Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disorder of unknown aetiology. Unlike other systemic autoimmune diseases, in AS, the innate immune system has a dominant role characterized by aberrant activity of innate and innate-like immune cells, including γδ T cells, group 3 innate lymphoid cells, neutrophils, mucosal-associated invariant T cells and mast cells, at sites predisposed to the disease. The intestine is involved in disease manifestations, as it is at the forefront of the interaction between the mucosal-associated immune cells and the intestinal microbiota. Similarly, biomechanical factors, such as entheseal micro-trauma, might also be involved in the pathogenesis of the articular manifestation of AS, and sentinel immune cells located in the entheses could provide links between local damage, genetic predisposition and the development of chronic inflammation. Although these elements might support the autoinflammatory nature of AS, studies demonstrating the presence of autoantibodies (such as anti-CD74, anti-sclerostin and anti-noggin antibodies) and evidence of activation and clonal expansion of T cell populations support an autoimmune component to the disease. This Review presents the evidence for autoinflammation and the evidence for autoimmunity in AS and, by discussing the pathophysiological factors associated with each, aims to reconcile the two hypotheses.
Key points
-
The pathogenesis of ankylosing spondylitis (AS) is not fully understood, despite advances in understanding some of the underlying mechanisms.
-
Genetic studies and the effects of local tissue factors, such as biomechanical stress and bacterial products, support the importance of a chronic innate immune response in AS.
-
Innate and innate-like immune cells can be found at sites of disease and probably represent the major source of IL-17 production in AS.
-
Immune pathways such as inflammasome activation, autophagy and ubiquitination are involved in both innate and adaptive immunity in AS.
-
The presence of an autoimmune response accompanied by the production of specific autoantibodies is a growing concept in AS.
-
Both autoinflammatory and autoimmune factors participate in the pathogenesis of AS in a probable continuum.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Sieper, J., Braun, J., Dougados, M. & Baeten, D. Axial spondyloarthritis. Nat. Rev. Dis. Prim. 1, 15013 (2015).
Taams, L. S., Steel, K. J. A., Srenathan, U., Burns, L. A. & Kirkham, B. W. IL-17 in the immunopathogenesis of spondyloarthritis. Nat. Rev. Rheumatol. 14, 453–466 (2018).
Krainer, J., Siebenhandl, S. & Weinhäusel, A. Systemic autoinflammatory diseases. J. Autoimmun. 109, 102421 (2020).
McGonagle, D. & McDermott, M. F. A proposed classification of the immunological diseases. PLoS Med. 3, e297 (2006).
Wang, L., Wang, F.-S. & Gershwin, M. E. Human autoimmune diseases: a comprehensive update. J. Intern. Med. 278, 369–395 (2015).
Ambarus, C., Yeremenko, N., Tak, P. P. & Baeten, D. Pathogenesis of spondyloarthritis. Curr. Opin. Rheumatol. 24, 351–358 (2012).
Generali, E., Bose, T., Selmi, C., Voncken, J. W. & Damoiseaux, J. G. M. C. Nature versus nurture in the spectrum of rheumatic diseases: classification of spondyloarthritis as autoimmune or autoinflammatory. Autoimmun. Rev. 17, 935–941 (2018).
Brown, M. A. & Wordsworth, B. P. Genetics in ankylosing spondylitis – current state of the art and translation into clinical outcomes. Best Pract. Res. Clin. Rheumatol. 31, 763–776 (2017).
Braun, J. & Sieper, J. Ankylosing spondylitis. Lancet 369, 1379–1390 (2007).
Kenna, T. J., Hanson, A., Costello, M.-E. & Brown, M. A. Functional genomics and its bench-to-bedside translation pertaining to the identified susceptibility alleles and loci in ankylosing spondylitis. Curr. Rheumatol. Rep. 18, 63 (2016).
Rahman, P. et al. Association of interleukin-23 receptor variants with ankylosing spondylitis. Arthritis Rheum. 58, 1020–1025 (2008).
Galozzi, P. et al. Altered cytokine pattern and inflammatory pathways in monogenic and complex autoinflammatory diseases [abstract]. Pediatr. Rheumatol. 13, O48 (2015).
Pfeifle, R. et al. Regulation of autoantibody activity by the IL-23–TH17 axis determines the onset of autoimmune disease. Nat. Immunol. 18, 104–113 (2017).
Uhlig, H. H. et al. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25, 309–318 (2006).
Baeten, D. et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet 382, 1705–1713 (2013).
McInnes, I. B. et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann. Rheum. Dis. 73, 349–356 (2014).
Højgaard, P. et al. Pain mechanisms and ultrasonic inflammatory activity as prognostic factors in patients with psoriatic arthritis: protocol for a prospective, exploratory cohort study. BMJ Open 6, e010650 (2016).
Mease, P. J. et al. Ixekizumab, an interleukin-17A specific monoclonal antibody, for the treatment of biologic-naive patients with active psoriatic arthritis: results from the 24-week randomised, double-blind, placebo-controlled and active (adalimumab)-controlled period of the phase III trial SPIRIT-P1. Ann. Rheum. Dis. 76, 79–87 (2017).
Hueber, W. et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut 61, 1693–1700 (2012).
Feagan, B. G. et al. Risankizumab in patients with moderate to severe Crohn’s disease: an open-label extension study. Lancet Gastroenterol. Hepatol. 3, 671–680 (2018).
Baeten, D. et al. Risankizumab, an IL-23 inhibitor, for ankylosing spondylitis: Results of a randomised, double-blind, placebo-controlled, proof-of-concept, dose-finding phase 2 study. Ann. Rheum. Dis. 77, 1295–1302 (2018).
Evans, D. M. et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat. Genet. 43, 761–767 (2011).
Vecellio, M., Cohen, C. J., Roberts, A. R., Wordsworth, P. B. & Kenna, T. J. RUNX3 and T-bet in immunopathogenesis of ankylosing spondylitis — novel targets for therapy? Front. Immunol. 9, 3132 (2019).
Smith, J. A. & Colbert, R. A. Review: The interleukin-23/interleukin-17 axis in spondyloarthritis pathogenesis: Th17 and beyond. Arthritis Rheumatol. 66, 231–241 (2014).
Gracey, E. et al. TYK2 inhibition reduces type 3 immunity and modifies disease progression in murine spondyloarthritis. J. Clin. Invest. 130, 1863–1878 (2020).
Dendrou, C. A. et al. Resolving TYK2 locus genotype-to-phenotype differences in autoimmunity. Sci. Transl. Med. 8, 363ra149 (2016).
Snelgrove, T. et al. Association of Toll-like receptor 4 variants and ankylosing spondylitis: a case-control study. J. Rheumatol. 34, 368–370 (2007).
Assassi, S. et al. Whole-blood gene expression profiling in ankylosing spondylitis shows upregulation of Toll-like receptor 4 and 5. J. Rheumatol. 38, 87–98 (2011).
Ciccia, F. et al. Dysbiosis and zonulin upregulation alter gut epithelial and vascular barriers in patients with ankylosing spondylitis. Ann. Rheum. Dis. 76, 1123–1132 (2017).
Li, Z. et al. Genome-wide association study in Turkish and Iranian populations identify rare familial Mediterranean fever gene (MEFV) polymorphisms associated with ankylosing spondylitis. PLoS Genet. 15, e1008038 (2019).
Akar, S. et al. High prevalence of spondyloarthritis and ankylosing spondylitis among familial Mediterranean fever patients and their first-degree relatives: further evidence for the connection. Arthritis Res. Ther. 15, R21 (2013).
Kaşifoğlu, T., Çalişir, C., Cansu, D. Ü. & Korkmaz, C. The frequency of sacroiliitis in familial Mediterranean fever and the role of HLA-B27 and MEFV mutations in the development of sacroiliitis. Clin. Rheumatol. 28, 41–46 (2009).
Cosan, F. et al. Association of familial Mediterranean fever-related MEFV variations with ankylosing spondylitis. Arthritis Rheum. 62, 3232–3236 (2010).
Varan, O., Kucuk, H. & Tufan, A. Anakinra for the treatment of familial Mediterranean fever-associated spondyloarthritis. Scand. J. Rheumatol. 45, 252–253 (2016).
Georgin-Lavialle, S. et al. Spondyloarthritis associated with familial Mediterranean fever: successful treatment with anakinra. Rheumatology 56, 167–169 (2017).
International Genetics of Ankylosing Spondylitis Consortium (IGAS). et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat. Genet. 45, 730–738 (2013).
Chen, H. et al. ERAP1-ERAP2 dimers trim MHC I-bound precursor peptides; implications for understanding peptide editing. Sci. Rep. 6, 28902 (2016).
Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73 (2014).
Cortes, A. et al. Major histocompatibility complex associations of ankylosing spondylitis are complex and involve further epistasis with ERAP1. Nat. Commun. 6, 7146 (2015).
Stawczyk-Macieja, M. et al. ERAP1 and HLA-C*06 are strongly associated with the risk of psoriasis in the population of northern Poland. Adv. Dermatol. Allergol. 35, 286–292 (2018).
Burillo-Sanz, S. et al. Behçet’s disease and genetic interactions between HLA-B*51 and variants in genes of autoinflammatory syndromes. Sci. Rep. 9, 2777 (2019).
Kuiper, J. J. W. et al. A genome-wide association study identifies a functional ERAP2 haplotype associated with birdshot chorioretinopathy. Hum. Mol. Genet. 23, 6081–6087 (2014).
López de Castro, J. A. et al. Molecular and pathogenic effects of endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 in MHC-I-associated inflammatory disorders: towards a unifying view. Mol. Immunol. 77, 193–204 (2016).
Seregin, S. S. et al. Endoplasmic reticulum aminopeptidase-1 alleles associated with increased risk of ankylosing spondylitis reduce HLA-B27 mediated presentation of multiple antigens. Autoimmunity 46, 497–508 (2013).
Kuiper, J. J. W. et al. Functionally distinct ERAP1 and ERAP2 are a hallmark of HLA-A29-(birdshot) uveitis. Hum. Mol. Genet. 27, 4333–4343 (2018).
Costantino, F., Breban, M. & Garchon, H.-J. Genetics and functional genomics of spondyloarthritis. Front. Immunol. 9, 2933 (2018).
Farh, K. K.-H. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).
Lau, M. C. et al. Genetic association of ankylosing spondylitis with TBX21 influences T-bet and pro-inflammatory cytokine expression in humans and SKG mice as a model of spondyloarthritis. Ann. Rheum. Dis. 76, 261–269 (2017).
Bombardieri, M., Lewis, M. & Pitzalis, C. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nat. Rev. Rheumatol. 13, 141–154 (2017).
Demetter, P. et al. Increase in lymphoid follicles and leukocyte adhesion molecules emphasizes a role for the gut in spondyloarthropathy pathogenesis. J. Pathol. 198, 517–522 (2002).
Masi, A. T. Might axial myofascial properties and biomechanical mechanisms be relevant to ankylosing spondylitis and axial spondyloarthritis? Arthritis Res. Ther. 16, 107 (2014).
Watad, A. et al. The early phases of ankylosing spondylitis: emerging insights from clinical and basic science. Front. Immunol. 9, 2668 (2018).
Debusschere, K., Cambré, I., Gracey, E. & Elewaut, D. Born to run: The paradox of biomechanical force in spondyloarthritis from an evolutionary perspective. Best Pract. Res. Clin. Rheumatol. 31, 887–894 (2017).
Watad, A., Cuthbert, R. J., Amital, H. & McGonagle, D. Enthesitis: Much more than focal insertion point inflammation. Curr. Rheumatol. Rep. 20, 41 (2018).
François, R. J., Braun, J. & Khan, M. A. Entheses and enthesitis: a histopathologic review and relevance to spondyloarthritides. Curr. Opin. Rheumatol. 13, 255–264 (2001).
Schett, G. et al. Enthesitis: from pathophysiology to treatment. Nat. Rev. Rheumatol. 13, 731–741 (2017).
Weber, U. et al. Frequency and anatomic distribution of magnetic resonance imaging features in the sacroiliac joints of young athletes: Exploring “background noise” toward a data-driven definition of sacroiliitis in early spondyloarthritis. Arthritis Rheumatol. 70, 736–745 (2018).
Varkas, G. et al. Effect of mechanical stress on magnetic resonance imaging of the sacroiliac joints: assessment of military recruits by magnetic resonance imaging study. Rheumatology 57, 508–513 (2018).
Renson, T. et al. High prevalence of spondyloarthritis-like MRI lesions in postpartum women: a prospective analysis in relation to maternal, child and birth characteristics. Ann. Rheum. Dis. 79, 929–934 (2020).
Sherlock, J. P. et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+CD3+CD4−CD8− entheseal resident T cells. Nat. Med. 18, 1069–1076 (2012).
Cuthbert, R. J. et al. Brief report: group 3 innate lymphoid cells in human enthesis. Arthritis Rheumatol. 69, 1816–1822 (2017).
Bridgewood, C. et al. Identification of myeloid cells in the human enthesis as the main source of local IL-23 production. Ann. Rheum. Dis. 78, 929–933 (2019).
Jacques, P. et al. Proof of concept: enthesitis and new bone formation in spondyloarthritis are driven by mechanical strain and stromal cells. Ann. Rheum. Dis. 73, 437–445 (2014).
Ward, M. M., Reveille, J. D., Learch, T. J., Davis, J. C. & Weisman, M. H. Occupational physical activities and long-term functional and radiographic outcomes in patients with ankylosing spondylitis. Arthritis Rheum. 59, 822–832 (2008).
Ramiro, S. et al. Lifestyle factors may modify the effect of disease activity on radiographic progression in patients with ankylosing spondylitis: a longitudinal analysis. RMD Open 1, e000153 (2015).
Baum, R. & Gravallese, E. M. Impact of inflammation on the osteoblast in rheumatic diseases. Curr. Osteoporos. Rep. 12, 9–16 (2014).
Lin, P. et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS ONE 9, e105684 (2014).
Rehaume, L. M. et al. ZAP-70 genotype disrupts the relationship between microbiota and host, leading to spondyloarthritis and ileitis in SKG mice. Arthritis Rheumatol. 66, 2780–2792 (2014).
Rehaume, L. M. et al. IL-23 favours outgrowth of spondyloarthritis-associated pathobionts and suppresses host support for homeostatic microbiota. Ann. Rheum. Dis. 78, 494–503 (2019).
Ruutu, M. et al. β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 64, 2211–2222 (2012).
Tanaka, S. et al. Graded attenuation of TCR signaling elicits distinct autoimmune diseases by altering thymic T cell selection and regulatory T cell function. J. Immunol. 185, 2295–2305 (2010).
Costello, M.-E. et al. Brief report: intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. 67, 686–691 (2015).
Tito, R. Y. et al. Brief report: dialister as a microbial marker of disease activity in spondyloarthritis. Arthritis Rheumatol. 69, 114–121 (2017).
Breban, M. et al. Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann. Rheum. Dis. 76, 1614–1622 (2017).
Wen, C. et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biol. 18, 142 (2017).
Zhang, L. et al. Fecal microbiota in patients with ankylosing spondylitis: correlation with dietary factors and disease activity. Clin. Chim. Acta 497, 189–196 (2019).
Yin, J. et al. Shotgun metagenomics reveals an enrichment of potentially cross-reactive bacterial epitopes in ankylosing spondylitis patients, as well as the effects of TNFi therapy and the host’s genotype upon microbiome composition. Ann. Rheum. Dis. 79, 132–140 (2020).
Manasson, J. et al. Interleukin-17 inhibition in spondyloarthritis is associated with subclinical gut microbiome perturbations and a distinctive interleukin-25-driven intestinal inflammation. Arthritis Rheumatol. 72, 645–657 (2020).
Zhou, C. et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis. J. Autoimmun. 107, 102360 (2019).
Asquith, M. et al. HLA alleles associated with risk of ankylosing spondylitis and rheumatoid arthritis influence the gut microbiome. Arthritis Rheumatol. 71, 1642–1650 (2019).
Viladomiu, M. et al. IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation. Sci. Transl. Med. 9, eaaf9655 (2017).
Stoll, M. L. et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res. Ther. 16, 486 (2014).
Salas-Cuestas, F. et al. Higher levels of secretory IgA are associated with low disease activity index in patients with reactive arthritis and undifferentiated spondyloarthritis. Front. Immunol. 8, 476 (2017).
Franssen, M. J., van de Putte, L. B. & Gribnau, F. W. IgA serum levels and disease activity in ankylosing spondylitis: a prospective study. Ann. Rheum. Dis. 44, 766–771 (1985).
Asquith, M. J. et al. Perturbed mucosal immunity and dysbiosis accompany clinical disease in a rat model of spondyloarthritis. Arthritis Rheumatol. 68, 2151–2162 (2016).
Zhao, Q. & Elson, C. O. Adaptive immune education by gut microbiota antigens. Immunology 154, 28–37 (2018).
Silverman, G. J. The microbiome in SLE pathogenesis. Nat. Rev. Rheumatol. 15, 72–74 (2019).
Paun, A., Yau, C. & Danska, J. S. The influence of the microbiome on type 1 diabetes. J. Immunol. 198, 590–595 (2017).
Reinhardt, A. et al. Interleukin-23-dependent γ/δ T cells produce interleukin-17 and accumulate in the enthesis, aortic valve, and ciliary body in mice. Arthritis Rheumatol. 68, 2476–2486 (2016).
Noordenbos, T. et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 64, 99–109 (2012).
Rivellese, F. et al. Mast cells in early rheumatoid arthritis associate with disease severity and support B cell autoantibody production. Ann. Rheum. Dis. 77, 1773–1781 (2018).
Appel, H. et al. Analysis of IL-17+ cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res. Ther. 13, R95 (2011).
Price, A. E., Reinhardt, R. L., Liang, H.-E. & Locksley, R. M. Marking and quantifying IL-17A-producing cells in vivo. PLoS ONE 7, e39750 (2012).
Noordenbos, T. et al. Human mast cells capture, store, and release bioactive, exogenous IL-17A. J. Leukoc. Biol. 100, 453–462 (2016).
Kenna, T. J. & Brown, M. A. The role of IL-17-secreting mast cells in inflammatory joint disease. Nat. Rev. Rheumatol. 9, 375–379 (2013).
McGonagle, D. G., McInnes, I. B., Kirkham, B. W., Sherlock, J. & Moots, R. The role of IL-17A in axial spondyloarthritis and psoriatic arthritis: recent advances and controversies. Ann. Rheum. Dis. 78, 1167–1178 (2019).
Tamassia, N. et al. A reappraisal on the potential ability of human neutrophils to express and produce IL-17 family members in vitro: failure to reproducibly detect it. Front. Immunol. 9, 795 (2018).
Chen, S. et al. Histologic evidence that mast cells contribute to local tissue inflammation in peripheral spondyloarthritis by regulating interleukin-17A content. Rheumatology 58, 617–627 (2019).
Paramarta, J. E. et al. A proof-of-concept study with the tyrosine kinase inhibitor nilotinib in spondyloarthritis. J. Transl. Med. 14, 308 (2016).
McGonagle, D. et al. Histological assessment of the early enthesitis lesion in spondyloarthropathy. Ann. Rheum. Dis. 61, 534–537 (2002).
Bollow, M. et al. Quantitative analyses of sacroiliac biopsies in spondyloarthropathies: T cells and macrophages predominate in early and active sacroiliitis — cellularity correlates with the degree of enhancement detected by magnetic resonance imaging. Ann. Rheum. Dis. 59, 135–140 (2000).
Braun, J. et al. Use of immunohistologic and in situ hybridization techniques in the examination of sacroiliac joint biopsy specimens from patients with ankylosing spondylitis. Arthritis Rheum. 38, 499–505 (1995).
Smith, J. A. et al. Gene expression analysis of macrophages derived from ankylosing spondylitis patients reveals interferon-γ dysregulation. Arthritis Rheum. 58, 1640–1649 (2008).
Baeten, D. et al. Association of CD163+macrophages and local production of soluble CD163 with decreased lymphocyte activation in spondylarthropathy synovitis. Arthritis Rheum. 50, 1611–1623 (2004).
Ciccia, F. et al. Macrophage phenotype in the subclinical gut inflammation of patients with ankylosing spondylitis. Rheumatology 53, 104–113 (2014).
Longman, R. S. et al. CX3CR1+ mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J. Exp. Med. 211, 1571–1583 (2014).
Diehl, G. E. et al. Microbiota restricts trafficking of bacteria to mesenteric lymph nodes by CX3CR1hi cells. Nature 494, 116–120 (2013).
Ciccia, F. et al. Proinflammatory CX3CR1+CD59+Tumor Necrosis Factor–Like Molecule 1 A+Interleukin-23+monocytes are expanded in patients with ankylosing spondylitis and modulate innate lymphoid cell 3 immune functions. Arthritis Rheumatol. 70, 2003–2013 (2018).
Yaddanapudi, K. et al. Control of tumor-associated macrophage alternative activation by macrophage migration inhibitory factor. J. Immunol. 190, 2984–2993 (2013).
Nishihira, J. Macrophage migration inhibitory factor (MIF): its essential role in the immune system and cell growth. J. Interf. Cytokine Res. 20, 751–762 (2000).
Ranganathan, V. et al. Macrophage migration inhibitory factor induces inflammation and predicts spinal progression in ankylosing spondylitis. Arthritis Rheumatol. 69, 1796–1806 (2017).
Bloom, J., Sun, S. & Al-Abed, Y. MIF, a controversial cytokine: a review of structural features, challenges, and opportunities for drug development. Expert Opin. Ther. Targets 20, 1463–1475 (2016).
Spits, H. et al. Innate lymphoid cells — a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).
Mauro, D., Macaluso, F., Fasano, S., Alessandro, R. & Ciccia, F. ILC3 in axial spondyloarthritis: the gut angle. Curr. Rheumatol. Rep. 21, 37 (2019).
Hoorweg, K. et al. Functional differences between human NKp44− and NKp44+ RORC+ innate lymphoid cells. Front. Immunol. 3, 72 (2012).
Ciccia, F. et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann. Rheum. Dis. 74, 1739–1747 (2015).
Ciccia, F. et al. Clinical efficacy of α4 integrin block with natalizumab in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2053–2054 (2016).
Mortier, C., Govindarajan, S., Venken, K. & Elewaut, D. It takes ‘guts’ to cause joint inflammation: Role of innate-like T cells. Front. Immunol. 9, 1498 (2018).
Venken, K. et al. RORγt inhibition selectively targets IL-17 producing iNKT and γδ-T cells enriched in spondyloarthritis patients. Nat. Commun. 10, 9 (2019).
Gracey, E. et al. IL-7 primes IL-17 in mucosal-associated invariant T (MAIT) cells, which contribute to the Th17-axis in ankylosing spondylitis. Ann. Rheum. Dis. 75, 2124–2132 (2016).
Gherardin, N. A. et al. Human blood MAIT cell subsets defined using MR1 tetramers. Immunol. Cell Biol. 96, 507–525 (2018).
Toussirot, E. & Saas, P. MAIT cells: potent major cellular players in the IL-17 pathway of spondyloarthritis? RMD Open 4, e000821 (2018).
Kjer-Nielsen, L. et al. MR1 presents microbial vitamin B metabolites to MAIT cells. Nature 491, 717–723 (2012).
Al-Mossawi, H. et al. Context-specific regulation of surface and soluble IL7R expression by an autoimmune risk allele. Nat. Commun. 10, 4575 (2019).
Toussirot, É., Laheurte, C., Gaugler, B., Gabriel, D. & Saas, P. Increased IL-22-and IL-17A-producing mucosal-associated invariant T cells in the peripheral blood of patients with ankylosing spondylitis. Front. Immunol. 9, 1610 (2018).
Hayashi, E. et al. Involvement of mucosal-associated invariant T cells in ankylosing spondylitis. J. Rheumatol. 43, 1695–1703 (2016).
Rosine, N. et al. FRI0361 Innate versusadaptive IL-17A producing cells in axial spondyloarthritis. [abstract]. Ann. Rheum. Dis. 78 (Suppl. 2), 862–863 (2019).
Martin, B., Hirota, K., Cua, D. J., Stockinger, B. & Veldhoen, M. Interleukin-17-producing γδ T cells selectively expand in response to pathogen products and environmental signals. Immunity 31, 321–330 (2009).
Kenna, T. J. et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive γ/δ T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 64, 1420–1429 (2012).
Ito, Y. et al. Gamma/delta T cells are the predominant source of interleukin-17 in affected joints in collagen-induced arthritis, but not in rheumatoid arthritis. Arthritis Rheum. 60, 2294–2303 (2009).
Chowdhury, A. C., Chaurasia, S., Mishra, S. K., Aggarwal, A. & Misra, R. IL-17 and IFN-γ producing NK and γδ-T cells are preferentially expanded in synovial fluid of patients with reactive arthritis and undifferentiated spondyloarthritis. Clin. Immunol. 183, 207–212 (2017).
Cuthbert, R. J. et al. Evidence that tissue resident human enthesis γδT-cells can produce IL-17A independently of IL-23R transcript expression. Ann. Rheum. Dis. 78, 1559–1565 (2019).
Jacques, P. et al. Invariant natural killer T cells are natural regulators of murine spondylarthritis. Arthritis Rheum. 62, 988–999 (2010).
Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).
Mills, K. H. G., Dungan, L. S., Jones, S. A. & Harris, J. The role of inflammasome-derived IL-1 in driving IL-17 responses. J. Leukoc. Biol. 93, 489–497 (2013).
Mailer, R. K. W. et al. IL-1β promotes Th17 differentiation by inducing alternative splicing of FOXP3. Sci. Rep. 5, 14674 (2015).
Iwai, Y. et al. An IFN-gamma-IL-18 signaling loop accelerates memory CD8+ T cell proliferation. PLoS ONE 3, e2404 (2008).
Zhong, L., Song, H., Wang, W., Li, J. & Ma, M. MEFV M694V mutation has a role in susceptibility to ankylosing spondylitis: a meta-analysis. PLoS ONE 12, e0182967 (2017).
Xia, Q. et al. Autophagy-related IRGM genes confer susceptibility to ankylosing spondylitis in a Chinese female population: a case–control study. Genes. Immun. 18, 42–47 (2017).
Laukens, D. CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn’s disease. Ann. Rheum. Dis. 64, 930–935 (2005).
Guggino, G. et al. Inflammasome activation in ankylosing spondylitis is associated to gut dysbiosis. Arthritis Rheumatol. https://doi.org/10.1002/art.41644 (2021).
Tan, A. L. et al. Efficacy of anakinra in active ankylosing spondylitis: a clinical and magnetic resonance imaging study. Ann. Rheum. Dis. 63, 1041–1045 (2004).
Haibel, H., Rudwaleit, M., Listing, J. & Sieper, J. Open label trial of anakinra in active ankylosing spondylitis over 24 weeks. Ann. Rheum. Dis. 64, 296–298 (2005).
Verfaillie, T., Salazar, M., Velasco, G. & Agostinis, P. Linking ER stress to autophagy: potential implications for cancer therapy. Int. J. Cell Biol. 2010, 930509 (2010).
Navid, F. & Colbert, R. A. Causes and consequences of endoplasmic reticulum stress in rheumatic disease. Nat. Rev. Rheumatol. 13, 25–40 (2017).
Wu, D. J. & Adamopoulos, I. E. Autophagy and autoimmunity. Clin. Immunol. 176, 55–62 (2017).
Saiga, H. et al. The recombinant BCG ΔureC::hly vaccine targets the AIM2 inflammasome to induce autophagy and inflammation. J. Infect. Dis. 211, 1831–1841 (2015).
Yao, Y. et al. Antigen-specific CD8+ T cell feedback activates NLRP3 inflammasome in antigen-presenting cells through perforin. Nat. Commun. 8, 15402 (2017).
Clarke, A. J. et al. Autophagy is activated in systemic lupus erythematosus and required for plasmablast development. Ann. Rheum. Dis. 74, 912–920 (2015).
Kemp, K. & Poe, C. Stressed: the unfolded protein response in T cell development, activation, and function. Int. J. Mol. Sci. 20, 1792 (2019).
Gaudette, B. T., Jones, D. D., Bortnick, A., Argon, Y. & Allman, D. mTORC1 coordinates an immediate unfolded protein response-related transcriptome in activated B cells preceding antibody secretion. Nat. Commun. 11, 723 (2020).
Colbert, R. A., Tran, T. M. & Layh-Schmitt, G. HLA-B27 misfolding and ankylosing spondylitis. Mol. Immunol. 57, 44–51 (2014).
DeLay, M. L. et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 60, 2633–2643 (2009).
Neerinckx, B., Carter, S. & Lories, R. J. No evidence for a critical role of the unfolded protein response in synovium and blood of patients with ankylosing spondylitis. Ann. Rheum. Dis. 73, 629–630 (2014).
Navid, F., Layh-Schmitt, G., Sikora, K. A., Cougnoux, A. & Colbert, R. A. The role of autophagy in the degradation of misfolded HLA-B27 heavy chains. Arthritis Rheumatol. 70, 746–755 (2018).
Ciccia, F. et al. Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation. Ann. Rheum. Dis. 73, 1566–1574 (2014).
Goodall, J. C. et al. Endoplasmic reticulum stress-induced transcription factor, CHOP, is crucial for dendritic cell IL-23 expression. Proc. Natl Acad. Sci. USA 107, 17698–17703 (2010).
Jiao, Y. & Sun, J. Bacterial manipulation of autophagic responses in infection and inflammation. Front. Immunol. 10, 2821 (2019).
Neerinckx, B., Carter, S. & Lories, R. IL-23 expression and activation of autophagy in synovium and PBMCs of HLA-B27 positive patients with ankylosing spondylitis. Response to:’Evidence that autophagy, but not the unfolded protein response, regulates the expression of IL-23 in the gut of patients with ankylosing spondylitis and subclinical gut inflammation’ by Ciccia et al. Ann. Rheum. Dis. 73, e68 (2014).
Duong, B. H. et al. A20 restricts ubiquitination of pro-interleukin-1β protein complexes and suppresses NLRP3 inflammasome activity. Immunity 42, 55–67 (2015).
Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694–699 (2004).
Catrysse, L., Vereecke, L., Beyaert, R. & van Loo, G. A20 in inflammation and autoimmunity. Trends Immunol. 35, 22–31 (2014).
Malynn, B. A. & Ma, A. A20: a multifunctional tool for regulating immunity and preventing disease. Cell. Immunol. 340, 103914 (2019).
Lee, E. G. et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).
Verhelst, K. et al. A20 inhibits LUBAC-mediated NF-κB activation by binding linear polyubiquitin chains via its zinc finger 7. EMBO J. 31, 3845–3855 (2012).
Onizawa, M. et al. The ubiquitin-modifying enzyme A20 restricts ubiquitination of the kinase RIPK3 and protects cells from necroptosis. Nat. Immunol. 16, 618–627 (2015).
Xuan, N. T. et al. A20 expression in dendritic cells protects mice from LPS-induced mortality. Eur. J. Immunol. 45, 818–828 (2015).
Hammer, G. E. et al. Expression of A20 by dendritic cells preserves immune homeostasis and prevents colitis and spondyloarthritis. Nat. Immunol. 12, 1184–1193 (2011).
Kool, M. et al. The ubiquitin-editing protein a20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity 35, 82–96 (2011).
De Wilde, K. et al. A20 inhibition of STAT1 expression in myeloid cells: A novel endogenous regulatory mechanism preventing development of enthesitis. Ann. Rheum. Dis. 76, 585–592 (2017).
Matmati, M. et al. A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat. Genet. 43, 908–912 (2011).
Das, T., Chen, Z., Hendriks, R. W. & Kool, M. A20/tumor necrosis factor α-induced protein 3 in immune cells controls development of autoinflammation and autoimmunity: Lessons from mouse models. Front. Immunol. 9, 104 (2018).
De, A., Dainichi, T., Rathinam, C. V. & Ghosh, S. The deubiquitinase activity of A20 is dispensable for NF-κB signaling. EMBO Rep. 15, 775–783 (2014).
Wertz, I. E. et al. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 528, 370–375 (2015).
Martens, A. et al. Two distinct ubiquitin-binding motifs in A20 mediate its anti-inflammatory and cell-protective activities. Nat. Immunol. 21, 381–387 (2020).
Razani, B. et al. Non-catalytic ubiquitin binding by A20 prevents psoriatic arthritis-like disease and inflammation. Nat. Immunol. 21, 422–433 (2020).
Priem, D., van Loo, G. & Bertrand, M. J. M. A20 and cell death-driven inflammation. Trends Immunol. 41, 421–435 (2020).
Berger, S. B. et al. Cutting edge: RIP1 kinase activity is dispensable for normal development but is a key regulator of inflammation in SHARPIN-deficient mice. J. Immunol. 192, 5476–5480 (2014).
Peltzer, N. et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis. Nature 557, 112–117 (2018).
Damgaard, R. B. et al. OTULIN deficiency in ORAS causes cell type-specific LUBAC degradation, dysregulated TNF signalling and cell death. EMBO Mol. Med. 11, e9324 (2019).
Boisson, B. et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency. Nat. Immunol. 13, 1178–1186 (2012).
Boisson, B. et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia. J. Exp. Med. 212, 939–951 (2015).
Zhou, Q. et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat. Genet. 48, 67–73 (2015).
Rajamäki, K. et al. Haploinsufficiency of A20 impairs protein-protein interactome and leads into caspase-8-dependent enhancement of NLRP3 inflammasome activation. RMD Open 4, e000740 (2018).
Franco-Jarava, C. et al. TNFAIP3 haploinsufficiency is the cause of autoinflammatory manifestations in a patient with a deletion of 13 Mb on chromosome 6. Clin. Immunol. 191, 44–51 (2018).
Liu, Y. et al. Genetic and functional associations with decreased anti-inflammatory tumor necrosis factor alpha induced protein 3 in macrophages from subjects with axial spondyloarthritis. Front. Immunol. 8, 860 (2017).
Lewis, M. J. et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am. J. Hum. Genet. 96, 221–234 (2015).
Hövelmeyer, N. et al. A20 deficiency in B cells enhances B-cell proliferation and results in the development of autoantibodies. Eur. J. Immunol. 41, 595–601 (2011).
Blanco-Gelaz, M. A. et al. The amino acid at position 97 is involved in folding and surface expression of HLA-B27. Int. Immunol. 18, 211–220 (2006).
Schwimmbeck, P. L. & Oldstone, M. B. A. Molecular mimicry between human leukocyte antigen B27 and klebsiella. Consequences for spondyloarthropathies. Am. J. Med. 85, 51–53 (1988).
Taurog, J. D. et al. Spondylarthritis in HLA-B27/human beta2-microglobulin-transgenic rats is not prevented by lack of CD8. Arthritis Rheum. 60, 1977–1984 (2009).
Sakaguchi, N. et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature 426, 454–460 (2003).
Benham, H. et al. Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 66, 1755–1767 (2014).
Baillet, A. C. et al. High Chlamydia burden promotes tumor necrosis factor-dependent reactive arthritis in SKG mice. Arthritis Rheumatol. 67, 1535–1547 (2015).
Appel, H. et al. Use of HLA-B27 tetramers to identify low-frequency antigen-specific T cells in Chlamydia-triggered reactive arthritis. Arthritis Res. Ther. 6, R521–R534 (2004).
Hermann, E., Yu, D. T., Meyer zum Büschenfelde, K. H. & Fleischer, B. HLA-B27-restricted CD8 T cells derived from synovial fluids of patients with reactive arthritis and ankylosing spondylitis. Lancet 342, 646–650 (1993).
Atagunduz, P. et al. HLA-B27-restricted CD8+ T cell response to cartilage-derived self peptides in ankylosing spondylitis. Arthritis Rheum. 52, 892–901 (2005).
Kuon, W. et al. Identification of HLA-B27-restricted peptides from the Chlamydia trachomatis proteome with possible relevance to HLA-B27-associated diseases. J. Immunol. 167, 4738–4746 (2001).
Fiorillo, M. T., Maragno, M., Butler, R., Dupuis, M. L. & Sorrentino, R. CD8+ T-cell autoreactivity to an HLA-B27-restricted self-epitope correlates with ankylosing spondylitis. J. Clin. Invest. 106, 47–53 (2000).
Fiorillo, M. T. & Sorrentino, R. T-cell responses against viral and self-epitopes and HLA-B27 subtypes differentially associated with ankylosing spondylitis. Adv. Exp. Med. Biol. 649, 255–262 (2009).
Gracey, E. et al. Altered cytotoxicity profile of CD8+ T cells in ankylosing spondylitis. Arthritis Rheumatol. 72, 428–434 (2019).
Zhang, L., Jarvis, L. B. & Baek, H.-J. & Hill Gaston, J. S. Regulatory IL4+CD8+ T cells in patients with ankylosing spondylitis and healthy controls. Ann. Rheum. Dis. 68, 1345–1351 (2009).
Hanson, A. L. et al. T-cell receptor immunosequencing reveals altered repertoire diversity and disease-associated clonal expansions in ankylosing spondylitis patients. Arthritis Rheumatol. 72, 1289–1302 (2020).
Qaiyum, Z., Gracey, E., Yao, Y. C. & Inman, R. D. Integrin and transcriptomic profiles identify a distinctive synovial CD8+ T cell subpopulation in spondyloarthritis. Ann. Rheum. Dis. 78, 1566–1575 (2019).
Guggino, G., Rizzo, A., Mauro, D., Macaluso, F. & Ciccia, F. Gut-derived CD8+ tissue-resident memory T cells are expanded in the peripheral blood and synovia of SpA patients. Ann. Rheum. Dis. https://doi.org/10.1136/annrheumdis-2019-216456 (2019).
Zhu, W. et al. Ankylosing spondylitis: etiology, pathogenesis, and treatments. Bone Res. 7, 22 (2019).
Limón-Camacho, L. et al. In vivo peripheral blood proinflammatory T cells in patients with ankylosing spondylitis. J. Rheumatol. 39, 830–835 (2012).
Reinhardt, A. & Prinz, I. Whodunit? The contribution of interleukin (IL)-17/IL-22-producing γδ T cells, αβ T cells, and innate lymphoid cells to the pathogenesis of spondyloarthritis. Front. Immunol. 9, 885 (2018).
Niu, X.-Y. et al. Peripheral B-cell activation and exhaustion markers in patients with ankylosing spondylitis. Life Sci. 93, 687–692 (2013).
Chen, M. et al. Defective function of CD24(+)CD38(+) regulatory B cells in ankylosing spondylitis. DNA Cell Biol. 35, 88–95 (2016).
Bautista-Caro, M. B. et al. Increased frequency of circulating CD19+CD24hiCD38hi B cells with regulatory capacity in patients with ankylosing spondylitis (AS) naïve for biological agents. PLoS ONE 12, e0180726 (2017).
Song, I. H. et al. Different response to rituximab in tumor necrosis factor blocker-naive patients with active ankylosing spondylitis and in patients in whom tumor necrosis factor blockers have failed: a twenty-four-week clinical trial. Arthritis Rheum. 62, 1290–1297 (2010).
Feng, X., Xu, X., Wang, Y., Zheng, Z. & Lin, G. Ectopic germinal centers and IgG4-producing plasmacytes observed in synovia of HLA-B27+ ankylosing spondylitis patients with advanced hip involvement. Int. J. Rheumatol. 2015, 316421 (2015).
Voswinkel, J., Weisgerber, K., Pfreundschuh, M. & Gause, A. B lymphocyte involvement in ankylosing spondylitis: the heavy chain variable segment gene repertoire of B lymphocytes from germinal center-like foci in the synovial membrane indicates antigen selection. Arthritis Res. 3, 189–195 (2001).
Wright, C. et al. Detection of multiple autoantibodies in patients with ankylosing spondylitis using nucleic acid programmable protein arrays. Mol. Cell. Proteom. 11, M9.00384 (2012).
Baerlecken, N. T. et al. Autoantibodies against CD74 in spondyloarthritis. Ann. Rheum. Dis. 73, 1211–1214 (2014).
Baraliakos, X., Baerlecken, N., Witte, T., Heldmann, F. & Braun, J. High prevalence of anti-CD74 antibodies specific for the HLA class II-associated invariant chain peptide (CLIP) in patients with axial spondyloarthritis. Ann. Rheum. Dis. 73, 1079–1082 (2014).
de Winter, J. J. et al. Anti-CD74 antibodies have no diagnostic value in early axial spondyloarthritis: data from the spondyloarthritis caught early (SPACE) cohort. Arthritis Res. Ther. 20, 38 (2018).
Tsui, F. W. L., Tsui, H. W., Las Heras, F., Pritzker, K. P. H. & Inman, R. D. Serum levels of novel noggin and sclerostin-immune complexes are elevated in ankylosing spondylitis. Ann. Rheum. Dis. 73, 1873–1879 (2013).
Appel, H. et al. Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum. 60, 3257–3262 (2009).
Lories, R. J. U., Derese, I. & Luyten, F. P. Modulation of bone morphogenetic protein signaling inhibits the onset and progression of ankylosing enthesitis. J. Clin. Invest. 115, 1571–1579 (2005).
Luchetti, M. M. et al. Sclerostin and antisclerostin antibody serum levels predict the presence of axial spondyloarthritis in patients with inflammatory bowel disease. J. Rheumatol. 45, 630–637 (2018).
Klingberg, E. et al. A distinct gut microbiota composition in patients with ankylosing spondylitis is associated with increased levels of fecal calprotectin. Arthritis Res. Ther. 21, 248 (2019).
Ma, X., Aoki, T. & Narumiya, S. Prostaglandin E2-EP4 signaling persistently amplifies CD40-mediated induction of IL-23 p19 expression through canonical and non-canonical NF-κB pathways. Cell. Mol. Immunol. 13, 240–250 (2016).
Zhang, J. & Wang, J. H.-C. Production of PGE(2) increases in tendons subjected to repetitive mechanical loading and induces differentiation of tendon stem cells into non-tenocytes. J. Orthop. Res. 28, 198–203 (2010).
Cortes, A. et al. Association study of genes related to bone formation and resorption and the extent of radiographic change in ankylosing spondylitis. Ann. Rheum. Dis. 74, 1387–1393 (2015).
Maas, F. et al. Reduction in spinal radiographic progression in ankylosing spondylitis patients receiving prolonged treatment with tumor necrosis factor inhibitors. Arthritis Care Res. 69, 1011–1019 (2017).
van der Heijde, D. et al. Limited radiographic progression and sustained reductions in MRI inflammation in patients with axial spondyloarthritis: 4-year imaging outcomes from the RAPID-axSpA phase III randomised trial. Ann. Rheum. Dis. 77, 699–705 (2018).
Jung, J.-Y., Kim, M.-Y., Hong, Y. S., Park, S.-H. & Kang, K. Y. Trabecular bone loss contributes to radiographic spinal progression in patients with axial spondyloarthritis. Semin. Arthritis Rheum. 50, 827–833 (2020).
Author information
Authors and Affiliations
Contributions
All authors researched data for the article. D.M., R.T., M.A.B. and F.C. provided substantial contributions to discussions of content. All authors wrote the article. D.M., R.T., R.L., M.A.B. and F.C. reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information
Nature Reviews Rheumatology thanks R. Inman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Entheses
-
The sites at which ligaments and tendons attach to the bones.
- Epistatic interaction
-
Interaction among gene alleles at multiple locations that influence the phenotype.
- Ectopic lymphoid neogenesis
-
The formation of lymphoid structures in the target tissues of chronic inflammation.
- SKG mice
-
Mice with attenuated T cell receptor signalling that develop spontaneous inflammatory arthritis with extra-articular manifestations, including inflammatory bowel disease, under conventional conditions.
- Mechanostat
-
A cellular and molecular system that senses the mechanical strain exerted on bones.
- Paneth cells
-
Specialized epithelial cells located at the bottom of intestinal crypts that contribute to the maintenance of sterility in the crypts.
- Zonulin
-
A molecule that modulates the permeability of tight junctions between intestinal epithelial cells.
- Minicircle technology
-
The use of small circular DNA elements to induce the expression of genes in vivo or in vitro.
- TNFΔARE mice
-
Mice with a deletion of the AU-rich element (ARE) from the TNF gene; ARE controls the stability of the TNF mRNA; therefore these mice have increased production of TNF.
- Pyroptosis
-
An inflammatory form of lytic programmed cell death that occurs following inflammasome activation.
- Necroptosis
-
A form of inflammatory cell death similar to necrosis that is regulated in a caspase-dependent manner and that can be induced by extracellular stimuli such as TNF.
- TNF receptor complex I
-
A receptor complex of TNF that contains a death domain that mediates the induction of apoptosis and necroptosis.
- Linear ubiquitin assembly complex
-
A three-protein complex with ubiquitin ligase activity that forms ubiquitin chains linked to the first lysine and is involved in intracellular signalling.
- Procrustean
-
Forced classification into an arbitrary standard, deriving from the Procrustean bed ancient Greek myth.
Rights and permissions
About this article
Cite this article
Mauro, D., Thomas, R., Guggino, G. et al. Ankylosing spondylitis: an autoimmune or autoinflammatory disease?. Nat Rev Rheumatol 17, 387–404 (2021). https://doi.org/10.1038/s41584-021-00625-y
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41584-021-00625-y
This article is cited by
-
Regnase-1 regulates inflammation in T cells of ankylosing spondylitis through the TRAF6
Immunologic Research (2025)
-
Investigating the causal relationship between immune factors and ankylosing spondylitis: insights from a Mendelian Randomization study
Advances in Rheumatology (2024)
-
Efficacy and safety of gut microbiota-based therapies in autoimmune and rheumatic diseases: a systematic review and meta-analysis of 80 randomized controlled trials
BMC Medicine (2024)
-
No genetic causal association between periodontitis and ankylosing spondylitis: a bidirectional two-sample mendelian randomization analysis
BMC Medical Genomics (2024)
-
Hematological indices: potential markers of disease activity in ankylosing spondylitis patients treated with biological drugs
The Egyptian Journal of Internal Medicine (2024)