Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate immune responses to trauma

Abstract

Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protective and harmful innate immune responses to trauma.
Fig. 2: Activation of innate immune responses and endothelial dysfunction after trauma.
Fig. 3: Innate immune responses in the lungs following trauma.
Fig. 4: Cerebral and extracerebral challenges to the innate immune system.
Fig. 5: Trauma-induced breakdown of protective cell barriers in the gut.

Similar content being viewed by others

References

  1. Lord, J. M. et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet 384, 1455–1465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sauaia, A., Moore, F. A. & Moore, E. E. Postinjury inflammation and organ dysfunction. Crit. Care Clin. 33, 167–191 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mira, J. C. et al. The epidemiology of chronic critical illness after severe traumatic injury at two level-one trauma centers. Crit. Care Med. 45, 1989–1996 (2017).

    Article  PubMed  Google Scholar 

  4. Gabbe, B. J. et al. Long-term health status and trajectories of seriously injured patients: a population-based longitudinal study. PLoS Med. 14, e1002322 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Callcut, R. A. et al. Discovering the truth about life after discharge: Long-term trauma-related mortality. J. Trauma Acute Care Surg. 80, 210–217 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Keel, M. & Trentz, O. Pathophysiology of polytrauma. Injury 36, 691–709 (2005).

    Article  PubMed  Google Scholar 

  7. Adib-Conquy, M. & Cavaillon, J. M. Compensatory anti-inflammatory response syndrome. Thromb. Haemost. 101, 36–47 (2009).

    CAS  PubMed  Google Scholar 

  8. Cabrera, C. P. et al. Signatures of inflammation and impending multiple organ dysfunction in the hyperacute phase of trauma: A prospective cohort study. PLoS Med. 14, e1002352 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Dijkink, S. et al. Polytrauma patients in the Netherlands and the USA: A bi-institutional comparison of processes and outcomes of care. Injury 49, 104–109 (2018).

    Article  PubMed  Google Scholar 

  10. Minei, J. P. et al. The changing pattern and implications of multiple organ failure after blunt injury with hemorrhagic shock. Crit. Care Med. 40, 1129–1135 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Billiar, T. R. & Vodovotz, Y. Time for trauma immunology. PLoS Med. 14, e1002342 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Netea, M. G. et al. A guiding map for inflammation. Nat. Immunol. 18, 826–831 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, H., Kilgas, S., Alam, A., Eguchi, S. & Ma, D. The role of extracellular adenosine triphosphate in ischemic organ injury. Crit. Care Med. 44, 1000–1012 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Gebhard, F. & Huber-Lang, M. Polytrauma–pathophysiology and management principles. Langenbecks Arch. Surg. 393, 825–831 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Qiang, X. et al. Cold-inducible RNA-binding protein (CIRP) triggers inflammatory responses in hemorrhagic shock and sepsis. Nat. Med 19, 1489–1495 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Davis, G. E., Bayless, K. J., Davis, M. J. & Meininger, G. A. Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am. J. Pathol. 156, 1489–1498 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Burk, A. M. et al. Early complementopathy after multiple injuries in humans. Shock 37, 348–354 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ganter, M. T. et al. Role of the alternative pathway in the early complement activation following major trauma. Shock 28, 29–34 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Kenawy, H. I., Boral, I. & Bevington, A. complement-coagulation cross-talk: a potential mediator of the physiological activation of complement by low pH. Front. Immunol. 6, 215 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cekic, C. & Linden, J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 16, 177–192 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Xiao, W. et al. A genomic storm in critically injured humans. J. Exp. Med. 208, 2581–2590 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lederer, J. A. et al. Comparison of longitudinal leukocyte gene expression after burn injury or trauma-hemorrhage in mice. Physiol. Genomics 32, 299–310 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Seshadri, A. et al. Phenotyping the immune response to trauma: a multiparametric systems immunology approach. Crit. Care Med. 45, 1523–1530 (2017).

    Article  PubMed  Google Scholar 

  25. Munford, R. S. & Pugin, J. Normal responses to injury prevent systemic inflammation and can be immunosuppressive. Am. J. Respir. Crit. Care Med. 163, 316–321 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Hazeldine, J. et al. Prehospital immune responses and development of multiple organ dysfunction syndrome following traumatic injury: A prospective cohort study. PLoS Med. 14, e1002338 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Itagaki, K. et al. Mitochondrial DNA released by trauma induces neutrophil extracellular traps. PLoS One 10, e0120549 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Timmermans, K. et al. Plasma levels of danger-associated molecular patterns are associated with immune suppression in trauma patients. Intensive Care Med. 42, 551–561 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mitchell, T. A. et al. Traumatic hemothorax blood contains elevated levels of microparticles that are prothrombotic but inhibit platelet aggregation. Shock 47, 680–687 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Matijevic, N. et al. Microvesicle phenotypes are associated with transfusion requirements and mortality in subjects with severe injuries. J. Extracell. Vesicles 4, 29338 (2015).

    Article  PubMed  Google Scholar 

  31. Németh, K. et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E2-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 15, 42–49 (2009).

    Article  PubMed  CAS  Google Scholar 

  32. Jones, H. R., Robb, C. T., Perretti, M. & Rossi, A. G. The role of neutrophils in inflammation resolution. Semin. Immunol. 28, 137–145 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Frith, D. et al. Definition and drivers of acute traumatic coagulopathy: clinical and experimental investigations. J. Thromb. Haemost. 8, 1919–1925 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Bastian, O. W. et al. Impaired bone healing in multitrauma patients is associated with altered leukocyte kinetics after major trauma. J. Inflamm. Res. 9, 69–78 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Chen, W. et al. Cytokine cascades induced by mechanical trauma injury alter voltage-gated sodium channel activity in intact cortical neurons. J. Neuroinflammation 14, 73 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jorgensen, I., Rayamajhi, M. & Miao, E. A. Programmed cell death as a defence against infection. Nat. Rev. Immunol. 17, 151–164 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paunel-Görgülü, A., Kirichevska, T., Lögters, T., Windolf, J. & Flohé, S. Molecular mechanisms underlying delayed apoptosis in neutrophils from multiple trauma patients with and without sepsis. Mol. Med. 18, 325–335 (2012).

    Article  PubMed  CAS  Google Scholar 

  38. Hotchkiss, R. S. et al. Rapid onset of intestinal epithelial and lymphocyte apoptotic cell death in patients with trauma and shock. Crit. Care Med. 28, 3207–3217 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Heffernan, D. S. et al. Failure to normalize lymphopenia following trauma is associated with increased mortality, independent of the leukocytosis pattern. Crit. Care 16, R12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kottke, M. A. & Walters, T. J. Where’s the leak in vascular barriers? a review. Shock 46, 20–36 (2016).

  41. Gentile, L. F. et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J. Trauma Acute Care Surg. 72, 1491–1501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hietbrink, F., Koenderman, L., van Wessem, K. J. & Leenen, L. P. The impact of intramedullary nailing of tibia fractures on the innate immune system. Shock 44, 209–214 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. Kanakaris, N. K., Anthony, C., Papasotiriou, A. & Giannoudis, P. V. Inflammatory response after nailing. Injury 48, S10–S14 (2017).

  44. Pape, H. C. et al. Impact of intramedullary instrumentation versus damage control for femoral fractures on immunoinflammatory parameters: prospective randomized analysis by the EPOFF Study Group. J. Trauma 55, 7–13 (2003).

    Article  PubMed  Google Scholar 

  45. Pape, H. C. et al. Impact of the method of initial stabilization for femoral shaft fractures in patients with multiple injuries at risk for complications (borderline patients). Ann. Surg. 246, 491–499 (2007).

  46. Rixen, D. et al. Randomized, controlled, two-arm, interventional, multicenter study on risk-adapted damage control orthopedic surgery of femur shaft fractures in multiple-trauma patients. Trials 17, 47 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Giannoudis, P. V., Giannoudis, V. P. & Horwitz, D. S. Time to think outside the box: ‘prompt-individualised-safe management’ (PR.I.S.M.) should prevail in patients with multiple injuries. Injury 48, 1279–1282 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Aird, W. C. The role of the endothelium in severe sepsis and multiple organ dysfunction syndrome. Blood 101, 3765–3777 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Tracey, K. J. Reflex control of immunity. Nat. Rev. Immunol. 9, 418–428 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johansson, P. I. et al. Traumatic endotheliopathy: a prospective observational study of 424 severely injured patients. Ann. Surg. 265, 597–603 (2017).

    Article  PubMed  Google Scholar 

  51. Ekdahl, K. N. et al. Dangerous liaisons: complement, coagulation, and kallikrein/kinin cross-talk act as a linchpin in the events leading to thromboinflammation. Immunol. Rev. 274, 245–269 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Lissauer, M. E. et al. Coagulation and complement protein differences between septic and uninfected systemic inflammatory response syndrome patients. J. Trauma 62, 1082–1092 (2007).

  53. Muroya, T. et al. C4d deposits on the surface of RBCs in trauma patients and interferes with their function. Crit. Care Med. 42, e364–e372 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kambas, K. et al. C5a and TNF-α up-regulate the expression of tissue factor in intra-alveolar neutrophils of patients with the acute respiratory distress syndrome. J. Immunol. 180, 7368–7375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kral, J. B., Schrottmaier, W. C., Salzmann, M. SpringerAmpamp; Assinger, A. Platelet interaction with innate immune cells. Transfus. Med. Hemother. 43, 78–88 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sun, S. et al. Mitochondrial DAMPs increase endothelial permeability through neutrophil dependent and independent pathways. PLoS One 8, e59989 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vestweber, D. How leukocytes cross the vascular endothelium. Nat. Rev. Immunol. 15, 692–704 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Jorch, S. K. & Kubes, P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat. Med. 23, 279–287 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. Rittirsch, D. et al. An integrated clinico-transcriptomic approach identifies a central role of the heme degradation pathway for septic complications after trauma. Ann. Surg. 264, 1125–1134 (2016).

    Article  PubMed  Google Scholar 

  60. Deitch, E. A. et al. Trauma-hemorrhagic shock induces a CD36-dependent RBC endothelial-adhesive phenotype. Crit. Care Med. 42, e200–e210 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Maegele, M., Schöchl, H. & Cohen, M. J. An update on the coagulopathy of trauma. Shock 41, 21–25 (2014).

  62. Naumann, D.N. et al. Endotheliopathy of trauma is an on-scene phenomenon, and is associated with multiple organ dysfunction syndrome: a prospective observational study. Shock (2017).

  63. Denk, S. et al. Early detection of junctional adhesion molecule-1 (JAM-1) in the circulation after experimental and clinical polytrauma. Mediators Inflamm. 2015, 463950 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Johansson, P. I., Stensballe, J., Rasmussen, L. S. & Ostrowski, S. R. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann. Surg. 254, 194–200 (2011).

    Article  PubMed  Google Scholar 

  65. Denk, S. et al. Role of hemorrhagic shock in experimental polytrauma. Shock 49, 154–163 (2018).

    Article  PubMed  Google Scholar 

  66. Halbgebauer, R. et al. Hemorrhagic shock drives glycocalyx, barrier and organ dysfunction early after polytrauma. J. Crit. Care 44, 229–237 (2017).

    Article  PubMed  Google Scholar 

  67. White, N. J., Ward, K. R., Pati, S., Strandenes, G. & Cap, A. P. Hemorrhagic blood failure: oxygen debt, coagulopathy, and endothelial damage. J. Trauma Acute Care Surg. 82, S41–S49 (2017).

  68. Ostrowski, S. R. & Johansson, P. I. Endothelial glycocalyx degradation induces endogenous heparinization in patients with severe injury and early traumatic coagulopathy. J. Trauma Acute Care Surg. 73, 60–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Nelson, A., Berkestedt, I., Schmidtchen, A., Ljunggren, L. & Bodelsson, M. Increased levels of glycosaminoglycans during septic shock: relation to mortality and the antibacterial actions of plasma. Shock 30, 623–627 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Denk, S. et al. Complement C5a functions as a master switch for the ph balance in neutrophils exerting fundamental immunometabolic effects. J. Immunol. 198, 4846–4854 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Cheng, S. C. et al. Broad defects in the energy metabolism of leukocytes underlie immunoparalysis in sepsis. Nat. Immunol. 17, 406–413 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Cheng, S. C. et al. mTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science 345, 1250684 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. van der Poll, T., van de Veerdonk, F. L., Scicluna, B. P. & Netea, M. G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 17, 407–420 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Pfeifer, R., Heussen, N., Michalewicz, E., Hilgers, R. D. & Pape, H. C. Incidence of adult respiratory distress syndrome in trauma patients: a systematic review and meta-analysis over a period of three decades. J. Trauma Acute Care Surg 83, 496–506 (2017).

    Article  PubMed  Google Scholar 

  75. Hoth, J. J., Wells, J. D., Jones, S. E., Yoza, B. K. & McCall, C. E. Complement mediates a primed inflammatory response after traumatic lung injury. J. Trauma Acute Care Surg. 76, 601–608 (2014).

  76. Schmidt, E. P. et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat. Med 18, 1217–1223 (2012).

    Article  CAS  PubMed  Google Scholar 

  77. Niesler, U., Palmer, A., Radermacher, P. & Huber-Lang, M. S. Role of alveolar macrophages in the inflammatory response after trauma. Shock 42, 3–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Grommes, J. & Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 17, 293–307 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Robb, C. T., Regan, K. H., Dorward, D. A. & Rossi, A. G. Key mechanisms governing resolution of lung inflammation. Semin. Immunopathol. 38, 425–448 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Herold, S., Mayer, K. & Lohmeyer, J. Acute lung injury: how macrophages orchestrate resolution of inflammation and tissue repair. Front. Immunol. 2, 65 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11, 1173–1179 (2005).

    Article  CAS  PubMed  Google Scholar 

  82. Wen, Z. et al. Neutrophils counteract autophagy-mediated anti-inflammatory mechanisms in alveolar macrophage: role in posthemorrhagic shock acute lung inflammation. J. Immunol. 193, 4623–4633 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Westphalen, K. et al. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature 506, 503–506 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koeppen, M. et al. Detrimental role of the airway mucin Muc5ac during ventilator-induced lung injury. Mucosal Immunol 6, 762–775 (2013).

    Article  CAS  PubMed  Google Scholar 

  85. Whitsett, J. A. & Alenghat, T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat. Immunol. 16, 27–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Raghavendran, K. et al. Lung contusion: inflammatory mechanisms and interaction with other injuries. Shock 32, 122–130 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Aufmkolk, M. et al. Local effect of lung contusion on lung surfactant composition in multiple trauma patients. Crit. Care Med. 27, 1441–1446 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Hoth, J. J., Wells, J. D., Yoza, B. K. & McCall, C. E. Innate immune response to pulmonary contusion: identification of cell type-specific inflammatory responses. Shock 37, 385–391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Islam, M. N. et al. Mitochondrial transfer from bone-marrow-derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18, 759–765 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hüsecken, Y. et al. MDSCs are induced after experimental blunt chest trauma and subsequently alter antigen-specific T cell responses. Sci. Rep. 7, 12808 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Liew, F. Y., Girard, J. P. & Turnquist, H. R. Interleukin-33 in health and disease. Nat. Rev. Immunol. 16, 676–689 (2016).

    Article  CAS  PubMed  Google Scholar 

  92. Xu, J. et al. IL33-mediated ILC2 activation and neutrophil IL5 production in the lung response after severe trauma: A reverse translation study from a human cohort to a mouse trauma model. PLoS Med. 14, e1002365 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhao, C. et al. Mitochondrial damage-associated molecular patterns released by abdominal trauma suppress pulmonary immune responses. J. Trauma Acute Care Surg. 76, 1222–1227 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li, H. et al. Mitochondrial damage-associated molecular patterns from fractures suppress pulmonary immune responses via formyl peptide receptors 1 and 2. J. Trauma Acute Care Surg. 78, 272–279 (2015).

  95. Kojima, M. et al. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4. FASEB J. 32, 97–110 (2018).

    Article  PubMed  Google Scholar 

  96. Langness, S., Costantini, T. W., Morishita, K., Eliceiri, B. P. & Coimbra, R. Modulating the biologic activity of mesenteric lymph after traumatic shock decreases systemic inflammation and end organ injury. PLoS One 11, e0168322 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Branchfield, K. et al. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science 351, 707–710 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. van Wessem, K. J., Hennus, M. P., van Wagenberg, L., Koenderman, L. & Leenen, L. P. Mechanical ventilation increases the inflammatory response induced by lung contusion. J. Surg. Res. 183, 377–384 (2013).

    Article  PubMed  Google Scholar 

  99. Bhandari, V. et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat. Med. 12, 1286–1293 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Greinacher, A. et al. Characterization of the human neutrophil alloantigen-3a. Nat. Med. 16, 45–48 (2010).

    Article  CAS  PubMed  Google Scholar 

  101. Kalbitz, M. et al. Cardiac Depression in pigs after multiple trauma — characterization of posttraumatic structural and functional alterations. Sci. Rep. 7, 17861 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wilson, N. M., Wall, J., Naganathar, V., Brohi, K. & De’Ath, H. D. Mechanisms involved in secondary cardiac dysfunction in animal models of trauma and hemorrhagic shock. Shock 48, 401–410 (2017).

    Article  PubMed  Google Scholar 

  103. McKee, C. A. & Lukens, J. R. Emerging roles for the immune system in traumatic brain injury. Front. Immunol. 7, 556 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Roth, T. L. et al. Transcranial amelioration of inflammation and cell death after brain injury. Nature 505, 223–228 (2014).

    Article  CAS  PubMed  Google Scholar 

  105. Braun, M. et al. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim. Biophys. Acta 1863 10 Pt B, 2614–2626 (2017).

    Article  CAS  Google Scholar 

  106. Russo, M. V. & McGavern, D. B. Inflammatory neuroprotection following traumatic brain injury. Science 353, 783–785 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lan, X., Han, X., Li, Q., Yang, Q. W. & Wang, J. Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat. Rev. Neurol. 13, 420–433 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Nizamutdinov, D. & Shapiro, L. A. Overview of traumatic brain injury: an immunological context. Brain Sci. http://dx.doi.org/10.3390/brainsci7010011 (2017).

  109. Ruseva, M. M., Ramaglia, V., Morgan, B. P. & Harris, C. L. An anticomplement agent that homes to the damaged brain and promotes recovery after traumatic brain injury in mice. Proc. Natl. Acad. Sci. USA 112, 14319–14324 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Freeman, L. et al. NLR members NLRC4 and NLRP3 mediate sterile inflammasome activation in microglia and astrocytes. J. Exp. Med. 214, 1351–1370 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bird, L. Neuroimmunology: immune signals packaged in the brain. Nat. Rev. Immunol. 17, 278–279 (2017).

    Article  CAS  PubMed  Google Scholar 

  112. Makinde, H. M., Cuda, C. M., Just, T. B., Perlman, H. R. & Schwulst, S. J. Nonclassical monocytes mediate secondary injury, neurocognitive outcome, and neutrophil infiltration after traumatic brain injury. J. Immunol. 199, 3583–3591 (2017).

    Article  CAS  PubMed  Google Scholar 

  113. Morganti, J. M. et al. CCR2 antagonism alters brain macrophage polarization and ameliorates cognitive dysfunction induced by traumatic brain injury. J. Neurosci. 35, 748–760 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Laird, M. D. et al. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of toll-like receptor 4. Glia 62, 26–38 (2014).

    Article  PubMed  Google Scholar 

  115. Ransohoff, R. M. & Engelhardt, B. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12, 623–635 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Sullan, M. J., Asken, B. M., Jaffee, M. S., DeKosky, S. T. & Bauer, R. M. Glymphatic system disruption as a mediator of brain trauma and chronic traumatic encephalopathy. Neurosci. Biobehav. Rev. 84, 316–324 (2018).

    Article  PubMed  Google Scholar 

  117. Engelhardt, B., Vajkoczy, P. & Weller, R. O. The movers and shapers in immune privilege of the CNS. Nat. Immunol. 18, 123–131 (2017).

    Article  CAS  PubMed  Google Scholar 

  118. Utagawa, A., Truettner, J. S., Dietrich, W. D. & Bramlett, H. M. Systemic inflammation exacerbates behavioral and histopathological consequences of isolated traumatic brain injury in rats. Exp. Neurol. 211, 283–291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dash, P. K. et al. Activation of α7 cholinergic nicotinic receptors reduce blood-brain barrier permeability following experimental traumatic brain injury. J. Neurosci. 36, 2809–2818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Diamond, B. & Tracey, K. J. Mapping the immunological homunculus. Proc. Natl. Acad. Sci. USA 108, 3461–3462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pavlov, V. A. & Tracey, K. J. Neural regulation of immunity: molecular mechanisms and clinical translation. Nat. Neurosci. 20, 156–166 (2017).

    Article  CAS  PubMed  Google Scholar 

  122. Woiciechowsky, C. et al. Sympathetic activation triggers systemic interleukin-10 release in immunodepression induced by brain injury. Nat. Med. 4, 808–813 (1998).

    Article  CAS  PubMed  Google Scholar 

  123. Di Battista, A. P. et al. Inflammatory cytokine and chemokine profiles are associated with patient outcome and the hyperadrenergic state following acute brain injury. J. Neuroinflammation 13, 40 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Shein, S. L. et al. Hemorrhagic shock shifts the serum cytokine profile from pro- to anti-inflammatory after experimental traumatic brain injury in mice. J. Neurotrauma 31, 1386–1395 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Di Battista, A. P. et al. Sympathoadrenal activation is associated with acute traumatic coagulopathy and endotheliopathy in isolated brain injury. Shock 46, 96–103 (2016).

  126. Tian, Y. et al. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury. Blood 125, 2151–2159 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Maegele, M. et al. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. Lancet Neurol. 16, 630–647 (2017).

    Article  PubMed  Google Scholar 

  128. Kumar, A. et al. Microglial-derived microparticles mediate neuroinflammation after traumatic brain injury. J. Neuroinflammation 14, 47 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Chang, R., Cardenas, J. C., Wade, C. E. & Holcomb, J. B. Advances in the understanding of trauma-induced coagulopathy. Blood 128, 1043–1049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Hijazi, N. et al. Endogenous plasminogen activators mediate progressive intracerebral hemorrhage after traumatic brain injury in mice. Blood 125, 2558–2567 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Leinhase, I. et al. Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice. J. Neuroinflammation 4, 13 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yasui, H., Donahue, D. L., Walsh, M., Castellino, F. J. & Ploplis, V. A. Early coagulation events induce acute lung injury in a rat model of blunt traumatic brain injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 311, L74–L86 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Dai, S. S. et al. Plasma glutamate-modulated interaction of A2AR and mGluR5 on BMDCs aggravates traumatic brain injury-induced acute lung injury. J. Exp. Med. 210, 839–851 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Hu, P. J., Pittet, J. F., Kerby, J. D., Bosarge, P. L. & Wagener, B. M. Acute brain trauma, lung injury, and pneumonia: more than just altered mental status and decreased airway protection. Am. J. Physiol. Lung Cell. Mol. Physiol. 313, L1–L15 (2017).

    Article  PubMed  Google Scholar 

  135. Okusa, M. D., Rosin, D. L. & Tracey, K. J. Targeting neural reflex circuits in immunity to treat kidney disease. Nat. Rev. Nephrol. 13, 669–680 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Moore, E. M. et al. The incidence of acute kidney injury in patients with traumatic brain injury. Ren. Fail. 32, 1060–1065 (2010).

    Article  PubMed  Google Scholar 

  137. Lu, R., Kiernan, M. C., Murray, A., Rosner, M. H. & Ronco, C. Kidney-brain crosstalk in the acute and chronic setting. Nat. Rev. Nephrol. 11, 707–719 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Gao, M. et al. Systemic Administration of induced neural stem cells regulates complement activation in mouse closed head injury models. Sci. Rep. 7, 45989 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Nongnuch, A., Panorchan, K. & Davenport, A. Brain-kidney crosstalk. Crit. Care 18, 225 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Molitoris, B. A. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J. Clin. Invest. 124, 2355–2363 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Abe, C. et al. C1 neurons mediate a stress-induced anti-inflammatory reflex in mice. Nat. Neurosci. 20, 700–707 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Campbell, S. J. et al. Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. Am. J. Pathol. 166, 1487–1497 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Nizamutdinov, D. et al. Hepatic alterations are accompanied by changes to bile acid transporter-expressing neurons in the hypothalamus after traumatic brain injury. Sci. Rep. 7, 40112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Campbell, S. J. et al. Liver Kupffer cells control the magnitude of the inflammatory response in the injured brain and spinal cord. Neuropharmacology 55, 780–787 (2008).

    Article  CAS  PubMed  Google Scholar 

  145. Ma, J. et al. Impacts of blast-induced traumatic brain injury on expressions of hepatic cytochrome P450 1A2, 2B1, 2D1, and 3A2 in rats. Cell. Mol. Neurobiol. 37, 111–120 (2017).

    Article  CAS  PubMed  Google Scholar 

  146. Sundman, M. H., Chen, N. K., Subbian, V. & Chou, Y. H. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav. Immun. 66, 31–44 (2017).

    Article  CAS  PubMed  Google Scholar 

  147. Katzenberger, R. J., Ganetzky, B. & Wassarman, D. A. The gut reaction to traumatic brain injury. Fly (Austin) 9, 68–74 (2015).

    Article  Google Scholar 

  148. Kozlov, A. V., Bahrami, S., Redl, H. & Szabo, C. Alterations in nitric oxide homeostasis during traumatic brain injury. Biochim. Biophys. Acta 1863, 2627–2632 (2017).

  149. Rizoli, S. B. et al. Catecholamines as outcome markers in isolated traumatic brain injury: the COMA-TBI study. Crit. Care 21, 37 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Meisel, C., Schwab, J. M., Prass, K., Meisel, A. & Dirnagl, U. Central nervous system injury-induced immune deficiency syndrome. Nat. Rev. Neurosci. 6, 775–786 (2005).

    Article  CAS  PubMed  Google Scholar 

  151. Hazeldine, J., Lord, J. M. & Belli, A. Traumatic brain injury and peripheral immune suppression: primer and prospectus. Front. Neurol. 6, 235 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Gadani, S. P., Smirnov, I., Smith, A. T., Overall, C. C. & Kipnis, J. Characterization of meningeal type 2 innate lymphocytes and their response to CNS injury. J. Exp. Med. 214, 285–296 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Walker, P. A. et al. Intravenous multipotent adult progenitor cell therapy for traumatic brain injury: preserving the blood brain barrier via an interaction with splenocytes. Exp. Neurol. 225, 341–352 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Schwulst, S. J., Trahanas, D. M., Saber, R. & Perlman, H. Traumatic brain injury-induced alterations in peripheral immunity. J. Trauma Acute Care Surg. 75, 780–788 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Johansson, M. E. & Hansson, G. C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 16, 639–649 (2016).

    Article  CAS  PubMed  Google Scholar 

  156. Perez-Lopez, A., Behnsen, J., Nuccio, S. P. & Raffatellu, M. Mucosal immunity to pathogenic intestinal bacteria. Nat. Rev. Immunol. 16, 135–148 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Abreu, M. T. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat. Rev. Immunol. 10, 131–144 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Patel, J. J., Rosenthal, M. D., Miller, K. R. & Martindale, R. G. The gut in trauma. Curr. Opin. Crit. Care 22, 339–346 (2016).

    Article  PubMed  Google Scholar 

  159. Sodhi, C. P. et al. Intestinal epithelial TLR-4 Activation is required for the development of acute lung injury after trauma/hemorrhagic shock via the release of HMGB1 from the Gut. J. Immunol. 194, 4931–4939 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Dalle Lucca, J. J. et al. Effects of C1 inhibitor on tissue damage in a porcine model of controlled hemorrhage. Shock 38, 82–91 (2012).

    Article  CAS  PubMed  Google Scholar 

  161. Fishman, J. E. et al. Intraluminal nonbacterial intestinal components control gut and lung injury after trauma hemorrhagic shock. Ann. Surg. 260, 1112–1120 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  162. DeLano, F. A., Hoyt, D. B. & Schmid-Schönbein, G. W. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock. Sci. Transl. Med. 5, 169ra11 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Grootjans, J. et al. Level of activation of the unfolded protein response correlates with Paneth cell apoptosis in human small intestine exposed to ischemia/reperfusion. Gastroenterology 140, 529–539 (2011).

  164. Moore, F. A. et al. Gut bacterial translocation via the portal vein: a clinical perspective with major torso trauma. J. Trauma 31, 629–636 (1991).

  165. Buttenschoen, K. et al. Plasma concentrations of endotoxin and antiendotoxin antibodies in patients with multiple injuries: a prospective clinical study. Eur. J. Surg. 162, 853–860 (1996).

    CAS  PubMed  Google Scholar 

  166. Charbonney, E. et al. Endotoxemia following multiple trauma: risk factors and prognostic implications. Crit. Care Med. 44, 335–341 (2016).

    Article  PubMed  Google Scholar 

  167. Levy, G. et al. Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock. Shock 39, 39–44 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Deitch, E. A. Gut-origin sepsis: evolution of a concept. Surgeon 10, 350–356 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lee, M. A., Yatani, A., Sambol, J. T. & Deitch, E. A. Role of gut-lymph factors in the induction of burn-induced and trauma-shock-induced acute heart failure. Int. J. Clin. Exp. Med. 1, 171–180 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Fang, J. F. et al. Proteomic analysis of post-hemorrhagic shock mesenteric lymph. Shock 34, 291–298 (2010).

    Article  CAS  PubMed  Google Scholar 

  171. Dai, H., Sun, T., Liu, Z., Zhang, J. & Zhou, M. The imbalance between regulatory and IL-17-secreting CD4+ T cells in multiple-trauma rat. Injury 44, 1521–1527 (2013).

    Article  PubMed  Google Scholar 

  172. Morishita, K., Coimbra, R., Langness, S., Eliceiri, B. P. & Costantini, T. W. Neuroenteric axis modulates the balance of regulatory T cells and T-helper 17 cells in the mesenteric lymph node following trauma/hemorrhagic shock. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G202–G208 (2015).

    Article  CAS  PubMed  Google Scholar 

  173. Matteoli, G. & Boeckxstaens, G. E. The vagal innervation of the gut and immune homeostasis. Gut 62, 1214–1222 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Kojima, M. et al. Exosomes, not protein or lipids, in mesenteric lymph activate inflammation: unlocking the mystery of post-shock multiple organ failure. J. Trauma Acute Care Surg. 82, 42–50 (2017).

    Article  CAS  PubMed  Google Scholar 

  175. Tiesi, G. et al. Early trauma-hemorrhage-induced splenic and thymic apoptosis is gut-mediated and toll-like receptor 4-dependent. Shock 39, 507–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Ibiza, S. et al. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535, 440–443 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Langness, S., Kojima, M., Coimbra, R., Eliceiri, B. P. & Costantini, T. W. Enteric glia cells are critical to limiting the intestinal inflammatory response after injury. Am. J. Physiol. Gastrointest. Liver Physiol. 312, G274–G282 (2017).

    Article  PubMed  Google Scholar 

  178. Ma, E. L. et al. Bidirectional brain-gut interactions and chronic pathological changes after traumatic brain injury in mice. Brain Behav. Immun. 66, 56–69 (2017).

    Article  CAS  PubMed  Google Scholar 

  179. Oyeniyi, B. T. et al. Trends in 1029 trauma deaths at a level 1 trauma center: Impact of a bleeding control bundle of care. Injury 48, 5–12 (2017).

    Article  PubMed  Google Scholar 

  180. Lefering, R. et al. Epidemiology of in-hospital trauma deaths. Eur. J. Trauma Emerg. Surg. 38, 3–9 (2012).

    Article  CAS  PubMed  Google Scholar 

  181. Prin, M. & Li, G. Complications and in-hospital mortality in trauma patients treated in intensive care units in the United States, 2013. Inj. Epidemiol 3, 18 (2016).

    Article  PubMed Central  Google Scholar 

  182. Spruijt, N. E., Visser, T. & Leenen, L. P. A systematic review of randomized controlled trials exploring the effect of immunomodulative interventions on infection, organ failure, and mortality in trauma patients. Crit. Care 14, R150 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mann, A. P. et al. A peptide for targeted, systemic delivery of imaging and therapeutic compounds into acute brain injuries. Nat. Commun. 7, 11980 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yang, R. et al. Anti-HMGB1 neutralizing antibody ameliorates gut barrier dysfunction and improves survival after hemorrhagic shock. Mol. Med. 12, 105–114 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ruan, X. et al. Anti-HMGB1 monoclonal antibody ameliorates immunosuppression after peripheral tissue trauma: attenuated T-lymphocyte response and increased splenic CD11b+Gr-1+ myeloid-derived suppressor cells require HMGB1. Mediators Inflamm. 2015, 458626 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  186. Okuma, Y. et al. Anti-high mobility group box-1 antibody therapy for traumatic brain injury. Ann. Neurol. 72, 373–384 (2012).

    Article  CAS  PubMed  Google Scholar 

  187. Kimbler, D. E., Shields, J., Yanasak, N., Vender, J. R. & Dhandapani, K. M. Activation of P2X7 promotes cerebral edema and neurological injury after traumatic brain injury in mice. PLoS One 7, e41229 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Abrams, S. T. et al. Circulating histones are mediators of trauma-associated lung injury. Am. J. Respir. Crit. Care Med. 187, 160–169 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Heeres, M. et al. The effect of C1-esterase inhibitor on systemic inflammation in trauma patients with a femur fracture - The CAESAR study: study protocol for a randomized controlled trial. Trials 12, 223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Rich, M. C. et al. Site-targeted complement inhibition by a complement receptor 2-conjugated inhibitor (mTT30) ameliorates post-injury neuropathology in mouse brains. Neurosci. Lett. 617, 188–194 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Fluiter, K., Opperhuizen, A. L., Morgan, B. P., Baas, F. & Ramaglia, V. Inhibition of the membrane attack complex of the complement system reduces secondary neuroaxonal loss and promotes neurologic recovery after traumatic brain injury in mice. J. Immunol. 192, 2339–2348 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Lee, S. et al. A novel antagonist of p75NTR reduces peripheral expansion and CNS trafficking of pro-inflammatory monocytes and spares function after traumatic brain injury. J. Neuroinflammation 13, 88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Xu, X. et al. Anti-inflammatory and immunomodulatory mechanisms of atorvastatin in a murine model of traumatic brain injury. J. Neuroinflammation 14, 167 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Yamada, N. et al. Novel synthetic, host-defense peptide protects against organ injury/dysfunction in a rat model of severe hemorrhagic shock. Ann. Surg. http://doi.org/10.1097/SLA.0000000000002186 (2017).

  195. Nikolian, V. C. et al. Valproic acid decreases brain lesion size and improves neurologic recovery in swine subjected to traumatic brain injury, hemorrhagic shock, and polytrauma. J. Trauma Acute Care Surg. 83, 1066–1073 (2017).

    Article  CAS  PubMed  Google Scholar 

  196. Sordi, R. et al. Artesunate protects against the organ injury and dysfunction induced by severe hemorrhage and resuscitation. Ann. Surg. 265, 408–417 (2017).

    Article  PubMed  Google Scholar 

  197. Laplante, P. et al. MFG-E8 reprogramming of macrophages promotes wound healing by increased bFGF production and fibroblast functions. J. Invest. Dermatol. 137, 2005–2013 (2017).

    Article  CAS  PubMed  Google Scholar 

  198. Nielson, J. L. et al. Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nat. Commun. 6, 8581 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank R. Halbgebauer and D. McClellan for editorial assistance, and S. Denk for graphical support. Supported by the German Research Foundation (DFG CRC1149 and DFG EI866/5-1), the US National Institutes of Health (AI068730, AI030040) and the European Community’s Seventh Framework Programme (under grant agreement number 602699 (DIREKT)).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, contributed to discussions of the content, wrote the text and reviewed or edited the article before submission.

Corresponding author

Correspondence to Markus Huber-Lang.

Ethics declarations

Competing interests

M.H.-L. and P.A.W. hold a patent on compositions and methods for the diagnosis and treatment of sepsis (US 7455837). J.D.L. is the founder of Amyndas Pharmaceuticals, which is developing complement inhibitors (including third-generation compstatin analogs such as AMY-101), and is the inventor of patents or patent applications that describe the use of complement inhibitors for therapeutic purposes, some of which are developed by Amyndas Pharmaceuticals. J.D.L. is also the inventor of the compstatin technology licensed to Apellis Pharmaceuticals (4(1MeW)7W/POT-4/APL-1 and PEGylated derivatives such as APL-2).

Additional information

Correspondence and requests for materials should be addressed to M.H.-L.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber-Lang, M., Lambris, J.D. & Ward, P.A. Innate immune responses to trauma. Nat Immunol 19, 327–341 (2018). https://doi.org/10.1038/s41590-018-0064-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41590-018-0064-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing