex differences in the brain: implications for explaining autism. Science 2005; 310: 819–823.

    Article  CAS  PubMed  Google Scholar 

  57. Le Couteur A, Rutter M, Lord C, Rios P, Robertson S, Holdgrafer M et al. Autism diagnostic interview: a standardized investigator-based instrument. J Autism Dev Disord 1989; 19: 363–387.

    Article  CAS  PubMed  Google Scholar 

  58. Sung YJ, Dawson G, Munson J, Estes A, Schellenberg GD, Wijsman EM . Genetic investigation of quantitative traits related to autism: use of a multivariate polygenic models with ascertainment adjustment. Am J Hum Genet 2005; 76: 68–81.

    Article  CAS  PubMed  Google Scholar 

  59. Dawson G, Estes A, Munson J, Schellenberg GD, Bernier R, Abbott R et al. Quantitative assessment of autism symptoms in autism probands and parents: Broader Phenotype Autism Symptom Scale. J Autism Dev Disord 2006 (in press).

  60. Wijsman E, Amos C . Genetic analysis of simulated oligogenic traits in nuclear and extended pedigrees: summary of GAW10 contributions. Genet Epidemiol 1997; 14: 719–735.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a program project grant from the National Institute of Child Health and Human Development and the National Institute on Deafness and Communication Disability (PO1HD34565), which is part of the NICHD/NIDCD Collaborative Program of Excellence in Autism. We gratefully acknowledge the contributions of the Diagnostic and Statistical Cores of the UW Autism Program Project, Cathy Brock who assisted in recruitment of participants, Hiep Nguyen for computer support, and the parents and their children who participated in this study. This work was also supported in part by the Veterans Affairs Administration (GDS). Work at the University of Utah was supported by NICHD Grant HD35476, Grant MO1-RR00064 from the National Center for Research Resources, the Devonshire Foundation and the Utah Autism Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G D Schellenberg.

Additional information

Electronic-Database Information

The URLs for data presented herein are as follows:

 Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/Omim.

 Rutgers Genetic Map (MAP-O-MAT), http://compgen.rutgers.edu/mapomat.

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schellenberg, G., Dawson, G., Sung, Y. et al. Evidence for multiple loci from a genome scan of autism kindreds. Mol Psychiatry 11, 1049–1060 (2006). https://doi.org/10.1038/sj.mp.4001874

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001874

Keywords

This article is cited by

Search

Quick links