Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nicotine-related beliefs induce dose-dependent responses in the human brain

Abstract

Beliefs have a powerful influence on our behavior, yet their neural mechanisms remain elusive. Here we investigate whether beliefs could impact brain activities in a way akin to pharmacological dose-dependent effects. Nicotine-dependent humans were told that nicotine strength in an electronic cigarette was either ‘low’, ‘medium’ or ‘high’, while nicotine content was held constant. After vaping, participants underwent functional neuroimaging and performed a decision-making task known to engage neural circuits affected by nicotine. Beliefs about nicotine strength induced dose-dependent responses in the thalamus, a key binding site for nicotine, but not in other brain regions such as the striatum. Nicotine-related beliefs also parametrically modulated the connectivity between the thalamus and ventromedial prefrontal cortex, a region important for decision-making. These findings reveal a high level of precision in the way beliefs influence the brain, offering mechanistic insights into humans’ heterogeneous responses to drugs and a pivotal role of beliefs in addiction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental paradigm and sanity check measures.
Fig. 2: Belief about nicotine strength induced dose-dependent responses in the thalamus.
Fig. 3: Belief about nicotine strength did not modulate striatal reward-related responses.
Fig. 4: Belief about nicotine strength modulated thalamus–vmPFC functional connectivity in a dose-dependent fashion.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are deposited at https://osf.io/3hq6s/.

Code availability

The scripts used for data acquisition and analysis are available at https://osf.io/3hq6s/. Analyses were conducted using open software and toolboxes available online as described in Methods (SPM: www.fil.ion.ucl.ac.uk/spm/software/spm12; R Studio: https://www.rstudio.com/products/rstudio/download/#download; Lead-DBS: https://www.lead-dbs.org/download/; MRIcroGL: https://www.nitrc.org/projects/mricrogl/).

References

  1. Posner, M. I., Petersen, S. E., Fox, P. T. & Raichle, M. E. Localization of cognitive operations in the human brain. Science 240, 1627–1631 (1988).

    CAS  PubMed  ADS  Google Scholar 

  2. Gu, X., FitzGerald, T. H. B. & Friston, K. J. Modeling subjective belief states in computational psychiatry: interoceptive inference as a candidate framework. Psychopharmacology (Berl.) 236, 2405–2412 (2019).

    CAS  PubMed  Google Scholar 

  3. Goldstein, R. Z. et al. The neurocircuitry of impaired insight in drug addiction. Trends Cogn. Sci. 13, 372–380 (2009).

    PubMed  PubMed Central  Google Scholar 

  4. Volkow, N. D. & Baler, R. Beliefs modulate the effects of drugs on the human brain. Proc. Natl Acad. Sci. USA 112, 2301–2302 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  5. Kirsch, I. Response expectancy as a determinant of experience and behavior. Am. Psychol. 40, 1189–1202 (1985).

    Google Scholar 

  6. Tallarida, R. J. Drug Synergism and Dose–Effect Data Analysis (CRC Press, 2000).

  7. Abdel-Rahman, S. M. & Kauffman, R. E. The integration of pharmacokinetics and pharmacodynamics: understanding dose-response. Annu. Rev. Pharmacol. Toxicol. 44, 111–136 (2004).

    CAS  PubMed  Google Scholar 

  8. Davis, J. M. & Chen, N. Dose response and dose equivalence of antipsychotics. J. Clin. Psychopharmacol. 24, 192–208 (2004).

    CAS  PubMed  Google Scholar 

  9. Benowitz, N. L., Jacob, P. & Herrera, B. Nicotine intake and dose response when smoking reduced-nicotine content cigarettes. Clin. Pharmacol. Ther. 80, 703–714 (2006).

    CAS  PubMed  Google Scholar 

  10. Bisby, J. A., Leitz, J. R., Morgan, C. J. A. & Curran, H. V. Decreases in recollective experience following acute alcohol: a dose–response study. Psychopharmacology (Berl). 208, 67–74 (2010).

    CAS  PubMed  Google Scholar 

  11. Curran, V. H., Brignell, C., Fletcher, S., Middleton, P. & Henry, J. Cognitive and subjective dose–response effects of acute oral Δ9-tetrahydrocannabinol (THC) in infrequent cannabis users. Psychopharmacology (Berl.) 164, 61–70 (2002).

    CAS  PubMed  Google Scholar 

  12. Mayberg, H. S. et al. The functional neuroanatomy of the placebo effect. Am. J. Psychiatry 159, 728–737 (2002).

    PubMed  Google Scholar 

  13. Wager, T. D. et al. Placebo-induced changes in fMRI in the anticipation and experience of pain. Science 303, 1162–1167 (2004).

    CAS  PubMed  ADS  Google Scholar 

  14. Benedetti, F., Mayberg, H. S., Wager, T. D., Stohler, C. S. & Zubieta, J. K. Neurobiological mechanisms of the placebo effect. J. Neurosci. 25, 10390–10402 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Price, D. D., Finniss, D. G. & Benedetti, F. A comprehensive review of the placebo effect: recent advances and current thought. Annu. Rev. Psychol. 59, 565–590 (2008).

    PubMed  Google Scholar 

  16. Zilcha-Mano, S., Brown, P. J., Roose, S. P., Cappetta, K. & Rutherford, B. R. Optimizing patient expectancy in the pharmacologic treatment of major depressive disorder. Psychol. Med. 49, 2414–2420 (2019).

    PubMed  Google Scholar 

  17. Rutherford, B., Sneed, J., Devanand, D., Eisenstadt, R. & Roose, S. Antidepressant study design affects patient expectancy: a pilot study. Psychol. Med. 40, 781–788 (2010).

    CAS  PubMed  Google Scholar 

  18. Gu, X. et al. Belief about nicotine selectively modulates value and reward prediction error signals in smokers. Proc. Natl Acad. Sci. USA 112, 2539–2544 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Gu, X. et al. Belief about nicotine modulates subjective craving and insula activity in deprived smokers. Front. Psychiatry 7, 126 (2016).

  20. Russell, M. A. H. Nicotine intake and its regulation. J. Psychosom. Res. 24, 253–264 (1980).

    CAS  PubMed  Google Scholar 

  21. Giovino, G. A., Henningfield, J. E., Tomar, S. L., Escobedo, L. G. & Slade, J. Epidemiology of tobacco use and dependence. Epidemiol. Rev. 17, 48–65 (1995).

    CAS  PubMed  Google Scholar 

  22. Juliano, L. M., Fucito, L. M. & Harrell, P. T. The influence of nicotine dose and nicotine dose expectancy on the cognitive and subjective effects of cigarette smoking. Exp. Clin. Psychopharmacol. 19, 105–115 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kelemen, W. L. & Kaighobadi, F. Expectancy and pharmacology influence the subjective effects of nicotine in a balanced-placebo design. Exp. Clin. Psychopharmacol. 15, 93–101 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Watkins, S. S., Koob, G. F. & Markou, A. Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal. Nicotine Tob. Res. 2, 19–37 (2000).

    CAS  PubMed  Google Scholar 

  25. Huang, A. S., Mitchell, J. A., Haber, S. N., Alia-Klein, N. & Goldstein, R. Z. The thalamus in drug addiction: from rodents to humans. Philos. Trans. R. Soc. 373, 20170028 (2018).

    Google Scholar 

  26. Haber, S. N. & Knutson, B. The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacol. Rep. 35, 4–26 (2010).

    Google Scholar 

  27. Shohamy, D. Learning and motivation in the human striatum. Curr. Opin. Neurobiol. 21, 408–414 (2011).

    CAS  PubMed  Google Scholar 

  28. Shine, J. M., Lewis, L. D., Garrett, D. D. & Hwang, K. The impact of the human thalamus on brain-wide information processing. Nat. Rev. Neurosci. https://doi.org/10.1038/s41583-023-00701-0 (2023).

  29. Brody, A. L. et al. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch. Gen. Psychiatry 63, 907–915 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Mukhin, A. G. et al. Greater nicotinic acetylcholine receptor density in smokers than in nonsmokers: a PET study with 2-18F-FA-85380. J. Nucl. Med. 49, 1628–1635 (2008).

    PubMed  Google Scholar 

  31. Gotti, C. et al. Nicotinic acetylcholine receptors in the mesolimbic pathway: primary role of ventral tegmental area α6β2* receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J. Neurosci. 30, 5311–5325 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Brody, A. L. et al. Brain nicotinic acetylcholine receptor occupancy: effect of smoking a denicotinized cigarette. Int. J. Neuropsychopharmacol. https://doi.org/10.1017/S146114570800922X (2009).

  33. Brody, A. L. et al. Effect of secondhand smoke on occupancy of nicotinic acetylcholine receptors in brain. Arch. Gen. Psychiatry 68, 953–960 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Spurden, D. P. et al. Nicotinic receptor distribution in the human thalamus: autoradiographical localization of [3H]nicotine and [125I]α-bungarotoxin binding. J. Chem. Neuroanat. 13, 105–113 (1997).

    CAS  PubMed  Google Scholar 

  35. Rubboli, F. et al. Distribution of nicotinic receptors in the human hippocampus and thalamus. Eur. J. of Neurosci. 6, 1596–1604 (1994).

    CAS  Google Scholar 

  36. Paterson, D. & Nordberg, A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol. 61, 75–111 (2000).

    CAS  PubMed  Google Scholar 

  37. Picard, F. et al. High density of nicotinic receptors in the cingulo-insular network. Neuroimage 79, 42–51 (2013).

    CAS  PubMed  Google Scholar 

  38. Shepherd, G. M. G. & Yamawaki, N. Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nat. Rev. Neurosci. 22, 389–406 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Garibotto, V., Wissmeyer, M., Giavri, Z., Ratib, O. & Picard, F. Nicotinic acetylcholine receptor density in the ‘higher-order’ thalamus projecting to the prefrontal cortex in humans: a PET study. Mol. Imaging Biol. 22, 417–424 (2020).

    CAS  PubMed  Google Scholar 

  40. de Kloet, S. F. et al. Bi-directional regulation of cognitive control by distinct prefrontal cortical output neurons to thalamus and striatum. Nat. Commun. 12, 1994 (2021).

    PubMed  PubMed Central  Google Scholar 

  41. Steward, T. et al. A thalamo-centric neural signature for restructuring negative self-beliefs. Mol. Psychiatry 27, 1611–1617 (2022).

    PubMed  PubMed Central  Google Scholar 

  42. Schuck, N. W., Cai, M. B., Wilson, R. C. & Niv, Y. Human orbitofrontal cortex represents a cognitive map of state space. Neuron. 91, 1402–1412 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Moneta, N., Garvert, M. M., Heekeren, H. R. & Schuck, N. W. Task state representations in vmPFC mediate relevant and irrelevant value signals and their behavioral influence. Nat. Commun. 14, 3156 (2023).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  44. Petersen, G. O., Leite, C. E., Chatkin, J. M. & Thiesen, F. V. Cotinine as a biomarker of tobacco exposure: development of a HPLC method and comparison of matrices. J. Sep. Sci. 33, 516–521 (2010).

    CAS  PubMed  Google Scholar 

  45. Duehlmeyer, L., Parsons, N., Malpas, C. B. & Hester, R. Functional connectivity during feedback learning in smokers. Addict. Biol. 27, e13109 (2022).

    PubMed  Google Scholar 

  46. Lohrenz, T., McCabe, K., Camerer, C. F. & Montague, P. R. Neural signature of fictive learning signals in a sequential investment task. Proc. Natl Acad. Sci. USA 104, 9493–9498 (2007).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Chiu, P. H., Lohrenz, T. M. & Montague, P. R. Smokers’ brains compute, but ignore, a fictive error signal in a sequential investment task. Nat. Neurosci. 11, 514–520 (2008).

    CAS  PubMed  Google Scholar 

  48. Maldjian, J. A., Laurienti, P. J., Kraft, R. A. & Burdette, J. H. An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19, 1233–1239 (2003).

    PubMed  Google Scholar 

  49. Su, J. H. et al. Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. Neuroimage 194, 272–282 (2019).

    PubMed  Google Scholar 

  50. Zander, T. O., Kothe, C., Jatzev, S. & Gaertner, M. in Brain–Computer Interfaces: Applying our Minds to Human–Computer Interaction (eds. Tan, D. S. & Nijholt, A.) 181–199 (Springer, 2010).

  51. Mandelkow, H., De Zwart, J. A. & Duyn, J. H. Linear discriminant analysis achieves high classification accuracy for the BOLD fMRI response to naturalistic movie stimuli. Front. Hum. Neurosci. 10, 1–12 (2016).

    Google Scholar 

  52. Friston, K. J. et al. Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6, 218–229 (1997).

    CAS  PubMed  Google Scholar 

  53. Rouault, M. & Fleming, S. M. Formation of global self-beliefs in the human brain. Proc. Natl Acad. Sci. USA 117, 27268–27276 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  54. Rushworth, M. F. S. & Behrens, T. E. J. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11, 389–397 (2008).

    CAS  PubMed  Google Scholar 

  55. Niv, Y. Learning task-state representations. Nat. Neurosci. 22, 1544–1553 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Adem, A. et al. Distribution of nicotinic receptors in human thalamus as visualized by 3H-nicotine and 3H-acetylcholine receptor autoradiography. J. Neural Transm. 73, 77–83 (1988).

    CAS  PubMed  Google Scholar 

  57. Wong, D. F. et al. PET imaging of high-affinity a4b2 nicotinic acetylcholine receptors in humans with 18F-AZAN, a radioligand with optimal brain kinetics. J. Nucl. Med. 54, 1308–1314 (2013).

    CAS  PubMed  Google Scholar 

  58. Lawrence, N. S., Ross, T. J. & Stein, E. A. Cognitive mechanisms of nicotine on visual attention. Neuron. 36, 539–548 (2002).

    CAS  PubMed  Google Scholar 

  59. Stein, E. A. et al. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am. J. Psychiatry 155, 1009–1015 (1998).

    CAS  PubMed  Google Scholar 

  60. Kumari, V. et al. Cognitive effects of nicotine in humans: an fMRI study. Neuroimage 19, 1002–1013 (2003).

    PubMed  Google Scholar 

  61. Levy, D. J. & Glimcher, P. W. The root of all value: a neural common currency for choice. Curr. Opin. Neurobiol. 22, 1027–1038 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Barbalat, G., Bazargani, N. & Blakemore, S.-J. The influence of prior expectations on emotional face perception in adolescence. Cereb. Cortex 23, 1542–1551 (2012).

    PubMed  Google Scholar 

  63. Perkins, K. A. et al. Effects of central and peripheral nicotinic blockade on human nicotine discrimination. Psychopharmacology (Berl.) 142, 158–164 (1999).

    CAS  PubMed  Google Scholar 

  64. Perkins, K. A., Herb, T. & Karelitz, J. L. Discrimination of nicotine content in electronic cigarettes. Addict. Behav. 91, 106–111 (2019).

    PubMed  Google Scholar 

  65. Franklin, T. R. et al. Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacol. Rep. 32, 2301–2309 (2007).

    CAS  Google Scholar 

  66. Engelmann, J. M. et al. Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. NeuroImage https://doi.org/10.1016/j.neuroimage.2011.12.024 (2012).

  67. McClernon, F. J., Kozink, R. V. & Rose, J. E. Individual differences in nicotine dependence, withdrawal symptoms, and sex predict transient fMRI-BOLD responses to smoking cues. Neuropsychopharmacol. Rep. 33, 2148–2157 (2008).

    CAS  Google Scholar 

  68. Wilson, S. J., Sayette, M. A., Delgado, M. R. & Fiez, J. A. Instructed smoking expectancy modulates cue-elicited neural activity: a preliminary study. Nicotine Tob. Res. 7, 637–645 (2005).

    PubMed  Google Scholar 

  69. McBride, D., Barrett, S. P., Kelly, J. T., Aw, A. & Dagher, A. Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: an fMRI study. Neuropsychopharmacol. Rep. 31, 2728–2738 (2006).

    CAS  Google Scholar 

  70. Benowitz, N. L. & Henningfield, J. E. Reducing the nicotine content to make cigarettes less addictive. Tob. Control 22, Suppl 1:i14–i17 (2013).

  71. Nakamura, Y. et al. Investigating dose-dependent effects of placebo analgesia: a psychophysiological approach. Pain 153, 227–237 (2012).

    PubMed  Google Scholar 

  72. Geuter, S., Eippert, F., Hindi Attar, C. & Büchel, C. Cortical and subcortical responses to high and low effective placebo treatments. Neuroimage 67, 227–236 (2013).

    PubMed  Google Scholar 

  73. Cui, Y. et al. The impact of nicotine dose and instructed dose on smokers’ implicit attitudes to smoking cues: an ERP study. Psychol. Addict. Behav. 33, 710–720 (2019).

    PubMed  PubMed Central  Google Scholar 

  74. de Wit, H., Uhlenhuth, E. H. & Johanson, C. E. Individual differences in the reinforcing and subjective effects of amphetamine and diazepam. Drug Alcohol Depend. 16, 341–360 (1986).

    PubMed  Google Scholar 

  75. Scott, D. J. et al. Individual differences in reward responding explain placebo-induced expectations and effects. Neuron 55, 325–336 (2007).

    CAS  PubMed  Google Scholar 

  76. SPM12 algorithms. Univeristy College London http://fil.ion.ucl.ac.uk/spm (2014).

  77. Mazaika P. K., Whitfield-Gabrieli, S. Reiss, A. & Glover, G. Artifact repair for fMRI data from high motion clinical subjects. Hum. Brain Mapp. 47, 70238-1 (2007).

  78. Woo, C.-W., Krishnan, A. & Wager, T. D. Cluster-extent based thresholding in fMRI analyses: pitfalls and recommendations. Neuroimage 91, 412–419 (2014).

    PubMed  Google Scholar 

  79. Lieberman, M. D. & Cunningham, W. A. Type I and type II error concerns in fMRI research: re-balancing the scale. Soc. Cogn. Affect. Neurosci. 4, 423–428 (2009).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute on Drug Abuse grant R01DA043695 (X.G.), National Institute on Drug Abuse grant R21DA049243 (X.G.) and University of Texas, Dallas internal funding (X.G.). The funders had no role in study design, data collection, data analysis or manuscript preparation. We thank staff members at the University of Texas Southwestern Imaging Center for their assistance with scanning, J. Jung and M. Labinski for their help with developing the fMRI task and J. Maclin for her help with participant recruitment. We also thank L. Berner for her advice on the statistical analysis, and D. Schiller and P. Kenny for their helpful discussions and comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: X.G. Methodology: O.P, A.S., N.B., W.C.P. and X.G. Investigation: M.H., S.N. and A.K. Visualization: O.P. Funding acquisition: X.G. Project administration: M.H. and X.G. Supervision: X.G. Writing—original draft: O.P., W.C.P., V.G.F. and X.G. Writing—review and editing: O.P., V.G.F. and X.G.

Corresponding author

Correspondence to Xiaosi Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Mental Health thanks Cynthia Conklin, Qinghua He and Nicholas Parsons for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–9 and Tables 1 and 2.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perl, O., Shuster, A., Heflin, M. et al. Nicotine-related beliefs induce dose-dependent responses in the human brain. Nat. Mental Health 2, 177–188 (2024). https://doi.org/10.1038/s44220-023-00188-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s44220-023-00188-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing