Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic variation in weedy and cultivated broomcorn millet accessions uncovers the genetic architecture of agronomic traits

Abstract

Large-scale genomic variations are fundamental resources for crop genetics and breeding. Here we sequenced 1,904 genomes of broomcorn millet to an average of 40× sequencing depth and constructed a comprehensive variation map of weedy and cultivated accessions. Being one of the oldest cultivated crops, broomcorn millet has extremely low nucleotide diversity and remarkably rapid decay of linkage disequilibrium. Genome-wide association studies identified 186 loci for 12 agronomic traits. Many causative candidate genes, such as PmGW8 for grain size and PmLG1 for panicle shape, showed strong selection signatures during domestication. Weedy accessions contained many beneficial variations for the grain traits that are largely lost in cultivated accessions. Weedy and cultivated broomcorn millet have adopted different loci controlling flowering time for regional adaptation in parallel. Our study uncovers the unique population genomic features of broomcorn millet and provides an agronomically important resource for cereal crops.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Geographical distribution and phylogeny of 1,904 broomcorn millet accessions.
Fig. 2: Evolution and divergence of weedy and cultivated broomcorn millet.
Fig. 3: SVs in weedy and cultivated broomcorn millet.
Fig. 4: Genome-wide analysis of selected sweeps.
Fig. 5: GWAS for GS and HD, and identification of candidate genes.
Fig. 6: GWAS for PH and functional validation of candidate causal gene.
Fig. 7: GWAS of weedy and cultivated populations.
Fig. 8: Distribution of qHD2 and qHD5 haplotypes in weedy and cultivated broomcorn millet.

Similar content being viewed by others

Data availability

The raw sequencing data of 1,904 diversity accessions was deposited with the NCBI genome database under project no. PRJNA917713 (SRR23330656SRR23330837, SRR23330861SRR23331110, SRR23331663SRR23332055, SRR23332224SRR23332338, SRR23332341SRR23332395, SRR23338406SRR23338647, SRR23344772SRR23345046, SRR23366736SRR23366900, SRR23378377SRR23378603). The Longmi4 reference genome sequences were obtained from the NCBI GenBank assembly (www.ncbi.nlm.nih.gov/datasets/genome; GCA_002895445.2). The SNPs, indels and SVs, and the details of each phenotypic information, are available at Zenodo88 (https://doi.org/10.5281/zenodo.10783997). Data availability has no restrictions. Source data are provided with this paper.

Code availability

The custom code used in this study is available at Zenodo88 (https://doi.org/10.5281/zenodo.10783997). The code can be freely used and redistributed without any restrictions.

References

  1. Hickey, L. T. et al. Breeding crops to feed 10 billion. Nat. Biotechnol. 37, 744–754 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Renard, D. & Tilman, D. National food production stabilized by crop diversity. Nature 571, 257–260 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Bekkering, C. S. & Tian, L. Thinking outside of the cereal box: breeding underutilized (pseudo)cereals for improved human nutrition. Front. Genet. 10, 1289 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rajput, S. G., Santra, D. K. & Schnable, J. Mapping QTLs for morpho-agronomic traits in proso millet (Panicum miliaceum L.). Mol. Breed. 36, 37 (2016).

    Article  Google Scholar 

  5. Chen, J. et al. Pangenome analysis reveals genomic variations associated with domestication traits in broomcorn millet. Nat. Genet. 55, 2243–2254 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shi, J. et al. Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat. Commun. 10, 464 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zou, C. et al. The genome of broomcorn millet. Nat. Commun. 10, 436 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu, H. et al. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl Acad. Sci. USA 106, 7367–7372 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. He, K., Lu, H., Zhang, J. & Wang, C. Holocene spatiotemporal millet agricultural patterns in northern China: a dataset of archaeobotanical macroremains. Earth Syst. Sci. Data 14, 4777–4791 (2022).

    Article  Google Scholar 

  10. Yang, Y. et al. Shift in subsistence crop dominance from broomcorn millet to foxtail millet around 5500 BP in the western Loess Plateau. Front. Plant Sci. 13, 939340 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hunt, H. V. et al. Genetic evidence for a western Chinese origin of broomcorn millet (Panicum miliaceum). Holocene 28, 1968–1978 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Xu, Y. et al. Domestication and spread of broomcorn millet (Panicum miliaceum L.) revealed by phylogeography of cultivated and weedy populations. Agronomy 9, 835 (2019).

    Article  CAS  Google Scholar 

  13. Sakamoto, S. Origin and dispersal of common millet and foxtail millet.JPN Agr. Res. Q. 21, 84–89 (1987).

    Google Scholar 

  14. Lovell, J. T. et al. The genomic landscape of molecular responses to natural drought stress in Panicum hallii. Nat. Commun. 9, 5213 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. He, K., Lu, H., Zhang, J. & Wang, C. Holocene spatiotemporal millet agricultural patterns in northern China: a dataset of archaeobotanical macroremains. Earth Syst. Sci. Data 14, 4777–4791 (2022).

    Article  Google Scholar 

  17. Huang, X. et al. A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497–501 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, L. et al. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat. Genet. 54, 1736–1745 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Mamidi, S. et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nat. Biotechnol. 38, 1203–1210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang, X. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Jia, G. et al. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat. Genet. 45, 957–961 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. Tamiru, M. et al. A cytochrome P450, OsDSS1, is involved in growth and drought stress responses in rice (Oryza sativa L.). Plant Mol. Biol. 88, 85–99 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Khong, G. N. et al. Osmads26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol. 169, 2935–2949 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu, F. et al. Plasma membrane receptor-like kinase leaf panicle 2 acts downstream of the DROUGHT AND SALT TOLERANCE transcription factor to regulate drought sensitivity in rice. J. Exp. Bot. 66, 271–281 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Ishimaru, K. et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat. Genet. 45, 707–711 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Lin, Z. et al. Parallel domestication of the Shattering1 genes in cereals. Nat. Genet. 44, 720–724 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Varshney, R. K. et al. A chickpea genetic variation map based on the sequencing of 3,366 genomes. Nature 599, 622–627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jiao, Y. et al. Genome-wide genetic changes during modern breeding of maize. Nat. Genet. 44, 812–815 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Sekhon, R. S. et al. Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS ONE 8, e61005 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hufford, M. B. et al. Comparative population genomics of maize domestication and improvement. Nat. Genet. 44, 808–811 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Li, Y. et al. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat. Genet. 43, 1266–1269 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, M. et al. Parallel selection on a dormancy gene during domestication of crops from multiple families. Nat. Genet. 50, 1435–1441 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Khanday, I., Yadav, S. R. & Vijayraghavan, U. Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways. Plant Physiol. 161, 1970–1983 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ishii, T. et al. OsLG1 regulates a closed panicle trait in domesticated rice. Nat. Genet. 45, 462–465 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Ma, Y. et al. COLD1 confers chilling tolerance in rice. Cell 160, 1209–1221 (2015).

    Article  CAS  PubMed  Google Scholar 

  36. Li, J. et al. Stepwise selection of natural variations at CTB2 and CTB4a improves cold adaptation during domestication of japonica rice. New Phytol. 231, 1056–1072 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Kang, H. M. et al. Variance component model to account for sample structure in genome-wide association studies. Nat. Genet. 42, 348–354 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang, S. et al. Control of grain size, shape and quality by OsSPL16 in rice. Nat. Genet. 44, 950–954 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Spielmeyer, W., Ellis, M. H. & Chandler, P. M. Semidwarf (sd-1), ‘green revolution’ rice, contains a defective gibberellin 20-oxidase gene. Proc. Natl Acad. Sci. USA 99, 9043–9048 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kumagai, Y. et al. Introduction of a second ‘Green Revolution’ mutation into wheat via in planta CRISPR/Cas9 delivery. Plant Physiol. 188, 1838–1842 (2022).

    Article  CAS  PubMed  Google Scholar 

  41. Abbo, S. et al. Plant domestication versus crop evolution: a conceptual framework for cereals and grain legumes. Trends Plant Sci. 19, 351–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Gaut, B. S., Seymour, D. K., Liu, Q. & Zhou, Y. Demography and its effects on genomic variation in crop domestication. Nat. Plants 4, 512–520 (2018).

    Article  PubMed  Google Scholar 

  43. Kardailsky, I. et al. Activation tagging of the floral inducer FT. Science 286, 1962–1965 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Ahn, J. H. et al. A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25, 605–614 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Guo, N., Gu, M., Hu, J., Qu, H. & Xu, G. Rice OsLHT1 functions in leaf-to-panicle nitrogen allocation for grain yield and quality. Front. Plant Sci. 11, 1150 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Chuxin, W. et al. OsbZIP09, a unique OsbZIP transcription factor of rice, promotes rather than suppresses seed germination by attenuating abscisic acid pathway. Rice Sci. 28, 358–367 (2021).

    Article  Google Scholar 

  47. Chen, Q. et al. The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. PLoS Genet. 16, e1008791 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Du, L. et al. Endosperm sugar accumulation caused by mutation of PHS8/ISA1 leads to pre-harvest sprouting in rice. Plant J. 95, 545–556 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Magwa, R. A., Zhao, H. & Xing, Y. Genome-wide association mapping revealed a diverse genetic basis of seed dormancy across subpopulations in rice (Oryza sativa L.). BMC Genet. 17, 28 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8, e66428 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang, R., Hunt, H. V., Qiao, Z., Wang, L. & Han, Y. Diversity and cultivation of broomcorn millet (Panicum miliaceum L.) in China: a review. Econ. Bot. 70, 332–342 (2016).

    Article  Google Scholar 

  52. Boukail, S. et al. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC Plant Biol. 21, 330 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Meyer, R. S. & Purugganan, M. D. Evolution of crop species: genetics of domestication and diversification. Nat. Rev. Genet. 14, 840–852 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Yang, C. J. et al. The genetic architecture of teosinte catalyzed and constrained maize domestication. Proc. Natl Acad. Sci. USA 116, 5643–5652 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wood, T. E., Burke, J. M. & Rieseberg, L. H. Parallel genotypic adaptation: when evolution repeats itself. Genetica 123, 157–170 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Roesti, M., Gavrilets, S., Hendry, A. P., Salzburger, W. & Berner, D. The genomic signature of parallel adaptation from shared genetic variation. Mol. Ecol. 23, 3944–3956 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fulgione, A. et al. Parallel reduction in flowering time from de novo mutations enable evolutionary rescue in colonizing lineages. Nat. Commun. 13, 1461 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tanabata, T., Shibaya, T., Hori, K., Ebana, K. & Yano, M. SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. Plant Physiol. 160, 1871–1880 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Porebski, S., Bailey, L. G. & Baum, B. R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Biol. Rep. 15, 8–15 (1997).

    Article  CAS  Google Scholar 

  60. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv https://doi.org/10.48550/arXiv.1303.3997 (2013).

  63. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  64. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6, 80–92 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen, X. et al. Manta: rapid detection of structural variants and indels for germline and cancer sequencing applications. Bioinformatics 32, 1220–1222 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Layer, R. M., Chiang, C., Quinlan, A. R. & Hall, I. M. LUMPY: a probabilistic framework for structural variant discovery. Genome Biol. 15, R84 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Rausch, T. et al. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28, i333–i339 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Chiang, C. et al. SpeedSeq: ultra-fast personal genome analysis and interpretation. Nat. Methods 12, 966–968 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jeffares, D. C. et al. Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast. Nat. Commun. 8, 14061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Boeva, V. et al. Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28, 423–425 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Frichot, E., Mathieu, F., Trouillon, T., Bouchard, G. & François, O. Fast and efficient estimation of individual ancestry coefficients. Genetics 196, 973–983 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang, C., Dong, S.-S., Xu, J.-Y., He, W.-M. & Yang, T.-L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Gaut, B. S., Morton, B. R., McCaig, B. C. & Clegg, M. T. Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc. Natl Acad. Sci. USA 93, 10274–10279 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou, Y. et al. Triticum population sequencing provides insights into wheat adaptation. Nat. Genet. 52, 1412–1422 (2020).

    Article  CAS  PubMed  Google Scholar 

  82. Faye, J. M. et al. A genomics resource for genetics, physiology, and breeding of West African sorghum. Plant Genome 14, e20075 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Gore, M. A. et al. A first-generation haplotype map of maize. Science 326, 1115–1117 (2009).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, B. et al. Genome-wide selection and genetic improvement during modern maize breeding. Nat. Genet. 52, 565–571 (2020).

    Article  PubMed  Google Scholar 

  85. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thimm, O. et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004).

    Article  CAS  PubMed  Google Scholar 

  87. He, S. et al. The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat. Genet. 53, 916–924 (2021).

    Article  CAS  PubMed  Google Scholar 

  88. Lu, Q. & Zhang, Z. Genomic variation in weedy and cultivated broomcorn millet accessions uncovers the genetic architecture of agronomic traits. Zenodo https://doi.org/10.5281/zenodo.10783997 (2024).

Download references

Acknowledgements

We thank C. J. Yang (Scotland’s Rural College) and W. Xue (Agronomy College of Shenyang Agricultural University) for their valuable suggestions and comments. We thank the Tongzhou Yujiawu International Seed Industry Park and the Yujiawu Professor Workstation for providing the space that facilitated collaboration. We thank the High-performance Computing (HPC) Platform of China Agricultural University for its support of large-scale computation. We thank Beijing PARATERA Tech (https://paratera.com/) for providing the HPC resources that have contributed to the research results reported in this study. This work was supported by the National Key R&D Program of China (no. 2021YFD1200700 to W.S.), the National Natural Science Foundation of China (no. 32271541 to W.S., no. 32272143 to H.M.Z. and no. 62031003 to B.X.), the Science and Technology Innovation (STI) 2030 (no. 2022ZD04020 to H.M.Z.), a key project of maize germplasm improvement (no. 2022010202 to W. S. and no. B21HJ0509 to J.L.), the Chinese Universities Scientific Fund (no. 2023TC019 to H.N.Z.) and the STI 2030-Major Projects (no. 2023ZD04074 to H.N.Z.).

Author information

Authors and Affiliations

Authors

Contributions

W.S. and J.L. conceived the research. Q.L., Y.Z., H.G., X.D., L.C., Y.H.B., B.L. and X.H. conducted the experiments. Q.L. and T.L. extracted the DNA. Q.L., H.N.Z. and Z.Z. performed the data analyses. G.L., H.Q.L., P.L., M.L., F.W., L.W., Z.L. and H.L. provided the cultivated broomcorn millet accessions. W.S. and H.Y.Z. collected the weedy broomcorn millet. L.Z., W.M., C.L., Y.B., B.X., J.C., H.M.Z. and L.E. contributed to the discussion. H.N.Z., Q.L., Z.Z., H.M.Z. and W.S. wrote the paper. B.X. and J.C. revised the paper.

Corresponding author

Correspondence to Weibin Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Aureliano Bombarely and the other anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–19.

Supplementary Data

Statistical source data for Supplementary·Figs. 8c, 11, 27a and 28a,c,e,f.

Source data

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Source Data Fig. 8

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Q., Zhao, H., Zhang, Z. et al. Genomic variation in weedy and cultivated broomcorn millet accessions uncovers the genetic architecture of agronomic traits. Nat Genet 56, 1006–1017 (2024). https://doi.org/10.1038/s41588-024-01718-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41588-024-01718-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing