Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

CAR T therapy beyond cancer: the evolution of a living drug

Abstract

Engineering a patient’s own T cells to selectively target and eliminate tumour cells has cured patients with untreatable haematologic cancers. These results have energized the field to apply chimaeric antigen receptor (CAR) T therapy throughout oncology. However, evidence from clinical and preclinical studies underscores the potential of CAR T therapy beyond oncology in treating autoimmunity, chronic infections, cardiac fibrosis, senescence-associated disease and other conditions. Concurrently, the deployment of new technologies and platforms provides further opportunity for the application of CAR T therapy to noncancerous pathologies. Here we review the rationale behind CAR T therapy, current challenges faced in oncology, a synopsis of preliminary reports in noncancerous diseases, and a discussion of relevant emerging technologies. We examine potential applications for this therapy in a wide range of contexts. Last, we highlight concerns regarding specificity and safety and outline the path forward for CAR T therapy beyond cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CAR T cells are poised to target a wide variety of diseases and pathological substrates.
Fig. 2: CAR T cells are engineered to be precise and powerful killers.
Fig. 3: Advantages of CAR T therapy in other diseases in comparison to cancer.
Fig. 4: A comparison of ex vivo and in vivo platforms being explored for CAR T therapy.

Similar content being viewed by others

References

  1. Irvine, D. J., Maus, M. V., Mooney, D. J. & Wong, W. W. The future of engineered immune cell therapies. Science 378, 853–858 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Finck, A. V., Blanchard, T., Roselle, C. P., Golinelli, G. & June, C. H. Engineered cellular immunotherapies in cancer and beyond. Nat. Med. 28, 678–689 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Labanieh, L. & Mackall, C. L. CAR immune cells: design principles, resistance and the next generation. Nature 614, 635–648 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Mitsuyasu, R. T. et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus–infected subjects. Blood 96, 785–793 (2000). The first clinical trial deploying CAR T cells in HIV.

    Article  CAS  PubMed  Google Scholar 

  5. Roberts, M. R. et al. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 84, 2878–2889 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Levine, B. L. et al. Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation. Science 272, 1939–1943 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A. & June, C. H. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N. Engl. J. Med. 365, 725–733 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grupp, S. A. et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. N. Engl. J. Med. 368, 1509–1518 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Brudno, J. N. et al. T cells genetically modified to express an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36, 2267–2280 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ali, S. A. et al. T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Young, R. M., Engel, N. W., Uslu, U., Wellhausen, N. & June, C. H. Next-generation CAR T-cell therapies. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-1683 (2022).

  12. Krause, A. et al. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J. Exp. Med. 188, 619–626 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ellis, G. I., Sheppard, N. C. & Riley, J. L. Genetic engineering of T cells for immunotherapy. Nat. Rev. Genet. 22, 427–447 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wellhausen, N., Agarwal, S., Rommel, P. C., Gill, S. I. & June, C. H. Better living through chemistry: CRISPR/Cas engineered T cells for cancer immunotherapy. Curr. Opin. Immunol. 74, 76–84 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Melenhorst, J. J. et al. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature 602, 503–509 (2022). Long-term follow-up reveals CAR T cells can persist for 10+ years in patients with cancer.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fajgenbaum, D. C. & June, C. H. Cytokine storm. N. Engl. J. Med. 383, 2255–2273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Flugel, C. L. et al. Overcoming on-target, off-tumour toxicity of CAR T cell therapy for solid tumours. Nat. Rev. Clin. Oncol. 20, 49–62 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Morgan, R. A. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol. Ther. 18, 843–851 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yeh, J. M. et al. Life expectancy of adult survivors of childhood cancer over 3 decades. JAMA Oncol. 6, 350–357 (2020).

    Article  PubMed  Google Scholar 

  20. Watanabe, K., Kuramitsu, S., Posey, A. D. & June, C. H. Expanding the therapeutic window for CAR T cell therapy in solid tumors: the knowns and unknowns of CAR T cell biology. Front. Immunol. 9, 2486 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hege, K. M. et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J. Immunother. Cancer 5, 22 (2017). The first trial of CAR T cells in solid tumours.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zhou, T. et al. IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature 583, 609–614 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science 359, 1037–1042 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tchou, J. et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol. Res. 5, 1152–1161 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Ma, L. et al. Enhanced CAR–T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Uslu, U. et al. Chimeric antigen receptor T cells as adjuvant therapy for unresectable adenocarcinoma. Sci. Adv. 9, eade2526 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kaufman, H. L., Kohlhapp, F. J. & Zloza, A. Oncolytic viruses: a new class of immunotherapy drugs. Nat. Rev. Drug Discov. 14, 642–662 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Aghajanian, H., Rurik, J. G. & Epstein, J. A. CAR-based therapies: opportunities for immuno-medicine beyond cancer. Nat. Metab. 4, 163–169 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Orlando, E. J. et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat. Med. 24, 1504–1506 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Hegde, M. et al. Tumor response and endogenous immune reactivity after administration of HER2 CAR T cells in a child with metastatic rhabdomyosarcoma. Nat. Commun. 11, 3549 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mougiakakos, D. et al. CD19-targeted CAR T cells in refractory systemic lupus erythematosus. N. Engl. J. Med. 385, 567–569 (2021).

    Article  PubMed  Google Scholar 

  34. Mackensen, A. et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nat. Med. https://doi.org/10.1038/s41591-022-02017-5 (2022). A clinical report of five patients with SLE treated with CD19 CAR T cells.

  35. Baker, D. J. & June, C. H. CAR T therapy extends its reach to autoimmune diseases. Cell 185, 4471–4473 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Müller, F. et al. CD19-targeted CAR T cells in refractory antisynthetase syndrome. Lancet 401, 815–818 (2023). A case report of a patient with antisynthetase syndrome treated with CD19 CAR T cells.

    Article  PubMed  Google Scholar 

  37. Kansal, R. et al. Sustained B cell depletion by CD19-targeted CAR T cells is a highly effective treatment for murine lupus. Sci. Transl. Med. 11, eaav1648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jin, X. et al. Therapeutic efficacy of anti-CD19 CAR-T cells in a mouse model of systemic lupus erythematosus. Cell. Mol. Immunol. 18, 1896–1903 (2020).

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  39. Ellebrecht, C. T. et al. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science 353, 179–184 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Oh, S. et al. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01637-z (2023).

  41. Parvathaneni, K. & Scott, D. W. Engineered FVIII-expressing cytotoxic T cells target and kill FVIII-specific B cells in vitro and in vivo. Blood Adv. 2, 2332–2340 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chen, S. et al. Treatment of allergic eosinophilic asthma through engineered IL-5-anchored chimeric antigen receptor T cells. Cell Discov. 8, 80 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, L. et al. Chimeric antigen receptor (CAR) T cells targeting a pathogenic MHC class II:peptide complex modulate the progression of autoimmune diabetes. J. Autoimmun. 96, 50–58 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Beheshti, S. A., Shamsasenjan, K., Ahmadi, M. & Abbasi, B. CAR Treg: a new approach in the treatment of autoimmune diseases. Int. Immunopharmacol. 102, 108409 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Fritsche, E., Volk, H. D., Reinke, P. & Abou-El-Enein, M. Toward an optimized process for clinical manufacturing of CAR-Treg cell therapy. Trends Biotechnol. 38, 1099–1112 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Lee, D. S. W., Rojas, O. L. & Gommerman, J. L. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat. Rev. Drug Discov. 20, 179–199 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sagonowsky, E. The top 20 drugs by worldwide sales in 2020. Fierce Pharma https://www.fiercepharma.com/special-report/top-20-drugs-by-2020-sales (2021).

