Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases

Abstract

Therapeutic glucocorticoids have been widely used in rheumatic diseases since they became available over 60 years ago. Despite the advent of more specific biologic therapies, a notable proportion of individuals with chronic rheumatic diseases continue to be treated with these drugs. Glucocorticoids are powerful, broad-spectrum anti-inflammatory agents, but their use is complicated by an equally broad range of adverse effects. The specific cellular mechanisms by which glucocorticoids have their therapeutic action have been difficult to identify, and attempts to develop more selective drugs on the basis of the action of glucocorticoids have proven difficult. The actions of glucocorticoids seem to be highly cell-type and context dependent. Despite emerging data on the effect of tissue-specific manipulation of glucocorticoid receptors in mouse models of inflammation, the cell types and intracellular targets of glucocorticoids in rheumatic diseases have not been fully identified. Although showing some signs of decline, the use of systemic glucocorticoids in rheumatology is likely to continue to be widespread, and careful consideration is required by rheumatologists to balance the beneficial effects and deleterious effects of these agents.

Key points

  • Therapeutic glucocorticoids are powerful, broad-spectrum anti-inflammatory agents that are limited by a wide range of adverse effects.

  • The specific mechanisms of action by which glucocorticoids mediate anti-inflammatory effects in rheumatic diseases are still unclear, hindering the development of novel therapeutic agents.

  • Approaches to the study of glucocorticoid actions have been complicated by the widespread use of animal tissues and transformed cell lines rather than human primary cells.

  • The development of novel glucocorticoids that ‘dissociate’ molecular transrepression from transactivation have proven difficult; however, one such dissociated glucocorticoid agonist is undergoing clinical trials in patients with inflammatory arthritis.

  • The use of genetically modified mice with altered glucocorticoid sensitivity in specific tissues and/or transcriptomic studies using primary human cells are promising approaches for defining cellular and molecular glucocorticoid targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Natural and synthetic glucocorticoids.
Fig. 2: Systemic and local metabolism and inactivation of circulating glucocorticoids.
Fig. 3: Glucocorticoid receptors.
Fig. 4: Molecular mechanisms of glucocorticoid receptor signalling.
Fig. 5: The deleterious actions of glucocorticoids in muscle and bone.

Similar content being viewed by others

References

  1. Hench, P. S. et al. The effect of a hormone of the adrenal cortex (17-hydroxy-11-dehydrocorticosterone; compound E) and of pituitary adrenocorticotropic hormone on rheumatoid arthritis. Proc. Staff Meet. Mayo Clin. 24, 181–197 (1949).

    CAS  PubMed  Google Scholar 

  2. Black, R. J. et al. Factors associated with oral glucocorticoid use in patients with rheumatoid arthritis: a drug use study from a prospective national biologics registry. Arthritis Res. Ther. 19, 253 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. van Staa, T. P. et al. Use of oral corticosteroids in the United Kingdom. QJM 93, 105–111 (2000).

    PubMed  Google Scholar 

  4. Overman, R. A., Yeh, J. Y. & Deal, C. L. Prevalence of oral glucocorticoid usage in the United States: a general population perspective. Arthritis Care Res. 65, 294–298 (2013).

    Google Scholar 

  5. Lillegraven, S. et al. Immunosuppressive treatment and the risk of diabetes in rheumatoid arthritis. PLoS One 14, e0210459 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Strehl, C. et al. Defining conditions where long-term glucocorticoid treatment has an acceptably low level of harm to facilitate implementation of existing recommendations: viewpoints from an EULAR task force. Ann. Rheum. Dis. 75, 952–957 (2016).

    CAS  PubMed  Google Scholar 

  7. van Staa, T. P., Leufkens, H. G., Abenhaim, L., Zhang, B. & Cooper, C. Use of oral corticosteroids and risk of fractures. J. Bone Miner. Res. 15, 993–1000 (2000).

    PubMed  Google Scholar 

  8. Hardy, R. S., Zhou, H., Seibel, M. J. & Cooper, M. S. Glucocorticoids and bone: consequences of endogenous and exogenous excess and replacement therapy. Endocr. Rev. 39, 519–548 (2018).

    PubMed  Google Scholar 

  9. Black, R. J. et al. A survey of glucocorticoid adverse effects and benefits in rheumatic diseases: the patient perspective. J. Clin. Rheumatol. 23, 416–420 (2017).

    PubMed  Google Scholar 

  10. Costello, R., Patel, R., Humphreys, J., McBeth, J. & Dixon, W. G. Patient perceptions of glucocorticoid side effects: a cross-sectional survey of users in an online health community. BMJ Open 7, e014603 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Cooper, M. S. & Stewart, P. M. Corticosteroid insufficiency in acutely ill patients. N. Engl. J. Med. 348, 727–734 (2003).

    CAS  PubMed  Google Scholar 

  12. Fuller, P. J., Lim-Tio, S. S. & Brennan, F. E. Specificity in mineralocorticoid versus glucocorticoid action. Kidney Int. 57, 1256–1264 (2000).

    CAS  PubMed  Google Scholar 

  13. Bledsoe, R. K. et al. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110, 93–105 (2002).

    CAS  PubMed  Google Scholar 

  14. Gomez-Sanchez, E. & Gomez-Sanchez, C. E. The multifaceted mineralocorticoid receptor. Compr. Physiol. 4, 965–994 (2014).

    PubMed  PubMed Central  Google Scholar 

  15. Hardy, R. S. et al. 11 beta-hydroxysteroid dehydrogenase type 1 regulates synovitis, joint destruction, and systemic bone loss in chronic polyarthritis. J. Autoimmun. 92, 104–113 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Coutinho, A. E. et al. 11β-hydroxysteroid dehydrogenase type 1, but not type 2, deficiency worsens acute inflammation and experimental arthritis in mice. Endocrinology 153, 234–240 (2012).

    CAS  PubMed  Google Scholar 

  17. Jones, I. A., Togashi, R., Wilson, M. L., Heckmann, N. & Vangsness, C. T. Jr. Intra-articular treatment options for knee osteoarthritis. Nat. Rev. Rheumatol. 15, 77–90 (2019).

    Google Scholar 

  18. Buttgereit, F. et al. Efficacy of modified-release versus standard prednisone to reduce duration of morning stiffness of the joints in rheumatoid arthritis (CAPRA-1): a double-blind, randomised controlled trial. Lancet 371, 205–214 (2008).

    CAS  PubMed  Google Scholar 

  19. Buttgereit, F. et al. Low-dose prednisone chronotherapy for rheumatoid arthritis: a randomised clinical trial (CAPRA-2). Ann. Rheum. Dis. 72, 204–210 (2013).

    CAS  PubMed  Google Scholar 

  20. Wu, T. et al. Timing of glucocorticoid administration determines severity of lipid metabolism and behavioral effects in rats. Chronobiol. Int. 34, 78–92 (2017).

    CAS  PubMed  Google Scholar 

  21. Caratti, G. et al. REVERBa couples the circadian clock to hepatic glucocorticoid action. J. Clin. Invest. 128, 4454–4471 (2018).

    PubMed  PubMed Central  Google Scholar 

  22. Kalafatakis, K. et al. Ultradian rhythmicity of plasma cortisol is necessary for normal emotional and cognitive responses in man. Proc. Natl Acad. Sci. USA 115, E4091–E4100 (2018).

    CAS  PubMed  Google Scholar 

  23. Luhder, F. & Reichardt, H. M. Novel drug delivery systems tailored for improved administration of glucocorticoids. Int. J. Mol. Sci. 18, E1836 (2017).

    PubMed  Google Scholar 

  24. Conaghan, P. G. et al. Brief report: a phase IIB trial of a novel extended-release microsphere formulation of triamcinolone acetonide for intraarticular injection in knee osteoarthritis. Arthritis Rheumatol. 70, 204–211 (2018).

    CAS  PubMed  Google Scholar 

  25. Joshi, N. et al. Towards an arthritis flare-responsive drug delivery system. Nat. Commun. 9, 1275 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Cain, D. W. & Cidlowski, J. A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 17, 233–247 (2017).

    CAS  PubMed  Google Scholar 

  27. Oakley, R. H., Webster, J. C., Jewell, C. M., Sar, M. & Cidlowski, J. A. Immunocytochemical analysis of the glucocorticoid receptor alpha isoform (GRα) using GRα-specific antibody. Steroids 64, 742–751 (1999).

    CAS  PubMed  Google Scholar 

  28. Kino, T., Su, Y. A. & Chrousos, G. P. Human glucocorticoid receptor isoform β: recent understanding of its potential implications in physiology and pathophysiology. Cell Mol. Life Sci. 66, 3435–3448 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Derijk, R. H. et al. A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor β-isoform mRNA is associated with rheumatoid arthritis. J. Rheumatol. 28, 2383–2388 (2001).

    CAS  PubMed  Google Scholar 

  30. Oakley, R. H. et al. Glucocorticoid receptor isoform-specific regulation of development, circadian rhythm, and inflammation in mice. FASEB J. 32, 5258–5271 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cao, Y. et al. Glucocorticoid receptor translational isoforms underlie maturational stage-specific glucocorticoid sensitivities of dendritic cells in mice and humans. Blood 121, 1553–1562 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hua, G., Paulen, L. & Chambon, P. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc. Natl Acad. Sci. USA 113, E626–E634 (2016).

    CAS  PubMed  Google Scholar 

  33. Wilkinson, L., Verhoog, N. & Louw, A. Novel role for receptor dimerization in post-translational processing and turnover of the GRα. Sci. Rep. 8, 14266 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Kino, T. & Chrousos, G. P. Acetylation-mediated epigenetic regulation of glucocorticoid receptor activity: circadian rhythm-associated alterations of glucocorticoid actions in target tissues. Mol. Cell. Endocrinol. 336, 23–30 (2011).

    CAS  PubMed  Google Scholar 

  35. Nahar, J. et al. Rapid nongenomic glucocorticoid actions in male mouse hypothalamic neuroendocrine cells are dependent on the nuclear glucocorticoid receptor. Endocrinology 156, 2831–2842 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Deng, Q. et al. Rapid glucocorticoid feedback inhibition of acth secretion involves ligand-dependent membrane association of glucocorticoid receptors. Endocrinology 156, 3215–3227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cooper, M. S., Zhou, H. & Seibel, M. J. Selective glucocorticoid receptor agonists: glucocorticoid therapy with no regrets? J. Bone Miner. Res. 27, 2238–2241 (2012).

    CAS  PubMed  Google Scholar 

  38. Abraham, S. M. et al. Antiinflammatory effects of dexamethasone are partly dependent on induction of dual specificity phosphatase 1. J. Exp. Med. 203, 1883–1889 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Vettorazzi, S. et al. Glucocorticoids limit acute lung inflammation in concert with inflammatory stimuli by induction of SphK1. Nat. Commun. 6, 7796 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang, Y. H. et al. Modulation of inflammation and response to dexamethasone by annexin 1 in antigen-induced arthritis. Arthritis Rheum. 50, 976–984 (2004).

    CAS  PubMed  Google Scholar 

  41. Reichardt, H. M. et al. DNA binding of the glucocorticoid receptor is not essential for survival. Cell 93, 531–541 (1998).

    CAS  PubMed  Google Scholar 

  42. Kleiman, A. et al. Glucocorticoid receptor dimerization is required for survival in septic shock via suppression of interleukin-1 in macrophages. FASEB J. 26, 722–729 (2012).

    CAS  PubMed  Google Scholar 

  43. Rauch, A. et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 11, 517–531 (2010).

    CAS  PubMed  Google Scholar 

  44. Sacta, M. A., Chinenov, Y. & Rogatsky, I. Glucocorticoid signaling: an update from a genomic perspective. Annu. Rev. Physiol. 78, 155–180 (2016).

    CAS  PubMed  Google Scholar 

  45. Lim, H. W. et al. Genomic redistribution of GR monomers and dimers mediates transcriptional response to exogenous glucocorticoid in vivo. Genome Res. 25, 836–844 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Love, M. I. et al. Role of the chromatin landscape and sequence in determining cell type-specific genomic glucocorticoid receptor binding and gene regulation. Nucleic Acids Res. 45, 1805–1819 (2017).

    PubMed  Google Scholar 

  47. Wang, C. et al. Extensive epigenomic integration of the glucocorticoid response in primary human monocytes and in vitro derived macrophages. Sci. Rep. 9, 2772 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Franco, L. M. et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J. Exp. Med. 216, 384–406 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Galon, J. et al. Gene profiling reveals unknown enhancing and suppressive actions of glucocorticoids on immune cells. FASEB J. 16, 61–71 (2002).

    CAS  PubMed  Google Scholar 

  50. Clayton, S. A., Jones, S. W., Kurowska-Stolarska, M. & Clark, A. R. The role of microRNAs in glucocorticoid action. J. Biol. Chem. 293, 1865–1874 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Whirledge, S. & DeFranco, D. B. Glucocorticoid signaling in health and disease: insights from tissue-specific GR knockout mice. Endocrinology 159, 46–64 (2018).

    CAS  PubMed  Google Scholar 

  52. Baschant, U. et al. Glucocorticoid therapy of antigen-induced arthritis depends on the dimerized glucocorticoid receptor in T cells. Proc. Natl Acad. Sci. USA 108, 19317–19322 (2011).

    CAS  PubMed  Google Scholar 

  53. Koenen, M. et al. Glucocorticoid receptor in stromal cells is essential for glucocorticoid-mediated suppression of inflammation in arthritis. Ann. Rheum. Dis. 77, 1610–1618 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Tuckermann, J. P. et al. Macrophages and neutrophils are the targets for immune suppression by glucocorticoids in contact allergy. J. Clin. Invest. 117, 1381–1390 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tu, J. et al. Endogenous glucocorticoid signaling in chondrocytes attenuates joint inflammation and damage. FASEB J. 32, 478–487 (2018).

    CAS  PubMed  Google Scholar 

  56. Buttgereit, F. et al. Transgenic disruption of glucocorticoid signaling in mature osteoblasts and osteocytes attenuates K/B×N mouse serum-induced arthritis in vivo. Arthritis Rheum. 60, 1998–2007 (2009).

    CAS  PubMed  Google Scholar 

  57. Frank, M. G., Thompson, B. M., Watkins, L. R. & Maier, S. F. Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav. Immun. 26, 337–345 (2012).

    CAS  PubMed  Google Scholar 

  58. Briot, K., Geusens, P., Em Bultink, I., Lems, W. F. & Roux, C. Inflammatory diseases and bone fragility. Osteoporos. Int. 28, 3301–3314 (2017).

    CAS  PubMed  Google Scholar 

  59. Weinstein, R. S., Jilka, R. L., Parfitt, A. M. & Manolagas, S. C. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J. Clin. Invest 102, 274–282 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Piemontese, M., Xiong, J., Fujiwara, Y., Thostenson, J. D. & O’Brien, C. A. Cortical bone loss caused by glucocorticoid excess requires RANKL production by osteocytes and is associated with reduced OPG expression in mice. Am. J. Physiol. Endocrinol. Metab. 311, E587–E593 (2016).

    PubMed  PubMed Central  Google Scholar 

  61. Lofberg, E. et al. Effects of high doses of glucocorticoids on free amino acids, ribosomes and protein turnover in human muscle. Eur. J. Clin. Invest. 32, 345–353 (2002).

    CAS  PubMed  Google Scholar 

  62. Wang, R., Jiao, H., Zhao, J., Wang, X. & Lin, H. Glucocorticoids enhance muscle proteolysis through a myostatin-dependent pathway at the early stage. PLoS One 11, e0156225 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. Schakman, O. et al. Insulin-like growth factor-I gene transfer by electroporation prevents skeletal muscle atrophy in glucocorticoid-treated rats. Endocrinology 146, 1789–1797 (2005).

    CAS  PubMed  Google Scholar 

  64. Lemmey, A. B. et al. Muscle loss following a single high-dose intramuscular injection of corticosteroids to treat disease flare in patients with rheumatoid arthritis. Eur. J. Rheumatol. 5, 160–164 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Hilton-Jones, D. Diagnosis and treatment of inflammatory muscle diseases. J. Neurol. Neurosurg. Psychiatry 74, ii25–ii31 (2003).

    PubMed  PubMed Central  Google Scholar 

  66. Tomas, F. M., Munro, H. N. & Young, V. R. Effect of glucocorticoid administration on the rate of muscle protein breakdown in vivo in rats, as measured by urinary excretion of Nτ-methylhistidine. Biochem. J. 178, 139–146 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Wang, H., Kubica, N., Ellisen, L. W., Jefferson, L. S. & Kimball, S. R. Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J. Biol. Chem. 281, 39128–39134 (2006).

    CAS  PubMed  Google Scholar 

  68. Hu, Z., Wang, H., Lee, I. H., Du, J. & Mitch, W. E. Endogenous glucocorticoids and impaired insulin signaling are both required to stimulate muscle wasting under pathophysiological conditions in mice. J. Clin. Invest. 119, 3059–3069 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Bodine, S. C. et al. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294, 1704–1708 (2001).

    CAS  PubMed  Google Scholar 

  70. Qin, W. et al. Identification of functional glucocorticoid response elements in the mouse foxo1 promoter. Biochem. Biophys. Res. Commun. 450, 979–983 (2014).

    CAS  PubMed  Google Scholar 

  71. Cho, J. E., Fournier, M., Da, X. Y. & Lewis, M. I. Time course expression of Foxo transcription factors in skeletal muscle following corticosteroid administration. J. Appl. Physiol. 108, 137–145 (2010).

    CAS  PubMed  Google Scholar 

  72. Peckett, A. J., Wright, D. C. & Riddell, M. C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500–1510 (2011).

    CAS  PubMed  Google Scholar 

  73. Manolopoulos, K. N., O’Reilly, M. W., Bujalska, I. J., Tomlinson, J. W. & Arlt, W. Acute hypercortisolemia exerts depot-specific effects on abdominal and femoral adipose tissue function. J. Clin. Endocrinol. Metab. 102, 1091–1101 (2017).

    PubMed  PubMed Central  Google Scholar 

  74. Brennan-Speranza, T. C. et al. Osteoblasts mediate the adverse effects of glucocorticoids on fuel metabolism. J. Clin. Invest. 122, 4172–4189 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lee, N. K. et al. Endocrine regulation of energy metabolism by the skeleton. Cell 130, 456–469 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Steinbuch, M., Youket, T. E. & Cohen, S. Oral glucocorticoid use is associated with an increased risk of fracture. Osteoporos. Int. 15, 323–328 (2004).

    CAS  PubMed  Google Scholar 

  77. Desmet, S. J. & De Bosscher, K. Glucocorticoid receptors: finding the middle ground. J. Clin. Invest. 127, 1136–1145 (2017).

    PubMed  PubMed Central  Google Scholar 

  78. Safy, M. et al. Efficacy and safety of selective glucocorticoid receptor modulators in comparison to glucocorticoids in arthritis, a systematic review. PLoS One 12, e0188810 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Stock, T., Fleishaker, D., Wang, X., Mukherjee, A. & Mebus, C. Improved disease activity with fosdagrocorat (PF-04171327), a partial agonist of the glucocorticoid receptor, in patients with rheumatoid arthritis: a phase 2 randomized study. Int. J. Rheum. Dis. 20, 960–970 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Buttgereit et al. Fosdagrocorat (PF-04171327) versus prednisone or placebo in rheumatoid arthritis: a randomised, double-blind, multicentre, phase IIb study. RMD Open 5, e000889. eCollection 2019 (2019).

    PubMed  PubMed Central  Google Scholar 

  81. Borresen, S. W. et al. Adrenal insufficiency is seen in more than one-third of patients during ongoing low-dose prednisolone treatment for rheumatoid arthritis. Eur. J. Endocrinol. 177, 287–295 (2017).

    CAS  PubMed  Google Scholar 

  82. Philips, A. et al. Antagonism between Nur77 and glucocorticoid receptor for control of transcription. Mol. Cell. Biol. 17, 5952–5959 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Yamamori, E. et al. Molecular mechanisms for corticotropin-releasing hormone gene repression by glucocorticoid in BE(2)C neuronal cell line. Mol. Cell. Endocrinol. 264, 142–148 (2007).

    CAS  PubMed  Google Scholar 

  84. Newton, R., Shah, S., Altonsy, M. O. & Gerber, A. N. Glucocorticoid and cytokine crosstalk: feedback, feedforward, and co-regulatory interactions determine repression or resistance. J. Biol. Chem. 292, 7163–7172 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ito, K. et al. Decreased histone deacetylase activity in chronic obstructive pulmonary disease. N. Engl. J. Med. 352, 1967–1976 (2005).

    CAS  PubMed  Google Scholar 

  86. Devereux, G. et al. Effect of theophylline as adjunct to inhaled corticosteroids on exacerbations in patients with copd: a randomized clinical trial. JAMA 320, 1548–1559 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Liberman, A. C., Druker, J., Perone, M. J. & Arzt, E. Glucocorticoids in the regulation of transcription factors that control cytokine synthesis. Cytokine Growth Factor Rev. 18, 45–56 (2007).

    CAS  PubMed  Google Scholar 

  88. Franchimont, D. et al. Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J. Immunol. 164, 1768–1774 (2000).

    CAS  PubMed  Google Scholar 

  89. Ramirez, F., Fowell, D. J., Puklavec, M., Simmonds, S. & Mason, D. Glucocorticoids promote a Th2 cytokine response by CD4+ T cells in vitro. J. Immunol. 156, 2406–2412 (1996).

    CAS  PubMed  Google Scholar 

  90. Schleimer, R. P., Jacques, A., Shin, H. S., Lichtenstein, L. M. & Plaut, M. Inhibition of T cell-mediated cytotoxicity by anti-inflammatory steroids. J. Immunol. 132, 266–271 (1984).

    CAS  PubMed  Google Scholar 

  91. Migliorati, G. et al. Glucocorticoid-induced apoptosis of natural killer cells and cytotoxic T lymphocytes. Pharmacol. Res. 26, 26–27 (1992).

    CAS  PubMed  Google Scholar 

  92. Cupps, T. R., Gerrard, T. L., Falkoff, R. J., Whalen, G. & Fauci, A. S. Effects of in vitro corticosteroids on B cell activation, proliferation, and differentiation. J. Clin. Invest. 75, 754–761 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Lill-Elghanian, D., Schwartz, K., King, L. & Fraker, P. Glucocorticoid-induced apoptosis in early B cells from human bone marrow. Exp. Biol. Med. 227, 763–770 (2002).

    CAS  Google Scholar 

  94. Zhou, J. et al. Glucocorticoids inhibit degranulation of mast cells in allergic asthma via nongenomic mechanism. Allergy 63, 1177–1185 (2008).

    CAS  PubMed  Google Scholar 

  95. Franchimont, D. Overview of the actions of glucocorticoids on the immune response: a good model to characterize new pathways of immunosuppression for new treatment strategies. Ann. N. Y. Acad. Sci. 1024, 124–137 (2004).

    CAS  PubMed  Google Scholar 

  96. Zhou, J. Y. et al. Corticosterone exerts immunostimulatory effects on macrophages via endoplasmic reticulum stress. Br. J. Surg. 97, 281–293 (2010).

    CAS  PubMed  Google Scholar 

  97. Barczyk, K. et al. Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood 116, 446–455 (2010).

    CAS  PubMed  Google Scholar 

  98. McColl, A. et al. Glucocorticoids induce protein S-dependent phagocytosis of apoptotic neutrophils by human macrophages. J. Immunol. 183, 2167–2175 (2009).

    CAS  PubMed  Google Scholar 

  99. Cavalcanti, D. M. et al. Endogenous glucocorticoids control neutrophil mobilization from bone marrow to blood and tissues in non-inflammatory conditions. Br. J. Pharmacol. 152, 1291–1300 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Filep, J. G., Delalandre, A., Payette, Y. & Foldes-Filep, E. Glucocorticoid receptor regulates expression of L-selectin and CD11/CD18 on human neutrophils. Circulation 96, 295–301 (1997).

    CAS  PubMed  Google Scholar 

  101. Mogensen, T. H., Berg, R. S., Paludan, S. R. & Ostergaard, L. Mechanisms of dexamethasone-mediated inhibition of Toll-like receptor signaling induced by Neisseria meningitidis and Streptococcus pneumoniae. Infect. Immun. 76, 189–197 (2008).

    CAS  PubMed  Google Scholar 

  102. Sivertson, K. L., Seeds, M. C., Long, D. L., Peachman, K. K. & Bass, D. A. The differential effect of dexamethasone on granulocyte apoptosis involves stabilization of Mcl-1L in neutrophils but not in eosinophils. Cell. Immunol. 246, 34–45 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Khoury, P. et al. Glucocorticoid-induced eosinopenia in humans can be linked to early transcriptional events. Allergy 73, 2076–2079 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Chen, F. et al. Glucocorticoid induced osteoblast apoptosis by increasing E4BP4 expression via up-regulation of Bim. Calcif. Tissue Int. 94, 640–647 (2014).

    CAS  PubMed  Google Scholar 

  105. Swanson, C., Lorentzon, M., Conaway, H. H. & Lerner, U. H. Glucocorticoid regulation of osteoclast differentiation and expression of receptor activator of nuclear factor-κB (NF-κB) ligand, osteoprotegerin, and receptor activator of NF-κB in mouse calvarial bones. Endocrinology 147, 3613–3622 (2006).

    CAS  PubMed  Google Scholar 

  106. Humphrey, E. L., Williams, J. H., Davie, M. W. & Marshall, M. J. Effects of dissociated glucocorticoids on OPG and RANKL in osteoblastic cells. Bone 38, 652–661 (2006).

    CAS  PubMed  Google Scholar 

  107. Huang, Y., Cai, G. Q., Peng, J. P. & Shen, C. Glucocorticoids induce apoptosis and matrix metalloproteinase-13 expression in chondrocytes through the NOX4/ROS/p38 MAPK pathway. J. Steroid Biochem. Mol. Biol. 181, 52–62 (2018).

    CAS  PubMed  Google Scholar 

  108. Braun, T. P. & Marks, D. L. The regulation of muscle mass by endogenous glucocorticoids. Front. Physiol. 6, 12 (2015).

    PubMed  PubMed Central  Google Scholar 

  109. Troncoso, R. et al. Dexamethasone-induced autophagy mediates muscle atrophy through mitochondrial clearance. Cell Cycle 13, 2281–2295 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hardy, R. S. et al. Differential expression, function and response to inflammatory stimuli of 11β-hydroxysteroid dehydrogenase type 1 in human fibroblasts: a mechanism for tissue-specific regulation of inflammation. Arthritis Res. Ther. 8, R108 (2006).

    PubMed  PubMed Central  Google Scholar 

  111. Durmus, M. et al. The effects of single-dose dexamethasone on wound healing in rats. Anesth. Analg. 97, 1377–1380 (2003).

    CAS  PubMed  Google Scholar 

  112. Pitzalis, C. et al. Corticosteroids inhibit lymphocyte binding to endothelium and intercellular adhesion: an additional mechanism for their anti-inflammatory and immunosuppressive effect. J. Immunol. 158, 5007–5016 (1997).

    CAS  PubMed  Google Scholar 

  113. Pitzalis, C., Pipitone, N. & Perretti, M. Regulation of leukocyte-endothelial interactions by glucocorticoids. Ann. N. Y. Acad. Sci. 966, 108–118 (2002).

    CAS  PubMed  Google Scholar 

  114. Elftman, M. D., Norbury, C. C., Bonneau, R. H. & Truckenmiller, M. E. Corticosterone impairs dendritic cell maturation and function. Immunology 122, 279–290 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Versus Arthritis Research into Inflammatory Arthritis Centre collaboration at the University of Birmingham.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mark S. Cooper.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Rheumatology thanks J. Tuckermann, L. Franco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardy, R.S., Raza, K. & Cooper, M.S. Therapeutic glucocorticoids: mechanisms of actions in rheumatic diseases. Nat Rev Rheumatol 16, 133–144 (2020). https://doi.org/10.1038/s41584-020-0371-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41584-020-0371-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing