Abstract
The eukaryotic cell is compartmentalized into subcellular niches, including membrane-bound and membrane-less organelles. Proteins localize to these niches to fulfil their function, enabling discreet biological processes to occur in synchrony. Dynamic movement of proteins between niches is essential for cellular processes such as signalling, growth, proliferation, motility and programmed cell death, and mutations causing aberrant protein localization are associated with a wide range of diseases. Determining the location of proteins in different cell states and cell types and how proteins relocalize following perturbation is important for understanding their functions, related cellular processes and pathologies associated with their mislocalization. In this Primer, we cover the major spatial proteomics methods for determining the location, distribution and abundance of proteins within subcellular structures. These technologies include fluorescent imaging, protein proximity labelling, organelle purification and cell-wide biochemical fractionation. We describe their workflows, data outputs and applications in exploring different cell biological scenarios, and discuss their main limitations. Finally, we describe emerging technologies and identify areas that require technological innovation to allow better characterization of the spatial proteome.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Gibson, T. J. Cell regulation: determined to signal discrete cooperation. Trends Biochem. Sci. 34, 471–482 (2009).
Hung, M.-C. & Link, W. Protein localization in disease and therapy. J. Cell Sci. 124, 3381 (2011).
Pankow, S., Martínez-Bartolomé, S., Bamberger, C. & Yates, J. R. Understanding molecular mechanisms of disease through spatial proteomics. Curr. Opin. Chem. Biol. 48, 19–25 (2019).
Siljee, J. E. et al. Subcellular localization of MC4R with ADCY3 at neuronal primary cilia underlies a common pathway for genetic predisposition to obesity. Nat. Genet. 50, 180–185 (2018).
Neel, D. S. et al. Differential subcellular localization regulates oncogenic signaling by ROS1 kinase fusion proteins. Cancer Res. 79, 546 (2019).
Hübner, S., Eam, J. E., Hübner, A. & Jans, D. A. Laminopathy-inducing lamin A mutants can induce redistribution of lamin binding proteins into nuclear aggregates. Exp. Cell Res. 312, 171–183 (2006).
Valastyan, J. S. & Lindquist, S. Mechanisms of protein-folding diseases at a glance. Dis. Model. Mech. 7, 9 (2014).
Shin, S. J. et al. Unexpected gain of function for the scaffolding protein plectin due to mislocalization in pancreatic cancer. Proc. Natl Acad. Sci. USA 110, 19414–19419 (2013).
Thelen, M. P. & Kye, M. J. The role of RNA binding proteins for local mRNA translation: implications in neurological disorders. Front. Mol. Biosci. https://doi.org/10.3389/fmolb.2019.00161 (2020).
Christoforou, A. et al. A draft map of the mouse pluripotent stem cell spatial proteome. Nat. Commun. 7, 1–12 (2016).
Thul, P. J. et al. A subcellular map of the human proteome. Science https://doi.org/10.1126/science.aal3321 (2017). This ambitious work performs immunofluorescence and confocal microscopy to systematically assess the subcellular localization of more than 12,000 human proteins in several human cell lines, published in the HPA database.
Sullivan, D. P. et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat. Biotechnol. 36, 820–828 (2018).
Hall, S. L., Hester, S., Griffin, J. L., Lilley, K. S. & Jackson, A. P. The organelle proteome of the DT40 lymphocyte cell line. Mol. Cell Proteom. 8, 1295–1305 (2009).
Itzhak, D. N. et al. A mass spectrometry-based approach for mapping protein subcellular localization reveals the spatial proteome of mouse primary neurons. Cell Rep. 20, 2706–2718 (2017).
Nightingale, D. J., Geladaki, A., Breckels, L. M., Oliver, S. G. & Lilley, K. S. The subcellular organisation of Saccharomyces cerevisiae. Curr. Opin. Chem. Biol. 48, 86–95 (2019).
Tan, D. J. L. et al. Mapping organelle proteins and protein complexes in Drosophila melanogaster. J. Proteome Res. 8, 2667–2678 (2009).
Barylyuk, K. et al. A subcellular atlas of Toxoplasma reveals the functional context of the proteome. Cell Host Microbe 28, 752–766.e9 (2020).
Baers, L. L. et al. Proteome mapping of a cyanobacterium reveals distinct compartment organization and cell-dispersed metabolism. Plant. Physiol. 181, 1721–1738 (2019).
Jeffery, C. J. Protein moonlighting: what is it, and why is it important? Philos. Trans. R. Soc. B: Biol. Sci. 373, 20160523 (2018).
Gancedo, C., Flores, C.-L. & Gancedo, J. M. The expanding landscape of moonlighting proteins in yeasts. Microbiol. Mol. Biol. Rev. 80, 765 (2016).
Lundberg, E. & Borner, G. H. H. Spatial proteomics: a powerful discovery tool for cell biology. Nat. Rev. Mol. Cell Biol. 20, 285–302 (2019).
Pasquali, C., Fialka, I. & Huber, L. A. Subcellular fractionation, electromigration analysis and mapping of organelles. J. Chromatogr. B Biomed. Sci. Appl. 722, 89–102 (1999).
Parsons, H. T. Preparation of highly enriched ER membranes using free-flow electrophoresis. Methods Mol. Biol. 1691, 103–115 (2018).
Moon, M. H. Flow field-flow fractionation: recent applications for lipidomic and proteomic analysis. TrAC 118, 19–28 (2019).
Oeyen, E. et al. Ultrafiltration and size exclusion chromatography combined with asymmetrical-flow field-flow fractionation for the isolation and characterisation of extracellular vesicles from urine. J. Extracell. Vesicles 7, 1490143 (2018).
Chen, W. W., Freinkman, E. & Sabatini, D. M. Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat. Protoc. 12, 2215–2231 (2017).
Xiong, J. et al. Rapid affinity purification of intracellular organelles using twin strep tag. J. Cell Sci. 132, jcs235390 (2019).
Ito, Y., Grison, M., Esnay, N., Fouillen, L. & Boutté, Y. in Plant Endosomes: Methods and Protocols (ed Otegui, M. S.) 119-141 (Springer, 2020).
Morgenstern, M. et al. Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–2852 (2017).
Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570–574 (2003). This article presents the first protein correlation profiling experiment, which coupled de Duve’s principle with MS to characterize the human centrosome.
Bouchnak, I., Brugire, S. & Moyet, L. A. Unraveling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity. Mol. Cell. Proteomics 18, 1285–1306 (2019).
Chapel, A., Kieffer-Jaquinod, S. & Sagn. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol. Cell. Proteomics 12, 1572–1588 (2013).
Dengjel, J. et al. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens. Mol. Cell. Proteomics https://doi.org/10.1074/mcp.M111.014035 (2012).
Krahmer, N. et al. Protein correlation profiles identify lipid droplet proteins with high confidence. Mol. Cell. Proteom. 12, 1115–1126 (2013).
Niemann, M. et al. Mitochondrial outer membrane proteome of Trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Mol. Cell. Proteomics 12, 515–528 (2013).
Pagliarini, D. J. et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123 (2008).
Tang, Y., Huang, A. & Gu, Y. Global profiling of plant nuclear membrane proteome in Arabidopsis. Nat. Plants 6, 838–847 (2020).
Wiese, S. et al. Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol. Cell. Proteom. 6, 2045–2057 (2007).
Schirmer, E. C., Florens, L., Guan, T., Yates, J. R. & Gerace, L. Nuclear membrane proteins with potential disease links found by subtractive proteomics. Science 301, 1380–1382 (2003).
Foster, L. J. et al. A mammalian organelle map by protein correlation profiling. Cell 125, 187–199 (2006).
Dunkley, T. P. J., Watson, R., Griffin, J. L., Dupree, P. & Lilley, K. S. Localization of organelle proteins by isotope tagging (LOPIT). Mol. Cell. Proteom. 3, 1128–1134 (2004). This article is the first published LOPIT experiment and multi-organellar mapping of protein endoplasmic reticulum and Golgi proteins in Arabidopsis using MS-based proteomics.
Dunkley, T. P. J. et al. Mapping the Arabidopsis organelle proteome. Proc. Natl Acad. Sci. USA 103, 6518–6523 (2006).
Geladaki, A. et al. Combining LOPIT with differential ultracentrifugation for high-resolution spatial proteomics. Nat. Commun. 10, 331 (2019).
Itzhak, D. N., Tyanova, S., Cox, J. & Borner, G. H. H. Global, quantitative and dynamic mapping of protein subcellular localization. eLife 5, e16950 (2016).
Jadot, M. et al. Accounting for protein subcellular localization: a compartmental map of the rat liver proteome. Mol. Cell. Proteom. 16, 194–212 (2017).
Mardakheh, F. K. et al. Proteomics profiling of interactome dynamics by colocalisation analysis (COLA). Mol. Biosyst. 13, 92–105 (2016).
Orre, L. M. et al. SubCellBarCode: proteome-wide mapping of protein localization and relocalization. Mol. Cell 73, 166–182 (2019).
Nikolovski, N. et al. Putative glycosyltransferases and other plant Golgi apparatus proteins are revealed by LOPIT proteomics. Plant. Physiol. 160, 1037–1051 (2012).
Tardif, M. et al. PredAlgo: a new subcellular localization prediction tool dedicated to green algae. Mol. Biol. Evol. 29, 3625–3639 (2012).
Ohta, S. et al. The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142, 810–821 (2010).
Groen, A. J. et al. Identification of trans-Golgi network proteins in Arabidopsis thaliana root tissue. J. Proteome Res. 13, 763–776 (2014).
Crook, O. M., Mulvey, C. M., Kirk, P. D. W., Lilley, K. S. & Gatto, L. A Bayesian mixture modelling approach for spatial proteomics. PLoS Comput. Biol. 14, e1006516 (2018).
Jean Beltran, P. M., Mathias, R. A. & Cristea, I. M. A portrait of the human organelle proteome in space and time during cytomegalovirus infection. Cell Syst. 3, 361–373 (2016).
Kennedy, M. A., Hofstadter, W. A. & Cristea, I. M. TRANSPIRE: a computational pipeline to elucidate intracellular protein movements from spatial proteomics data sets. J. Am. Soc. Mass. Spectrom. 31, 1422–1439 (2020).
Shin, J. J. H. et al. Spatial proteomics defines the content of trafficking vesicles captured by golgin tethers. Nat. Commun. 11, 5987 (2020). This article presents a general strategy for analysing intracellular sub-proteomes by combining acute cellular rewiring with high-resolution spatial proteomics.
Jean Beltran, P. M., Cook, K. C. & Cristea, I. M. Exploring and exploiting proteome organization during viral infection. J. Virol. 91, e00268-17 (2017).
de Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R. & Appelmans, F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 60, 604–617 (1955). This study forms the basis for most biochemical fractionation strategies and demonstrates the importance of capturing quantitative data, as opposed to achieving ultra-pure organellar samples.
Shehadul Islam, M., Aryasomayajula, A. & Selvaganapathy, P. R. A review on macroscale and microscale cell lysis methods. Micromachines 8, 83 (2017).
Drissi, R., Dubois, M.-L. & Boisvert, F.-M. Proteomics methods for subcellular proteome analysis. FEBS J. 280, 5626–5634 (2013).
Rhee, H. W. et al. Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013). This article is the first example of combining APEX with MS, capturing spatial and temporal information for the human mitochondria matrix proteome, including 31 proteins not previously associated with this compartment.
Lam, S. S. et al. Directed evolution of APEX2 for electron microscopy and proximity labeling. Nat. Methods 12, 51–54 (2015).
Kim, D. I. et al. Probing nuclear pore complex architecture with proximity-dependent biotinylation. Proc. Natl Acad. Sci. USA 111, 2453–2461 (2014).
Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012). This article is the first description of BioID technology, identifying known and new components of the nuclear envelope using the well-characterized nuclear filament protein lamin A.
Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).
Kim, D. I. et al. An improved smaller biotin ligase for BioID proximity labeling. Mol. Biol. Cell 27, 1188–1196 (2016).
Ramanathan, M. et al. RNA–protein interaction detection in living cells. Nat. Methods 15, 207–212 (2018).
Hung, V. et al. Proteomic mapping of the human mitochondrial intermembrane space in live cells via ratiometric APEX tagging. Mol. Cell 55, 332–341 (2014).
Gupta, G. D. et al. A dynamic protein interaction landscape of the human centrosome–cilium interface. Cell 163, 1484–1499 (2015).
Youn, J. Y. et al. High-density proximity mapping reveals the subcellular organization of mRNA-associated granules and bodies. Mol. Cell 69, 517–532 (2018). This article is an extensive BioID study using 119 baits to conduct prey–prey analysis of the proteomes of stress granules and processing bodies to investigate mRNA biology.
Antonicka, H. et al. A high-density human mitochondrial proximity interaction network. Cell Metab. 32, 479–497 (2020).
Gingras, A. C., Abe, K. T. & Raught, B. Getting to know the neighborhood: using proximity-dependent biotinylation to characterize protein complexes and map organelles. Curr. Opin. Chem. Biol. 48, 44–54 (2019).
Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021).
Weston, L. A., Bauer, K. M. & Hummon, A. B. Comparison of bottom-up proteomic approaches for LC-MS analysis of complex proteomes. Anal. Methods 5, 4615–4621 (2013).
Lambert, J.-P. et al. Interactome rewiring following pharmacological targeting of BET bromodomains. Mol. Cell 73, 621–638 (2019).
Ludwig, C. et al. Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol. Syst. Biol. 14, e8126 (2018).
Ong, S.-E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteom. 1, 376–386 (2002).
Rauniyar, N. & Yates, J. R. Isobaric labeling-based relative quantification in shotgun proteomics. J. Proteome Res. 13, 5293–5309 (2014).
Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).
Ross, P. L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 3, 1154–1169 (2004).
Ankney, J. A., Muneer, A. & Chen, X. Relative and absolute quantitation in mass spectrometry–based proteomics. Annu. Rev. Anal. Chem. 11, 49–77 (2018).
Fernández-Costa, C. et al. Impact of the identification strategy on the reproducibility of the DDA and DIA results. J. Proteome Res. 19, 3153–3161 (2020).
Merrill, A. E. et al. NeuCode labels for relative protein quantification. Mol. Cell. Proteom. 13, 2503–2512 (2014).
Erickson, B. K. et al. Evaluating multiplexed quantitative phosphopeptide analysis on a hybrid quadrupole mass filter/linear ion trap/orbitrap mass spectrometer. Anal. Chem. 87, 1241–1249 (2015).
Altelaar, A. F. et al. Benchmarking stable isotope labeling based quantitative proteomics. J. Proteom. 88, 14–26 (2013).
Thompson, A. et al. TMTpro: design, synthesis, and initial evaluation of a proline-based isobaric 16-plex tandem mass tag reagent set. Anal. Chem. 91, 15941–15950 (2019).
McAlister, G. C. et al. MultiNotch MS3 enables accurate, sensitive, and multiplexed detection of differential expression across cancer cell line proteomes. Anal. Chem. 86, 7150–7158 (2014).
Wang, Y. et al. Reversed-phase chromatography with multiple fraction concatenation strategy for proteome profiling of human MCF10A cells. Proteomics 11, 2019–2026 (2011).
Gatto, L., Breckels, L. M. & Lilley, K. S. Assessing sub-cellular resolution in spatial proteomics experiments. Curr. Opin. Chem. Biol. 48, 123–149 (2019).
Krahmer, N. et al. Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis. Dev. Cell 47, 205–221 (2018).
O’Rourke, M. B. et al. What is normalization? The strategies employed in top-down and bottom-up proteome analysis workflows. Proteomes 7, 29 (2019).
Stertz, S. & Shaw, M. L. Uncovering the global host cell requirements for influenza virus replication via RNAi screening. Microbes Infect. 13, 516–525 (2011).
de Groot, R., Lüthi, J., Lindsay, H., Holtackers, R. & Pelkmans, L. Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR–Cas9 gene perturbation screens. Mol. Syst. Biol. 14, e8064 (2018).
Marx, V. Calling the next generation of affinity reagents. Nat. Methods 10, 829–833 (2013).
Tiede, C. et al. Affimer proteins are versatile and renewable affinity reagents. eLife 6, e24903 (2017).
Alamudi, S. H. & Chang, Y.-T. Advances in the design of cell-permeable fluorescent probes for applications in live cell imaging. Chem. Commun. 54, 13641–13653 (2018).
Chazotte, B. Labeling mitochondria with mitotracker dyes. Cold Spring Harb. Protoc. 2011, 990–992 (2011).
Giepmans, B. N., Adams, S. R., Ellisman, M. H. & Tsien, R. Y. The fluorescent toolbox for assessing protein location and function. Science 312, 217–224 (2006).
Neumann, B. et al. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature 464, 721–727 (2010). This study uses time-lapse microscopy and genome-wide small interfering RNA silencing of green fluorescent protein tagged cell lines to identify 592 essential genes for mitosis; the majority had previously not been annotated with cellular processes consistent with a function in mitosis.
Leonetti, M. D., Sekine, S., Kamiyama, D., Weissman, J. S. & Huang, B. A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc. Natl Acad. Sci. USA 113, E3501–E3508 (2016).
Sarov, M. et al. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell 150, 855–866 (2012).
Chong, Y. T. et al. Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161, 1413–1424 (2015).
Stadler, C. et al. Immunofluorescence and fluorescent-protein tagging show high correlation for protein localization in mammalian cells. Nat. Methods 10, 315–323 (2013).
Cheng, R. et al. Influence of fixation and permeabilization on the mass density of single cells: a surface plasmon resonance imaging study. Front. Chem. 7, 58 (2019).
Amidzadeh, Z. et al. Assessment of different permeabilization methods of minimizing damage to the adherent cells for detection of intracellular RNA by flow cytometry. Avicenna J. Med. Biotechnol. 6, 38–46 (2014).
Jamur, M. C. & Oliver, C. in Immunocytochemical Methods and Protocols (eds Oliver, C. & Jamur, M. C.) 63-66 (Humana, 2010).
Hobro, A. J. & Smith, N. I. An evaluation of fixation methods: spatial and compositional cellular changes observed by Raman imaging. Vib. Spectrosc. 91, 31–45 (2017).
Stadler, C., Skogs, M., Brismar, H., Uhlen, M. & Lundberg, E. A single fixation protocol for proteome-wide immunofluorescence localization studies. J. Proteom. 73, 1067–1078 (2010).
Nakagawa, T. et al. Optimum immunohistochemical procedures for analysis of macrophages in human and mouse formalin fixed paraffin-embedded tissue samples. J. Clin. Exp. Hematop. 57, 31–36 (2017).
Syrbu, S. I. & Cohen, M. B. An enhanced antigen-retrieval protocol for immunohistochemical staining of formalin-fixed, paraffin-embedded tissues. Methods Mol. Biol. 717, 101–110 (2011).
Cohen, M., Varki, N. M., Jankowski, M. D. & Gagneux, P. Using unfixed, frozen tissues to study natural mucin distribution. J. Vis. Exp. https://doi.org/10.3791/3928 (2012).
Scheffler, J. M., Schiefermeier, N. & Huber, L. A. Mild fixation and permeabilization protocol for preserving structures of endosomes, focal adhesions, and actin filaments during immunofluorescence analysis. Methods Enzymol. 535, 93–102 (2014).
Micke, P. et al. Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab. Invest. 86, 202–211 (2006).
Magdeldin, S. & Yamamoto, T. Toward deciphering proteomes of formalin-fixed paraffin-embedded (FFPE) tissues. Proteomics 12, 1045–1058 (2012).
Robertson, D., Savage, K., Reis-Filho, J. S. & Isacke, C. M. Multiple immunofluorescence labelling of formalin-fixed paraffin-embedded (FFPE) tissue. BMC Cell Biol. 9, 13 (2008).
Pan, J., Thoeni, C., Muise, A., Yeger, H. & Cutz, E. Multilabel immunofluorescence and antigen reprobing on formalin-fixed paraffin-embedded sections: novel applications for precision pathology diagnosis. Mod. Pathol. 29, 557–569 (2016).
Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).
Lin, J. R., Fallahi-Sichani, M. & Sorger, P. K. Highly multiplexed imaging of single cells using a high-throughput cyclic immunofluorescence method. Nat. Commun. 6, 8390 (2015).
Gut, G., Herrmann, M. D. & Pelkmans, L. Multiplexed protein maps link subcellular organization to cellular states. Science 361, eaar7042 (2018). This work describes a protocol that achieves 40-plex protein staining in the same biological sample using off-the-shelf antibodies for immunofluorescence in an iterative manner.
Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).
Rathbun, L. I. et al. Cytokinetic bridge triggers de novo lumen formation in vivo. Nat. Commun. 11, 1269 (2020).
Huang, B., Babcock, H. & Zhuang, X. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143, 1047–1058 (2010).
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).
Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).
Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794–1805 (2011).
Eng, J. K., McCormack, A. L. & Yates, J. R. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass. Spectrom. 5, 976–989 (1994).
Perkins, D. N., Pappin, D. J. C., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).
Fenyö, D. & Beavis, R. C. A method for assessing the statistical significance of mass spectrometry-based protein identifications using general scoring schemes. Anal. Chem. 75, 768–774 (2003).
Moore, R. E., Young, M. K. & Lee, T. D. Qscore: an algorithm for evaluating SEQUEST database search results. J. Am. Soc. Mass. Spectrom. 13, 378–386 (2002).
Colinge, J., Masselot, A., Giron, M., Dessingy, T. & Magnin, J. OLAV: towards high-throughput tandem mass spectrometry data identification. Proteomics 3, 1454–1463 (2003).
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Society B 57, 289–300 (1995).
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
Röst, H. L. et al. OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat. Biotechnol. 32, 219–223 (2014).
MacLean, B. et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 26, 966–968 (2010).
Demichev, V., Messner, C. B., Vernardis, S. I., Lilley, K. S. & Ralser, M. DIA-NN: neural networks and interference correction enable deep proteome coverage in high throughput. Nat. Methods 17, 41–44 (2020).
Zhang, F., Ge, W., Ruan, G., Cai, X. & Guo, T. Data-independent acquisition mass spectrometry-based proteomics and software tools: a glimpse in 2020. Proteomics 20, 1900276 (2020).
Tyanova, S. et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731–740 (2016).
Malmström, L. Computational proteomics with Jupyter and Python. Methods Mol. Biol. 1977, 237–248 (2019).
Levitsky, L. I., Klein, J. A., Ivanov, M. V. & Gorshkov, M. V. Pyteomics 4.0: five years of development of a python proteomics framework. J. Proteome Res. 18, 709–714 (2019).
Mendik, P. et al. Translocatome: a novel resource for the analysis of protein translocation between cellular organelles. Nucleic Acids Res. 47, D495–D505 (2018).
Ashburner, M. et al. Gene ontology: tool for the unification of biology. the gene ontology consortium. Nat. Genet. 25, 25–29 (2000).
Chibucos, M. C., Siegele, D. A., Hu, J. C. & Giglio, M. The Evidence and Conclusion Ontology (ECO): supporting GO annotations. Methods Mol. Biol. 1446, 245–259 (2017).
Binder, J. X. et al. COMPARTMENTS: unification and visualization of protein subcellular localization evidence. Database https://doi.org/10.1093/database/bau012 (2014).
UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2018).
Borner, G. H. H. Organellar maps through proteomic profiling — a conceptual guide. Mol. Cell. Proteom. 19, 1076–1087 (2020).
Gatto, L. et al. A foundation for reliable spatial proteomics data analysis. Mol. Cell. Proteom. 13, 1937–1952 (2014).
Gatto, L., Breckels, L. M., Naake, T. & Gibb, S. Visualization of proteomics data using R and Bioconductor. Proteomics 15, 1375–1389 (2015).
Crook, O. M., Smith, T., Elzek, M. & Lilley, K. S. Moving profiling spatial proteomics beyond discrete classification. Proteomics 20, 1900392 (2020).
Crook, O. M. et al. A semi-supervised Bayesian approach for simultaneous protein sub-cellular localisation assignment and novelty detection. PLoS Comput. Biol. 16, e1008288 (2020).
Swan, A. L., Mobasheri, A., Allaway, D., Liddell, S. & Bacardit, J. Application of machine learning to proteomics data: classification and biomarker identification in postgenomics biology. OMICS 17, 595–610 (2013).
MacQueen, J. in Proc. Fifth Berkeley Symp. Math. Stat. Prob., Vol. 1: Statistics 281-297 (Univ. of California Press, 1967).
Ester, M., Kriegel, H. P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996).
Davies, A. K. et al. AP-4 vesicles contribute to spatial control of autophagy via RUSC-dependent peripheral delivery of ATG9A. Nat. Commun. 9, 3958 (2018).
Hirst, J., Itzhak, D. N., Antrobus, R., Borner, G. H. H. & Robinson, M. S. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval. PLoS Biol. 16, e2004411 (2018).
Peikert, C. D. et al. Charting organellar importomes by quantitative mass spectrometry. Nat. Commun. 8, 1–14 (2017).
Crook, O. M., Breckels, L. M., Lilley, K. S., Kirk, P. D. W. & Gatto, L. A Bioconductor workflow for the Bayesian analysis of spatial proteomics. F1000Research 8, 446 (2019).
Crook, O. M., Davies, C. T. R., Gatto, L., Kirk, P. D. W. & Lilley, K. S. Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE. Preprint at https://www.biorxiv.org/content/10.1101/2021.01.04.425239v2 (2021).
Choi, H. et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat. Methods 8, 70–73 (2011).
Hesketh, G. G. et al. The GATOR–Rag GTPase pathway inhibits mTORC1 activation by lysosome-derived amino acids. Science 370, 351–356 (2020).
Go, C. D. et al. A proximity biotinylation map of a human cell. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/796391v1 (2019).
Knight, J. D. R. et al. ProHits-viz: a suite of web tools for visualizing interaction proteomics data. Nat. Methods 14, 645–646 (2017).
Omasits, U., Ahrens, C. H., Müller, S. & Wollscheid, B. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30, 884–886 (2014).
Maarten, L. V. D. & Hinton, G. E. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).
Burry, R. W. Controls for immunocytochemistry: an update. J. Histochem. Cytochem. 59, 6–12 (2011).
Uhlen, M. et al. A proposal for validation of antibodies. Nat. Methods 13, 823–827 (2016).
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Lamprecht, M. R., Sabatini, D. M. & Carpenter, A. E. CellProfiler™: free, versatile software for automated biological image analysis. BioTechniques 42, 71–75 (2007).
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
Sommer, C., Straehle, C., Köthe, U. & Hamprecht, F. A. in 2011 IEEE Int. Symp. Biomed. Imaging: From Nano to Macro https://doi.org/10.1109/ISBI.2011.5872394 (IEEE, 2011).
Goldberg, I. G. et al. The Open Microscopy Environment (OME) data model and XML file: open tools for informatics and quantitative analysis in biological imaging. Genome Biol. 6, R47 (2005).
Sigal, A. et al. Variability and memory of protein levels in human cells. Nature 444, 643–646 (2006).
Breker, M., Gymrek, M. & Schuldiner, M. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J. Cell Biol. 200, 839–850 (2013).
Lu, A. X. et al. Integrating images from multiple microscopy screens reveals diverse patterns of change in the subcellular localization of proteins. eLife 7, e31892 (2018).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Lundervold, A. S. & Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. für Medizinische Phys. 29, 102–127 (2019).
Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017).
Coelho, L. P. et al. Determining the subcellular location of new proteins from microscope images using local features. Bioinformatics 29, 2343–2349 (2013).
Li, J., Newberg, J. Y., Uhlen, M., Lundberg, E. & Murphy, R. F. Automated analysis and reannotation of subcellular locations in confocal images from the Human Protein Atlas. PLoS ONE 7, e50514 (2012).
Li, J., Xiong, L., Schneider, J. & Murphy, R. F. Protein subcellular location pattern classification in cellular images using latent discriminative models. Bioinformatics 28, i32–i39 (2012).
Ouyang, W. et al. Analysis of the Human Protein Atlas image classification competition. Nat. Methods 16, 1254–1261 (2019).
Kraus, O. Z., Ba, J. L. & Frey, B. J. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52–i59 (2016).
Witten, I. H., Frank, E., Hall, M. A. & Pal, C. J. Data Mining: Practical Machine Learning Tools and Techniques 4th edn (Morgan Kaufmann, 2016).
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Bagshaw, R. D., Mahuran, D. J. & Callahan, J. W. A proteomic analysis of lysosomal integral membrane proteins reveals the diverse composition of the organelle. Mol. Cell. Proteom. 4, 133–143 (2005).
Kikuchi, M. et al. Proteomic analysis of rat liver peroxisome: presence of peroxisome-specific isozyme of Lon protease. J. Biol. Chem. 279, 421–428 (2004).
Kleffmann, T. & Russenberger, D. A. The Arabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr. Biol. 14, 354–362 (2004).
Sickmann, A. et al. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. USA 100, 13207–13212 (2003).
Taylor, S. W. et al. Characterization of the human heart mitochondrial proteome. Nat. Biotechnol. 21, 281–286 (2003).
Zhang, L. et al. Proteomic analysis of mouse liver plasma membrane: use of differential extraction to enrich hydrophobic membrane proteins. Proteomics 5, 4510–4524 (2005).
van den Berg, B. H., Harris, T., McCarthy, F. M., Lamont, S. J. & Burgess, S. C. Non-electrophoretic differential detergent fractionation proteomics using frozen whole organs. RCM 21, 3905–3909 (2007).
McCarthy, F. M., Burgess, S. C., van den Berg, B. H. J., Koter, M. D. & Pharr, G. T. Differential detergent fractionation for non-electrophoretic eukaryote cell proteomics. J. Proteome Res. 4, 316–324 (2005).
Schiller, H. B. et al. Time- and compartment-resolved proteome profiling of the extracellular niche in lung injury and repair. Mol. Syst. Biol. 11, 819 (2015).
Guther, M. L. S., Urbaniak, M. D., Tavendale, A., Prescott, A. & Ferguson, M. A. J. High-confidence glycosome proteome for procyclic form Trypanosoma brucei by epitope-tag organelle enrichment and SILAC proteomics. J. Proteome Res. 13, 2796–2806 (2014).
Islinger, M., Lers, G. H., Li, K. W., Loos, M. & Vlkl, A. Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J. Biol. Chem. 282, 23055–23069 (2007).
Marelli, M. et al. Quantitative mass spectrometry reveals a role for the GTPase Rho1p in actin organization on the peroxisome membrane. J. Cell Biol. 167, 1099–1112 (2004).
Ray, G. J. et al. A PEROXO-tag enables rapid isolation of peroxisomes from human cells. iScience 23, 101109 (2020).
Goebel, T. et al. Proteaphagy in mammalian cells can function independent of ATG5/ATG7. Mol. Cell. Proteom. 19, 1120–1131 (2020).
Schmidtke, C., Tiede, S., Thelen, M. & Kkel Lysosomal proteome analysis reveals that CLN3-defective cells have multiple enzyme deficiencies associated with changes in intracellular trafficking. J. Biol. Chem. 294, 9592–9604 (2019).
Becker, A. C. & Gannag Influenza a virus induces autophagosomal targeting of ribosomal proteins. Mol. Cell. Proteom. 17, 1909–1921 (2018).
Borner, G. H. H. et al. Fractionation profiling: a fast and versatile approach for mapping vesicle proteomes and protein–protein interactions. Mol. Biol. Cell 25, 3178–3194 (2014).
Gronemeyer, T. et al. The proteome of human liver peroxisomes: identification of five new peroxisomal constituents by a label-free quantitative proteomics survey. PLoS ONE 8, e57395 (2013).
Wühr, M. et al. The nuclear proteome of a vertebrate. Curr. Biol. 25, 2663–2671 (2015).
Kislinger, T. et al. Global survey of organ and organelle protein expression in mouse: combined proteomic and transcriptomic profiling. Cell 125, 173–186 (2006).
Loh, K. H. et al. Proteomic analysis of unbounded cellular compartments: synaptic clefts. Cell 166, 1295–1307 (2016).
Xie, W. et al. A-type lamins form distinct filamentous networks with differential nuclear pore complex associations. Curr. Biol. 26, 2651–2658 (2016).
Dong, J. M. et al. Proximity biotinylation provides insight into the molecular composition of focal adhesions at the nanometer scale. Sci. Signal. 9, rs4 (2016).
Guo, Z. et al. E-cadherin interactome complexity and robustness resolved by quantitative proteomics. Sci. Signal. 7, rs7 (2014).
Markmiller, S. et al. Context-dependent and disease-specific diversity in protein interactions within stress granules. Cell 172, 590–604 (2018).
Firat-Karalar, E. N., Rauniyar, N., Yates, J. R. III & Stearns, T. Proximity interactions among centrosome components identify regulators of centriole duplication. Curr. Biol. 24, 664–670 (2014).
Liu, X. et al. An AP-MS- and BioID-compatible MAC-tag enables comprehensive mapping of protein interactions and subcellular localizations. Nat. Commun. 9, 1188 (2018).
Bersuker, K. et al. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev. Cell 44, 97–112 (2018).
Chastney, M. R. et al. Topological features of integrin adhesion complexes revealed by multiplexed proximity biotinylation. J. Cell Biol. 219, e202003038 (2020).
Stenström, L. et al. Mapping the nucleolar proteome reveals a spatiotemporal organization related to intrinsic protein disorder. Mol. Syst. Biol. 16, e9469–e9469 (2020).
Carcamo, W. C. et al. Induction of cytoplasmic rods and rings structures by inhibition of the CTP and GTP synthetic pathway in mammalian cells. PLoS ONE 6, e29690 (2011).
Havelaar, A. H. et al. World Health Organization global estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Med. 12, e1001923 (2015).
Mulvey, C. M. et al. Subcellular proteomics reveals a role for nucleo-cytoplasmic trafficking at the DNA replication origin activation checkpoint. J. Proteome Res. 12, 1436–1453 (2013).
Branca, R. M. M. et al. HiRIEF LC-MS enables deep proteome coverage and unbiased proteogenomics. Nat. Methods 11, 59–62 (2014).
Snijder, B. & Pelkmans, L. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12, 119–125 (2011).
Dueck, H., Eberwine, J. & Kim, J. Variation is function: are single cell differences functionally important?: testing the hypothesis that single cell variation is required for aggregate function. BioEssays 38, 172–180 (2016).
[No authors listed]. The global challenge of cancer. Nature Cancer 1, 1–2 (2020). This paper emphasizes the importance of understanding cell to cell heterogeneity to understand disease development, resistance to therapy and disease recurrence.
Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).
Mahdessian, D. et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature 590, 649–654 (2021). This article presents a comprehensive spatio-temporal map of proteomics heterogeneity integrating immunofluorescence imaging with single-cell transcriptomics and precise measurements of the cell cycle in individual cells.
Nagao, Y., Sakamoto, M., Chinen, T., Okada, Y. & Takao, D. Robust classification of cell cycle phase and biological feature extraction by image-based deep learning. Mol. Biol. Cell 31, 1346–1354 (2020).
Vögtle, F. N. et al. Landscape of submitochondrial protein distribution. Nat. Commun. 8, 290 (2017).
Vögtle, F. N. et al. Intermembrane space proteome of yeast mitochondria. Mol. Cell. Proteom. 11, 1840–1852 (2012).
Parsons, H. T. et al. Separating golgi proteins from cis to trans reveals underlying properties of cisternal localization. Plant. Cell 31, 2010–2034 (2019).
Parsons, H. T. et al. Isolation and proteomic characterization of the Arabidopsis Golgi defines functional and novel components involved in plant cell wall biosynthesis. Plant. Physiol. 159, 12–26 (2012).
Willms, E. et al. Cells release subpopulations of exosomes with distinct molecular and biological properties. Sci. Rep. 6, 22519 (2016).
Bobrie, A., Colombo, M., Krumeich, S., Raposo, G. & Théry, C. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles 1, 18397 (2012).
Anderson, J. D. et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-κB signaling. Stem Cells 34, 601–613 (2016).
Bandu, R., Oh, J. W. & Kim, K. P. Mass spectrometry-based proteome profiling of extracellular vesicles and their roles in cancer biology. Exp. Mol. Med. 51, 1–10 (2019).
Rontogianni, S. et al. Proteomic profiling of extracellular vesicles allows for human breast cancer subtyping. Commun. Biol. 2, 325 (2019).
Li, J., He, X., Deng, Y. & Yang, C. An update on isolation methods for proteomic studies of extracellular vesicles in biofluids. Molecules 24, 3516 (2019).
Gomkale, R. et al. Defining the substrate spectrum of the TIM22 complex identifies pyruvate carrier subunits as unconventional cargos. Curr. Biol. 30, 1119–1127 (2020).
Nguyen, D. et al. Proteomics reveals signal peptide features determining the client specificity in human TRAP-dependent ER protein import. Nat. Commun. 9, 3765 (2018).
Kozik, P. et al. Small molecule enhancers of endosome-to-cytosol import augment anti-tumor immunity. Cell Rep. 32, 107905 (2020).
Weekes, M. P. et al. Quantitative temporal viromics: an approach to investigate host–pathogen interaction. Cell 157, 1460–1472 (2014).
Cook, K. C. & Cristea, I. M. Location is everything: protein translocations as a viral infection strategy. Curr. Opin. Chem. Biol. 48, 34–43 (2019).
Jean Beltran, P. M. et al. Infection-induced peroxisome biogenesis is a metabolic strategy for herpesvirus replication. Cell Host Microbe 24, 526–541 (2018).
Federspiel, J. D. et al. Mitochondria and peroxisome remodeling across cytomegalovirus infection time viewed through the lens of inter-ViSTA. Cell Rep. 32, 107943 (2020).
Horner, S. M., Wilkins, C., Badil, S., Iskarpatyoti, J. & Gale, M. Proteomic analysis of mitochondrial-associated ER membranes (MAM) during RNA virus infection reveals dynamic changes in protein and organelle trafficking. PLoS ONE 10, e0117963 (2015).
Dehmelt, L. & Bastiaens, P. I. Spatial organization of intracellular communication: insights from imaging. Nat. Rev. Mol. Cell Biol. 11, 440–452 (2010). This review discusses how changes in subcellular localization and regulation of proteins can contribute to drastic consequences in the cell.
Smith, Z. D., Nachman, I., Regev, A. & Meissner, A. Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nat. Biotechnol. 28, 521–526 (2010).
Bar-Even, A. et al. Noise in protein expression scales with natural protein abundance. Nat. Genet. 38, 636–643 (2006).
Newman, J. R. et al. Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441, 840–846 (2006).
Landhuis, E. Deep learning takes on tumours. Nature 580, 551–553 (2020). This study discusses how artificial intelligence methods combined with imaging tools for subcellular proteomics could be a useful advance for cancer research.
Guardia, C. M., De Pace, R., Mattera, R. & Bonifacino, J. S. Neuronal functions of adaptor complexes involved in protein sorting. Curr. Opin. Neurobiol. 51, 103–110 (2018).
Hanash, S. Disease proteomics. Nature 422, 226–232 (2003).
Kavallaris, M. & Marshall, G. M. Proteomics and disease: opportunities and challenges. Med. J. Aust. 182, 575–579 (2005).
Dénervaud, N. et al. A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc. Natl Acad. Sci. USA 110, 15842–15847 (2013).
Tkach, J. M. et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat. Cell Biol. 14, 966–976 (2012).
Samavarchi-Tehrani, P., Abdouni, H., Samson, R. & Gingras, A.-C. A versatile lentiviral delivery toolkit for proximity-dependent biotinylation in diverse cell types. Mol. Cell. Proteom. 17, 2256 (2018).
Gatto, L., Breckels, L. M., Wieczorek, S., Burger, T. & Lilley, K. S. Mass-spectrometry-based spatial proteomics data analysis using pRoloc and pRolocdata. Bioinformatics 30, 1322–1324 (2014).
Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 1–9 (2016).
Berglund, L. et al. A genecentric Human Protein Atlas for expression profiles based on antibodies. Mol. Cell Proteom. 7, 2019–2027 (2008).
Baker, M. Reproducibility crisis: blame it on the antibodies. Nature 521, 274–276 (2015).
Linkert, M. et al. Metadata matters: access to image data in the real world. J. Cell Biol. 189, 777–782 (2010).
Carpenter, A. E. et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7, R100 (2006).
Vizcaíno, J. A. et al. ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat. Biotechnol. 32, 223–226 (2014).
Hahsler, M., Piekenbrock, M. & Doran, D. DBCSCAN: fast density-based clustering with R. J. Stat. Soft. https://doi.org/10.18637/jss.v091.i01 (2019).
Lund-Johansen, F. et al. MetaMass, a tool for meta-analysis of subcellular proteomics data. Nat. Methods 13, 837–840 (2016).
Thompson, A. et al. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 75, 1895–1904 (2003).
Plubell, D. L. et al. Extended multiplexing of tandem mass tags (TMT) labeling reveals age and high fat diet specific proteome changes in mouse epididymal adipose tissue. Mol. Cell. Proteom. 16, 873–890 (2017).
O’Brien, J. J. et al. The effects of nonignorable missing data on label-free mass spectrometry proteomics experiments. Ann. Appl. Stat. 12, 2075–2095 (2018).
Kurosawa, N. et al. Novel method for the high-throughput production of phosphorylation site-specific monoclonal antibodies. Sci. Rep. 6, 25174 (2016).
Smith, T. C., Saul, R. G., Barton, E. R. & Luna, E. J. Generation and characterization of monoclonal antibodies that recognize human and murine supervillin protein isoforms. PLoS ONE 13, e0205910 (2018).
Li, X.-S., Yuan, B.-F. & Feng, Y.-Q. Recent advances in phosphopeptide enrichment: strategies and techniques. Trends Anal. Chem. 78, 70–83 (2016).
Svinkina, T. et al. Deep, quantitative coverage of the lysine acetylome using novel anti-acetyl-lysine antibodies and an optimized proteomic workflow. Mol. Cell Proteom. 14, 2429–2440 (2015).
Weinert, B. T. et al. Time-resolved analysis reveals rapid dynamics and broad scope of the CBP/p300 acetylome. Cell 174, 231–244.e212 (2018).
Bekker-Jensen, D. B. et al. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries. Nat. Commun. 11, 787 (2020).
Humphrey, S. J., Azimifar, S. B. & Mann, M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat. Biotechnol. 33, 990–995 (2015).
Masuda, T., Sugiyama, N., Tomita, M., Ohtsuki, S. & Ishihama, Y. Mass spectrometry-compatible subcellular fractionation for proteomics. J. Proteome Res. 19, 75–84 (2020).
Murray, L. A., Sheng, X. & Cristea, I. M. Orchestration of protein acetylation as a toggle for cellular defense and virus replication. Nat. Commun. 9, 4967 (2018).
Parker, C. E., Mocanu, V., Mocanu, M., Dicheva, N. & Warren, M. R. in Neuroproteomics Ch. 6 (CRC Press/Taylor & Francis, 2010).
Virág, D. et al. Current trends in the analysis of post-translational modifications. Chromatographia 83, 1–10 (2020).
Lundberg, E. & Uhlén, M. Creation of an antibody-based subcellular protein atlas. Proteomics 10, 3984–3996 (2010).
Jackson, H. W. et al. The single-cell pathology landscape of breast cancer. Nature 578, 615–620 (2020).
Schürch, C. M. et al. Coordinated cellular neighborhoods orchestrate antitumoral immunity at the colorectal cancer invasive front. Cell 182, 1341–1359.e19 (2020).
Mund, A. et al. AI-driven deep visual proteomics defines cell identity and heterogeneity. Preprint at https://www.biorxiv.org/content/10.1101/2021.01.25.427969v1.abstract (2021).
Kwak, C. et al. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc. Natl Acad. Sci. USA 117, 12109 (2020).
Cho, K. F. et al. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl Acad. Sci. USA 117, 12143–12154 (2020).
Ma, Y., McClatchy, D. B., Barkallah, S., Wood, W. W. & Yates, J. R. Quantitative analysis of newly synthesized proteins. Nat. Protoc. 13, 1744–1762 (2018).
Fornasiero, E. F. et al. Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions. Nat. Commun. 9, 4230 (2018).
Zecha, J. et al. Peptide level turnover measurements enable the study of proteoform dynamics. Mol. Cell. Proteom. 17, 974 (2018).
Kleinpenning, F., Steigenberger, B., Wu, W. & Heck, A. J. R. Fishing for newly synthesized proteins with phosphonate-handles. Nat. Commun. 11, 3244 (2020).
Bogenhagen, D. F. & Haley, J. D. Pulse-chase SILAC-based analyses reveal selective oversynthesis and rapid turnover of mitochondrial protein components of respiratory complexes. J. Biol. Chem. 295, 2544–2554 (2020).
Duan, J. et al. Stochiometric quantification of the thiol redox proteome of macrophages reveals subcellular compartmentalization and susceptibility to oxidative perturbations. Redox Biol. 36, 101649 (2020).
Klein, A. M. & Macosko, E. InDrops and Drop-seq technologies for single-cell sequencing. Lab. Chip 17, 2540–2541 (2017).
Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).
Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).
Mardakheh, F. K. et al. Global analysis of mRNA, translation, and protein localization: local translation is a key regulator of cell protrusions. Dev. Cell 35, 344–357 (2015).
Adekunle, D. A. & Wang, E. T. Transcriptome-wide organization of subcellular microenvironments revealed by ATLAS-seq. Nucleic Acids Res. 48, 5859–5872 (2020).
Lefebvre, F. A. et al. CeFra-seq: systematic mapping of RNA subcellular distribution properties through cell fractionation coupled to deep-sequencing. Methods 126, 138–148 (2017).
Taniguchi, Y. et al. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329, 533–538 (2010).
Slavov, N. Unpicking the proteome in single cells. Science 367, 512–513 (2020).
Swaminathan, J. et al. Highly parallel single-molecule identification of proteins in zeptomole-scale mixtures. Nat. Biotechnol. 36, 1076–1082 (2018).
Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161 (2018). This study reports a tandem mass tag carrier-based method to increase protein detection sensitivity sufficiently to allow for single-cell proteomics.
Kelly, R. T. Single-cell proteomics: progress and prospects. Mol. Cell Proteom. 19, 1739–1748 (2020).
Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017). This study reports the use of DNA-barcoded antibodies to convert the detection of surface proteins into a quantitative read-out jointly with RNA sequencing of single cells.
Paul, I., White, C., Turcinovic, I. & Emili, A. Imaging the future: the emerging era of single-cell spatial proteomics. FEBS J. https://doi.org/10.1111/febs.15685 (2020).
Yao, Y., Docter, M., van Ginkel, J., de Ridder, D. & Joo, C. Single-molecule protein sequencing through fingerprinting: computational assessment. Phys. Biol. 12, 055003 (2015).
Christiansen, E. M. et al. In silico labeling: predicting fluorescent labels in unlabeled images. Cell 173, 792–803 (2018).
Bernocco, S. et al. Sequential detergent fractionation of primary neurons for proteomics studies. Proteomics 8, 930–938 (2008).
Holden, P. & Horton, W. A. Crude subcellular fractionation of cultured mammalian cell lines. BMC Res. Notes 2, 243 (2009).
Baghirova, S., Hughes, B. G., Hendzel, M. J. & Schulz, R. Sequential fractionation and isolation of subcellular proteins from tissue or cultured cells. MethodsX 2, 440–445 (2015).
Ramsby, M. L., Makowski, G. S. & Khairallah, E. A. Differential detergent fractionation of isolated hepatocytes: biochemical, immunochemical and two-dimensional gel electrophoresis characterization of cytoskeletal and noncytoskeletal compartments. Electrophoresis 15, 265–277 (1994).
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2018).
Deutsch, E. W., Lam, H. & Aebersold, R. PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 9, 429–434 (2008).
Wang, M. et al. Assembling the community-scale discoverable human proteome. Cell Syst. 7, 412–421 (2018).
Calvo, S. E., Clauser, K. R. & Mootha, V. K. MitoCarta2.0: an updated inventory of mammalian mitochondrial proteins. Nucleic Acids Res. 44, D1251–D1257 (2015).
Schlüter, A., Real-Chicharro, A., Gabaldón, T., Sánchez-Jiménez, F. & Pujol, A. PeroxisomeDB 2.0: an integrative view of the global peroxisomal metabolome. Nucleic Acids Res. 38, D800–D805 (2009).
Akhter, S., Kaur, H., Agrawal, P. & Raghava, G. P. S. RareLSD: a manually curated database of lysosomal enzymes associated with rare diseases. Database https://doi.org/10.1093/database/baz112 (2019).
Orloff, D. N., Iwasa, J. H., Martone, M. E., Ellisman, M. H. & Kane, C. M. The cell: an image library-CCDB: a curated repository of microscopy data. Nucleic Acids Res. 41, D1241–D1250, (2012).
Williams, E. et al. Image Data Resource: a bioimage data integration and publication platform. Nat. Methods 14, 775–781 (2017).
Forsberg, L. et al. Pre-fractionation of archival frozen tumours for proteomics applications. J. Biotechnol. 126, 582–586 (2006).
Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).
Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).
Aichler, M. & Walch, A. MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab. Invest. 95, 422–431 (2015).
Buchberger, A. R., DeLaney, K., Johnson, J. & Li, L. Mass spectrometry imaging: a review of emerging advancements and future insights. Anal. Chem. 90, 240–265 (2018).
Bendall, S. C., Nolan, G. P., Roederer, M. & Chattopadhyay, P. K. A deep profiler’s guide to cytometry. Trends Immunol. 33, 323–332 (2012).
Gorman, B. L. & Kraft, M. L. High-resolution secondary ion mass spectrometry analysis of cell membranes. Anal. Chem. 92, 1645–1652 (2020).
Lever, J., Krzywinski, M. & Altman, N. Principal component analysis. Nat. Methods 14, 641–642 (2017).
Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).
Hansen, P. & Jaumard, B. Cluster analysis and mathematical programming. Math. Program. 79, 191–215 (1997).
Kristensen, A. R., Gsponer, J. & Foster, L. J. A high-throughput approach for measuring temporal changes in the interactome. Nat. Methods 9, 907–909 (2012).
Havugimana, P. C. et al. A census of human soluble protein complexes. Cell 150, 1068–1081 (2012).
Guerrero-Castillo, S. et al. The assembly pathway of mitochondrial respiratory chain complex I. Cell Metab. 25, 128–139 (2017).
Tackett, A. J. et al. Proteomic and genomic characterization of chromatin complexes at a boundary. J. Cell Biol. 169, 35–47 (2005).
Larance, M. et al. Global membrane protein interactome analysis using in vivo crosslinking and mass spectrometry-based protein correlation profiling. Mol. Cell. Proteom. 15, 2476 (2016).
Kastritis, P. L. et al. Capturing protein communities by structural proteomics in a thermophilic eukaryote. Mol. Syst. Biol. 13, 936 (2017).
Wessels, H. J. C. T. et al. LC-MS/MS as an alternative for SDS-PAGE in blue native analysis of protein complexes. Proteomics 9, 4221–4228 (2009).
Savitski, M. M. et al. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346, 1255784 (2014).
Tan, C. S. H. et al. Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells. Science 359, 1170–1177 (2018).
Hashimoto, Y., Sheng, X., Murray-Nerger, L. A. & Cristea, I. M. Temporal dynamics of protein complex formation and dissociation during human cytomegalovirus infection. Nat. Commun. 11, 1–20 (2020).
Taylor, C. F. et al. The Minimum Information About a Proteomics Experiment (MIAPE). Nat. Biotechnol. 25, 887–893 (2007).
Taylor, C. F. et al. Guidelines for reporting the use of mass spectrometry in proteomics. Nat. Biotechnol. 26, 860–861 (2008).
Acknowledgements
J.A.C. is funded through a BBSRC iCASE award with Astra Zeneca. D.M. is funded by the Knut and Alice Wallenberg Foundation (2016.0204) and the Swedish Research Council (2017-05327). C.S. is funded by Science for Life (SciLifeLab) national funding, the National Microscopy Infrastructure (VR-RFI 2019-00217), the European Proteomics Infrastructure Consortium EPIC-XS (project number 823839) and the EU Horizon 2020 programme. A.-C.G. is the Tier 1 Canada Research Chair in Functional Proteomics and is supported by the Canadian Institutes of Health Research (FDN143301). C.E.M. is supported by a KRESCENT Post-Doctoral Fellowship and Canadian Institutes of Health Research Fellowship. B.W. is supported by the Deutsche Forschungsgemeinschaft (Project IDs 403222702/SFB 1381, FOR 1905, FOR 2743), Germany’s Excellence Strategy (CIBSS — EXC-2189 — Project ID 390939984), European Research Council Consolidator Grant No. 648235 and the European Union Marie Curie Initial Training Networks program PerICo (Grant Agreement Number 812968). Work included in this study has also been performed in partial fulfilment of the requirements for the doctoral thesis of M.M. at the University of Freiburg. L.J.F. is supported by Genome Canada/Genome British Columbia (Project 264PRO). I.M.C. is funded by the National Institute of General Medical Sciences (GM114141), the National Institute of Child Health and Human Development (HD089275) and the Edward Mallinckrodt Jr. foundation. C.N.B. is funded by the National Institute of General Medical Sciences (T32GM007388). Y.P. is funded through the Swedish Cancer Society. J.L. is funded though the Erling-Persson Family Foundation, the Swedish Cancer Society, the Swedish Childhood Cancer Foundation, the Swedish Foundation for Strategic Research, the Swedish Research Council and the EU Horizon 2020 project (RESCUER and OncoBiome). A.E. acknowledges previous and ongoing grant support from the National Institutes of Health (NIH) (1UL1TR001430, R01AG064932, R01AG061706, R01DK110520).
Author information
Authors and Affiliations
Contributions
Introduction (K.S.L., J.A.C.); Experimentation (K.S.L., J.A.C., C.S., C.E.M., M.M., Y.P., C.N.B., D.G.R., D.M., A.-C.G., B.W., J.L., I.M.C., L.J.F.); Results (K.S.L., J.A.C., C.S., C.E.M., M.M., Y.P., C.N.B., D.G.R., D.M., A.-C.G., B.W., J.L., I.M.C., L.J.F.); Applications (K.S.L., J.A.C., C.S., C.E.M., M.M., Y.P., C.N.B., D.G.R., D.M., A.-C.G., B.W., J.L., I.M.C., L.J.F.); Reproducibility and data deposition (K.S.L., J.A.C., C.S., C.E.M., M.M., Y.P., C.N.B., D.G.R., D.M., A.-C.G., B.W., J.L., I.M.C., L.J.F.); Limitations and optimizations (K.S.L., J.A.C., C.S., C.E.M., M.M., Y.P., C.N.B., D.G.R., D.M., A.-C.G., B.W., J.L., I.M.C., L.J.F., A.E.); Outlook (K.S.L., J.L., C.S., A.E.); Overview of the Primer (K.S.L.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Methods Primers thanks G. Borner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
COMPARTMENTS: https://compartments.jensenlab.org/
Gene Ontology: http://geneontology.org/
Human Protein Atlas: https://www.proteinatlas.org/humanproteome/cell
Kaggle challenge for multi-label classification of cell organelles: https://www.kaggle.com/c/human-protein-atlas-image-classification
MIAPE guidelines: http://www.psidev.info/miape
Open Microscopy Environment: https://www.openmicroscopy.org/
Open-source Python tools for proteomics analysis: https://github.com/Roestlab/PythonProteomics
R programming packages: https://www.R-project.org/
UniProt: https://www.uniprot.org/
Glossary
- Proteoforms
-
Different molecular forms in which the protein product of a single gene can be found.
- Protein correlation profiling
-
Using distributions profiles of proteins unique to different organelles and protein complexes across subcellular biochemical fractions to determine the subcellular location or complex association of uncharacterized proteins.
- de Duve’s principle
-
Comparing the distribution pattern across subcellular fractions of proteins known to be resident within a specific organelle of interest allows for inference of other proteins with similar distribution profiles that must also reside in the same compartment.
- Nanobodies
-
Antibody fragments consisting of a single monomeric variable antibody domain.
- Affimers
-
Small proteins that bind to target molecules with a similar specificity and affinity to antibodies.
- Aptamers
-
Oligonucleotides or peptide molecules that bind to a specific target molecule.
- Abbe’s law
-
The approximate diffraction limit of a microscope determined using the wavelength of light (λ), the refraction index of the medium the imaged object is in (n) and the numerical aperture (θ).
- Posterior probabilities
-
In Bayesian statistics, the revised or updated probability of an event after incorporating prior knowledge with observed data.
- Golgins
-
A family of proteins that selectively tether vesicles at the Golgi apparatus and mediate transport of vesicles as part of the secretory pathway.
- Edman degradation
-
A cyclic peptide sequencing technique where amino-terminal amino acid groups are sequentially cleaved and identified using chromatography or electrophoresis.
Rights and permissions
About this article
Cite this article
Christopher, J.A., Stadler, C., Martin, C.E. et al. Subcellular proteomics. Nat Rev Methods Primers 1, 32 (2021). https://doi.org/10.1038/s43586-021-00029-y
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-021-00029-y