  49. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to medicines. Nature 587, 555–566 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aghajanian, H. et al. Targeting cardiac fibrosis with engineered T cells. Nature 573, 430–433 (2019). FAPCAR T cells can treat mouse models of heart failure.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kakarla, S. et al. Antitumor effects of chimeric receptor engineered human T cells directed to tumor stroma. Mol. Ther. 21, 1611–1620 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, L. C. S. et al. Targeting fibroblast activation protein in tumor stroma with chimeric antigen receptor T cells can inhibit tumor growth and augment host immunity without severe toxicity. Cancer Immunol. Res. 2, 154–166 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Lo, A. et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 75, 2800–2810 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rurik, J. G. et al. CAR T cells produced in vivo to treat cardiac injury. Science 375, 91–96 (2022). A single injection of tLNPs generates FAPCAR T cells in vivo and ameliorates heart failure.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Purcell, J. W. et al. LRRC15 is a novel mesenchymal protein and stromal target for antibody–drug conjugates. Cancer Res. 78, 4059–4072 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–579 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  57. van Linthout, S. & Volk, H. D. Immuno-cardio-oncology: killing two birds with one stone? Front. Immunol. 13, 6859 (2022).

    Google Scholar 

  58. Wiley, C. D. & Campisi, J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat. Metab. 3, 1290–1301 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gasek, N. S., Kuchel, G. A., Kirkland, J. L. & Xu, M. Strategies for targeting senescent cells in human disease. Nat. Aging 1, 870–879 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  62. Amor, C. et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature 583, 127–132 (2020). uPAR CAR T cells can treat a variety of senescence-associated conditions.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Prajapati, K., Perez, C., Rojas, L. B. P., Burke, B. & Guevara-Patino, J. A. Functions of NKG2D in CD8+ T cells: an opportunity for immunotherapy. Cell Mol. Immunol. 15, 470–479 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sagiv, A. et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging 8, 328–344 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cerboni, C. et al. Antigen-activated human T lymphocytes express cell-surface NKG2D ligands via an ATM/ATR-dependent mechanism and become susceptible to autologous NK- cell lysis. Blood 110, 606–615 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Suda, M. et al. Senolytic vaccination improves normal and pathological age-related phenotypes and increases lifespan in progeroid mice. Nat. Aging https://doi.org/10.1038/s43587-021-00151-2 (2021).

  67. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  68. Baker, D. J. et al. Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim, G. B., Hege, K. & Riley, J. L. CAR talk: how cancer-specific CAR T cells can instruct how to build CAR T cells to cure HIV. Front. Immunol. 10, 2310 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hütter, G. et al. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360, 692–698 (2009).

    Article  PubMed  Google Scholar 

  71. Jensen, B.-E. O. et al. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation. Nat. Med. 29, 583–587 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Maldini, C. R., Ellis, G. I. & Riley, J. L. CAR T cells for infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 18, 605–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Leibman, R. S. et al. Supraphysiologic control over HIV-1 replication mediated by CD8 T cells expressing a re-engineered CD4-based chimeric antigen receptor. PLoS Pathog. 13, e1006613 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Kumaresan, P. R. et al. Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection. Proc. Natl Acad. Sci. USA 111, 10660–10665 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seif, M. et al. CAR T cells targeting Aspergillus fumigatus are effective at treating invasive pulmonary aspergillosis in preclinical models. Sci. Transl. Med. 14, eabh1209 (2022).

    Article  CAS  PubMed  Google Scholar 

  76. Mo, F. et al. Engineering T-cells to suppress acute GvHD and leukemia relapse after allogeneic hematopoietic stem cell transplantation. Blood https://doi.org/10.1182/BLOOD.2022016052 (2022).

  77. Beier, U. H., Baker, D. J. & Baur, J. A. Thermogenic T cells: a cell therapy for obesity? Am. J. Physiol. Cell Physiol. https://doi.org/10.1152/AJPCELL.00034.2022 (2022).

  78. Stadtmauer, E. A. et al. CRISPR-engineered T cells in patients with refractory cancer. Science 367, eaba7365 (2020).

  79. Lu, Y. et al. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer. Nat. Med. 26, 732–740 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Webber, B. R. et al. Highly efficient multiplex human T cell engineering without double-strand breaks using Cas9 base editors. Nat. Commun. 10, 5222 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Allen, G. M. et al. Synthetic cytokine circuits that drive T cells into immune-excluded tumors. Science 378, eaba1624 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yarmarkovich, M. et al. Cross-HLA targeting of intracellular oncoproteins with peptide-centric CARs. Nature 599, 477–484 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rettko, N. J., Campisi, J. & Wells, J. A. Engineering antibodies targeting p16 MHC-peptide complexes. ACS Chem. Biol. 17, 545–555 (2022).

    Article  CAS  PubMed  Google Scholar 

  84. Qin, V. M. et al. Chimeric antigen receptor beyond CAR-T cells. Cancers 13, 404 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pan, K. et al. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J. Exp. Clin. Cancer Res. 41, 119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tombácz, I. et al. Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs. Mol. Ther. 29, 3293–3304 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Nawaz, W. et al. AAV-mediated in vivo CAR gene therapy for targeting human T-cell leukemia. Blood Cancer J. 11, 119 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Pfeiffer, A. et al. In vivo generation of human CD19-CAR T cells results in B-cell depletion and signs of cytokine release syndrome. EMBO Mol. Med. 10, e9158 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Agarwal, S. et al. In vivo generation of CAR T cells selectively in human CD4+ lymphocytes. Mol. Ther. 28, 1783–1794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weidner, T. et al. Genetic in vivo engineering of human T lymphocytes in mouse models. Nat. Protoc. 16, 3210–3240 (2021).

    Article  CAS  PubMed  Google Scholar 

  92. Banskota, S. et al. Engineered virus-like particles for efficient in vivo delivery of therapeutic proteins. Cell 185, 250–265 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  94. Themeli, M. et al. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 31, 928–933 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Benjamin, R. et al. Genome-edited, donor-derived allogeneic anti-CD19 chimeric antigen receptor T cells in paediatric and adult B-cell acute lymphoblastic leukaemia: results of two phase 1 studies. Lancet 396, 1885–1894 (2020).

    Article  CAS  PubMed  Google Scholar 

  96. Bishop, D. C. et al. Development of CAR T-cell lymphoma in 2 of 10 patients effectively treated with piggyBac-modified CD19 CAR T cells. Blood 138, 1504–1509 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. He, S. & Sharpless, N. E. Senescence in health and disease. Cell 169, 1000–1011 (2017).

  98. Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  99. Ghassemi, S. et al. Enhancing chimeric antigen receptor T cell anti-tumor function through advanced media design. Mol. Ther. Methods Clin. Dev. 18, 595–606 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Daniels, K. G. et al. Decoding CAR T cell phenotype using combinatorial signaling motif libraries and machine learning. Science 378, 1194–1200 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Considerations for the development of chimeric antigen receptor (CAR) T cell products. FDA https://www.fda.gov/regulatory-information/search-fda-guidance-documents/considerations-development-chimeric-antigen-receptor-car-t-cell-products (2022).

  102. Kummar, S. et al. Phase 0 clinical trials: conceptions and misconceptions. Cancer J. 14, 133–137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by 1P01CA214278 and R01CA226983 (C.H.J.), the Parker Institute for Cancer Immunotherapy and the Centurion Foundation Innovation Fund.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: D.J.B., Z.A., J.A.B., J.A.E., C.H.J. Visualization: D.J.B., Z.A., J.A.B., J.A.E., C.H.J. Writing: D.J.B., Z.A., J.A.B., J.A.E., C.H.J.

Corresponding authors

Correspondence to Daniel J. Baker or Carl H. June.

Ethics declarations

Competing interests

D.J.B. and Z.A. declare no competing interests. J.A.B. is a consultant to Pfizer and Cytokinetics. J.A.E. is a scientific founder and holds equity in Capstan Therapeutics, which develops therapeutics to reprogram immune cells in vivo. C.H.J. is an inventor on patents and/or patent applications licensed to Novartis Institutes of Biomedical Research and receives licence revenue from such licences. C.H.J. is a scientific founder of Tmunity Therapeutics and Capstan Therapeutics. C.H.J. is a member of the scientific advisory boards of AC Immune, Alaunos, BluesphereBio, Cabaletta, Carisma, Cartography, Cellares, Celldex, Danaher, Decheng, Kite Gilead, Poseida, Verismo, Viracta and WIRB-Copernicus.

Peer review

Peer review information

Nature thanks Kristen Hege and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baker, D.J., Arany, Z., Baur, J.A. et al. CAR T therapy beyond cancer: the evolution of a living drug. Nature 619, 707–715 (2023). https://doi.org/10.1038/s41586-023-06243-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-023-06243-w

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research