Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes

An Author Correction to this article was published on 28 June 2018

A Publisher Correction to this article was published on 28 June 2018

This article has been updated

Abstract

Diffuse large B cell lymphoma (DLBCL), the most common lymphoid malignancy in adults, is a clinically and genetically heterogeneous disease that is further classified into transcriptionally defined activated B cell (ABC) and germinal center B cell (GCB) subtypes. We carried out a comprehensive genetic analysis of 304 primary DLBCLs and identified low-frequency alterations, captured recurrent mutations, somatic copy number alterations, and structural variants, and defined coordinate signatures in patients with available outcome data. We integrated these genetic drivers using consensus clustering and identified five robust DLBCL subsets, including a previously unrecognized group of low-risk ABC-DLBCLs of extrafollicular/marginal zone origin; two distinct subsets of GCB-DLBCLs with different outcomes and targetable alterations; and an ABC/GCB-independent group with biallelic inactivation of TP53, CDKN2A loss, and associated genomic instability. The genetic features of the newly characterized subsets, their mutational signatures, and the temporal ordering of identified alterations provide new insights into DLBCL pathogenesis. The coordinate genetic signatures also predict outcome independent of the clinical International Prognostic Index and suggest new combination treatment strategies. More broadly, our results provide a roadmap for an actionable DLBCL classification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Recurrently mutated genes in 304 primary DLBCLs.
Fig. 2: Mutational signatures operating in primary DLBCLs.
Fig. 3: Chromosomal rearrangements in primary DLBCLs.
Fig. 4: Recurrent SCNAs and outcome association of individual genetic factors.
Fig. 5: Identification of groups of tumors with coordinate genetic signatures.
Fig. 6: Type and incidence of MYD88 mutations, cAID mutational signature activity, inferred timing of genetic drivers, and outcome association of DLBCL clusters.

Similar content being viewed by others

Change history

  • 28 June 2018

    In the version of this article originally published, an asterisk was omitted from Fig. 1a. The asterisk has been added to the figure. Additionally, a “NOTCH2” label was erroneously included in Fig. 4a. The label has been removed. The errors have been corrected in the PDF and HTML versions of this article.

  • 28 June 2018

    In the version of this article originally published, some text above the “Tri–nucleotide sequence motifs” label in Fig. 2a appeared incorrectly. The text was garbled and should have appeared as nucleotide codes.

    Additionally, the labels on the bars in Fig. 2c were not italicized in the original publication. These are gene symbols, and they should have been italicized.

    The colored labels above the graphs in Fig. 4b were also erroneously not italicized. These labels represent gene names and loci, and they should have been italicized.

References

  1. Basso, K. & Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. 15, 172–184 (2015).

    CAS  PubMed  Google Scholar 

  2. Monti, S. et al. Integrative analysis reveals an outcome-associated and targetable pattern of p53 and cell cycle deregulation in diffuse large B cell lymphoma. Cancer Cell 22, 359–372 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Lohr, J. G. et al. Discovery and prioritization of somatic mutations in diffuse large B-cell lymphoma (DLBCL) by whole-exome sequencing. Proc. Natl. Acad. Sci. USA 109, 3879–3884 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Morin, R. D. et al. Mutational and structural analysis of diffuse large B-cell lymphoma using whole-genome sequencing. Blood 122, 1256–1265 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. de Miranda, N. F. et al. Exome sequencing reveals novel mutation targets in diffuse large B-cell lymphomas derived from Chinese patients. Blood 124, 2544–2553 (2014).

    PubMed  PubMed Central  Google Scholar 

  8. Reddy, A. et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell 171, 481–494.e15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rosenwald, A. et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med. 346, 1937–1947 (2002).

    PubMed  Google Scholar 

  10. Monti, S. et al. Molecular profiling of diffuse large B-cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105, 1851–1861 (2005).

    CAS  PubMed  Google Scholar 

  11. Ngo, V. N. et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470, 115–119 (2011).

    CAS  PubMed  Google Scholar 

  12. Caro, P. et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22, 547–560 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Davis, R. E. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463, 88–92 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, L. et al. SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 23, 826–838 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lenz, G. et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676–1679 (2008).

    CAS  PubMed  Google Scholar 

  16. Muppidi, J. R. et al. Loss of signalling via Gα13 in germinal centre B-cell-derived lymphoma. Nature 516, 254–258 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Morin, R. D. et al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nat. Genet. 42, 181–185 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Pfeifer, M. et al. PTEN loss defines a PI3K/AKT pathway–dependent germinal center subtype of diffuse large B-cell lymphoma. Proc. Natl. Acad. Sci. USA 110, 12420–12425 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lenz, G. et al. Stromal gene signatures in large-B-cell lymphomas. N. Engl. J. Med. 359, 2313–2323 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Dubois, S. et al. Biological and clinical relevance of associated genomic alterations in MYD88 L265P and non-L265P-mutated diffuse large B-cell lymphoma: analysis of 361 cases. Clin. Cancer Res. 23, 2232–2244 (2017).

    CAS  PubMed  Google Scholar 

  21. Ennishi, D. et al. Genetic profiling of MYC and BCL2 in diffuse large B-cell lymphoma determines cell-of-origin-specific clinical impact. Blood 129, 2760–2770 (2017).

    CAS  PubMed  Google Scholar 

  22. Pfreundschuh, M. et al. Six versus eight cycles of bi-weekly CHOP-14 with or without rituximab in elderly patients with aggressive CD20+ B-cell lymphomas: a randomised controlled trial (RICOVER-60). Lancet Oncol. 9, 105–116 (2008).

    CAS  PubMed  Google Scholar 

  23. Lawrence, M. S. et al. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214–218 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kamburov, A. et al. Comprehensive assessment of cancer missense mutation clustering in protein structures. Proc. Natl. Acad. Sci. USA 112, E5486–E5495 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kasar, S. et al. Whole-genome sequencing reveals activation-induced cytidine deaminase signatures during indolent chronic lymphocytic leukaemia evolution. Nat. Commun. 6, 8866 (2015).

    CAS  PubMed  Google Scholar 

  26. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Pasqualucci, L. et al. AID is required for germinal center-derived lymphomagenesis. Nat. Genet. 40, 108–112 (2008).

    CAS  PubMed  Google Scholar 

  28. Chapuy, B. et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 127, 869–881 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Georgiou, K. et al. Genetic basis of PD-L1 overexpression in diffuse large B-cell lymphomas. Blood 127, 3026–3034 (2016).

    CAS  PubMed  Google Scholar 

  30. Scott, D. W. et al. TBL1XR1/TP63: a novel recurrent gene fusion in B-cell non-Hodgkin lymphoma. Blood 119, 4949–4952 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Challa-Malladi, M. et al. Combined genetic inactivation of β2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer Cell 20, 728–740 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Green, M. R. et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Steidl, C. et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471, 377–381 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Brunet, J. P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl. Acad. Sci. USA 101, 4164–4169 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dierlamm, J. et al. Gain of chromosome region 18q21 including the MALT1 gene is associated with the activated B-cell-like gene expression subtype and increased BCL2 gene dosage and protein expression in diffuse large B-cell lymphoma. Haematologica 93, 688–696 (2008).

    CAS  PubMed  Google Scholar 

  36. Lenz, G. et al. Molecular subtypes of diffuse large B-cell lymphoma arise by distinct genetic pathways. Proc. Natl. Acad. Sci. USA 105, 13520–13525 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Pham-Ledard, A. et al. High frequency and clinical prognostic value of MYD88 L265P mutation in primary cutaneous diffuse large B-cell lymphoma, leg-type. JAMA Dermatol. 150, 1173–1179 (2014).

    PubMed  Google Scholar 

  38. Rovira, J. et al. MYD88 L265P mutations, but no other variants, identify a subpopulation of DLBCL patients of activated B-cell origin, extranodal involvement, and poor outcome. Clin. Cancer Res. 22, 2755–2764 (2016).

    CAS  PubMed  Google Scholar 

  39. Rossi, D. et al. The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development. J. Exp. Med. 209, 1537–1551 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Spina, V. et al. The genetics of nodal marginal zone lymphoma. Blood 128, 1362–1373 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, Q. et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22; q32). Nat. Genet. 22, 63–68 (1999).

    CAS  PubMed  Google Scholar 

  42. Kiel, M. J. et al. Whole-genome sequencing identifies recurrent somatic NOTCH2 mutations in splenic marginal zone lymphoma. J. Exp. Med. 209, 1553–1565 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Flossbach, L. et al. BCL6 gene rearrangement and protein expression are associated with large cell presentation of extranodal marginal zone B-cell lymphoma of mucosa-associated lymphoid tissue. Int. J. Cancer 129, 70–77 (2011).

    CAS  PubMed  Google Scholar 

  44. Zucca, E., Bertoni, F., Vannata, B. & Cavalli, F. Emerging role of infectious etiologies in the pathogenesis of marginal zone B-cell lymphomas. Clin. Cancer Res. 20, 5207–5216 (2014).

    CAS  PubMed  Google Scholar 

  45. MacLennan, I. C. et al. Extrafollicular antibody responses. Immunol. Rev. 194, 8–18 (2003).

    CAS  PubMed  Google Scholar 

  46. Erdmann, T. et al. Sensitivity to PI3K and AKT inhibitors is mediated by divergent molecular mechanisms in subtypes of DLBCL. Blood 130, 310–322 (2017).

    CAS  PubMed  Google Scholar 

  47. Sun, Z. et al. PTEN C-terminal deletion causes genomic instability and tumor development. Cell Reports 6, 844–854 (2014).

    CAS  PubMed  Google Scholar 

  48. Ortega-Molina, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B cell lymphoma development. Nat. Med. 21, 1199–1208 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Boice, M. et al. Loss of the HVEM tumor suppressor in lymphoma and restoration by modified CAR-T cells. Cell 167, 405–418.e413 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ying, C. Y. et al. MEF2B mutations lead to deregulated expression of the oncogene BCL6 in diffuse large B cell lymphoma. Nat. Immunol. 14, 1084–1092 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang, J. et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 7, 322–337 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Krysiak, K. et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood 129, 473–483 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Béguelin, W. et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 23, 677–692 (2013).

    PubMed  PubMed Central  Google Scholar 

  54. Li, H. et al. Mutations in linker histone genes HIST1H1 B, C, D, and E; OCT2 (POU2F2); IRF8; and ARID1A underlying the pathogenesis of follicular lymphoma. Blood 123, 1487–1498 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Okosun, J. et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46, 176–181 (2014).

    CAS  PubMed  Google Scholar 

  56. Yang, S. M., Kim, B. J., Norwood Toro, L. & Skoultchi, A. I. H1 linker histone promotes epigenetic silencing by regulating both DNA methylation and histone H3 methylation. Proc. Natl. Acad. Sci. USA 110, 1708–1713 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Xu-Monette, Z. Y. et al. Mutational profile and prognostic significance of TP53 in diffuse large B-cell lymphoma patients treated with R-CHOP: report from an International DLBCL Rituximab-CHOP Consortium Program Study. Blood 120, 3986–3996 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sesques, P. & Johnson, N. A. Approach to the diagnosis and treatment of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. Blood 129, 280–288 (2017).

    CAS  PubMed  Google Scholar 

  59. Li, Y., Choi, P. S., Casey, S. C., Dill, D. L. & Felsher, D. W. MYC through miR-17-92 suppresses specific target genes to maintain survival, autonomous proliferation, and a neoplastic state. Cancer Cell 26, 262–272 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Landau, D. A. et al. Mutations driving CLL and their evolution in progression and relapse. Nature 526, 525–530 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Novak, A. J. et al. Whole-exome analysis reveals novel somatic genomic alterations associated with outcome in immunochemotherapy-treated diffuse large B-cell lymphoma. Blood Cancer J. 5, e346 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chapman, M. A. et al. Initial genome sequencing and analysis of multiple myeloma. Nature 471, 467–472 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Fisher, S. et al. A scalable, fully automated process for construction of sequence-ready human exome targeted capture libraries. Genome Biol. 12, R1 (2011).

    PubMed  PubMed Central  Google Scholar 

  64. Gnirke, A. et al. Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nat. Biotechnol. 27, 182–189 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lichtenstein, L., Wood, B., MacBeth, A., Birsoy, O. & Lennon, N. ReCapSeg: Validation of somatic copy number alterations for CLIA whole exome sequencing. Cancer Res. 76 Supplement, abstr. 3641 (2016).

  67. Giannikou, K. et al. Whole exome sequencing identifies TSC1/TSC2 biallelic loss as the primary and sufficient driver event for renal angiomyolipoma development. PLoS Genet. 12, e1006242 (2016).

    PubMed  PubMed Central  Google Scholar 

  68. Burger, J. A. et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 7, 11589 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Mermel, C. H. et al. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 12, R41 (2011).

    PubMed  PubMed Central  Google Scholar 

  70. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol. 31, 213–219 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramos, A. H. et al. Oncotator: cancer variant annotation tool. Hum. Mutat. 36, E2423–E2429 (2015).

    PubMed  PubMed Central  Google Scholar 

  72. Costello, M. et al. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res. 41, e67 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Giannakis, M. et al. Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma. Cell Reports 17, 1206 (2016).

    CAS  PubMed  Google Scholar 

  74. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell 159, 676–690 (2014).

    Google Scholar 

  75. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Carter, S. L. et al. Absolute quantification of somatic DNA alterations in human cancer. Nat. Biotechnol. 30, 413–421 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Abo, R. P. et al. BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Res. 43, e19 (2015).

    PubMed  Google Scholar 

  79. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Wala, J. A. et al. SvABA: genome-wide detection of structural variants and indels by local assembly. Genome Res. 28, 581–591 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all of the members of the Broad Institute's Biological Samples Genetic Analysis Genome Sequencing Platforms. In addition, we thank all of the patients and their physicians for trial participation and donating the samples. This work was supported by a Claudia Adams Barr Program in Basic Cancer Research (B.C.), a Medical Oncology Translational Grant Program (B.C.), two LLS Translational Research Awards (M.A.S.), and the Lymphoma Target Testing Center (M.A.S.). The computational work for this study was supported by grants U54HG003067, P01CA163222, R01CA18246, U24CA143845, U24CA210999, and R01CA155010 from the National Cancer Institute and the National Human Genome Research Institute, as well as Leukemia & Lymphoma Society grant 0812-14. The Mayo group was supported by a grant from the US National Institutes of Health (P50 CA97274). R.S., M.L., and L.T. received Funding from BMBF (Federal Ministry of Research, Germany; Kennzeichen FZK 031A428B and FZK 031A428H). The Ricover60 Trial was supported by a research grant from Deutsche Krebshilfe (M.P.).

Author information

Authors and Affiliations

Authors

Contributions

B.C., C.S., G.G., and M.A.S. conceived the project and provided leadership. B.C., C.S., A.D., J.K., A.K., R.R., M.L, A.J.L., G.G., and M.A.S analyzed the data. M.G.M.R., M.Z., A.M.S., J. W., M.D.D., I.L., E.R., A.T.-W, C.C., J.H., C.P., D.L., D.R., M.R., A.T., H.H., P.v.H., A.L.F., B.R.L., A.J.N., J.R.C., T.M.H., R.S., A.R., A.R.T., M.M., T.R.G., R.B., G.G.W., G.O., S.J.R., S.M., D.N., M.L., M.P., and L.T. contributed to the analysis and scientific discussions. B.C, C.S., A.D., G.G., and M.A.S. wrote the paper.

Corresponding authors

Correspondence to Gad Getz or Margaret A. Shipp.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 and Supplementary Note

Reporting Summary

Supplementary Table 1

Sample summary

Supplementary Table 2

Patient characteristics

Supplementary Table 3

Significantly mutated genes

Supplementary Table 4

Mutational signature analyses

Supplementary Table 5

Chromosomal rearrangements

Supplementary Table 6

Significant CNAs and correlation to gene expression

Supplementary Table 7

Univariate and multivariate outcome associations

Supplementary Table 8

Gene sample matrix and features of consensus clusters

Supplementary Table 9

Clinical features and features across clusters

Supplementary Table 10

Ordering analyses

Supplementary Table 11

Outcome analyses of clusters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chapuy, B., Stewart, C., Dunford, A.J. et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 24, 679–690 (2018). https://doi.org/10.1038/s41591-018-0016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-018-0016-8

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer