Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emerging importance of satellite glia in nervous system function and dysfunction

An Author Correction to this article was published on 22 October 2020

This article has been updated

Abstract

Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC–SGC and neuron–SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location and morphology of SGCs.
Fig. 2: Mechanisms of signal spread in sensory ganglia and their possible contribution to chronic pain.
Fig. 3: Injury-induced changes in neuron–SGC bidirectional communications.
Fig. 4: Proposed sequence of events connecting nerve injury in four different pain models to SGC activation and neuronal hyperexcitability.

Similar content being viewed by others

Change history

  • 22 October 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Hanani, M. Satellite glial cells in sensory ganglia: from form to function. Brain Res. Brain Res. Rev. 48, 457–476 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, L. Y., Gu, Y. & Chen, Y. Communication between neuronal somata and satellite glial cells in sensory ganglia. Glia 61, 1571–1581 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jasmin, L., Vit, J. P., Bhargava, A. & Ohara, P. T. Can satellite glial cells be therapeutic targets for pain control? Neuron Glia Biol. 6, 63–71 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pannese, E. Biology and pathology of perineuronal satellite cells in sensory ganglia. Adv. Anat. Embryol. Cell Biol. 226, 1–63 (2018).

    Article  Google Scholar 

  5. Rozanski, G. M., Li, Q. & Stanley, E. F. Transglial transmission at the dorsal root ganglion sandwich synapse: glial cell to postsynaptic neuron communication. Eur. J. Neurosci. 237, 1221–1228 (2013).

    Article  Google Scholar 

  6. Bushong, E. A., Martone, M. E., Jones, Y. Z. & Ellisman, M. H. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. Neuroscience 22, 183–192 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ji, R. R., Donnelly, C. R. & Nedergaard, M. Astrocytes in chronic pain and itch. Nat. Rev. Neurosci. 20, 667–685 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liddelow, S. A. & Barres, B. A. Reactive astrocytes: production, function, and therapeutic potential. Immunity 46, 957–967 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Verkhratsky, A. & Nedergaard, M. Physiology of astroglia. Physiol. Rev. 98, 239–389 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Burnstock, G. Physiology and pathophysiology of purinergic neurotransmission. Physiol. Rev. 87, 659–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Fields, R. D. & Burnstock, G. Purinergic signalling in neuron–glia interactions. Nat. Rev. Neurosci. 7, 423–436 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kettenmann, H. & Zorec, R. in Neuroglia 4th edn. (eds Kettenmann, H. & Ransom, B. R.) 197–211 (Oxford Univ. Press, 2013).

  13. Watkins, L. R. & Maier, S. F. GLIA: a novel drug discovery target for clinical pain. Nat. Rev. Drug. Discov. 2, 973–985 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Grace, P. M., Hutchinson, M. R., Maier, S. F. & Watkins, L. R. Pathological pain and the neuroimmune interface. Nat. Rev. Immunol. 14, 217–231 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inoue, K. & Tsuda, M. Microglia in neuropathic pain: cellular and molecular mechanisms and therapeutic potential. Nat. Rev. Neurosci. 19, 138–152 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, G., Zhang, Y. Q., Qadri, Y. J., Serhan, C. N. & Ji, R. R. Microglia in pain: detrimental and protective roles in pathogenesis and resolution of pain. Neuron 100, 1292–1311 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Scadding, J. W. & Koltzenburg, M. in Wall and Melzack’s Textbook of Pain 6th edn (eds McMahon, S. B., Koltzenburg, M. I., Tracey, I. D. & Turk, D.) 926–951 (Elsevier Churchill Livingstone, 2013).

  18. Devor, M. in Wall and Melzack’s Textbook of Pain 6th edn (eds McMahon, S. B., Koltzenburg, M. I., Tracey, I. D. & Turk, D.) 867–888 (Elsevier Churchill Livingstone, 2013).

  19. Huang, T. Y., Belzer, V. & Hanani, M. Gap junctions in dorsal root ganglia: possible contribution to visceral pain. Eur. J. Pain. 14, 49.e1–49.e11 (2010).

    Article  CAS  Google Scholar 

  20. Guha, D. & Shamji, M. F. The dorsal root ganglion in the pathogenesis of chronic neuropathic pain. Neurosurgery 63, 118–126 (2016).

    Article  PubMed  Google Scholar 

  21. Vaso, A. et al. Peripheral nervous system origin of phantom limb pain. Pain 155, 1384–1391 (2014).

    Article  PubMed  Google Scholar 

  22. Stephenson, J. L. & Byers, M. R. GFAP immunoreactivity in trigeminal ganglion satellite cells after tooth injury in rats. Exp. Neurol. 131, 11–22 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Warwick, R. A. & Hanani, M. The contribution of satellite glial cells to chemotherapy-induced neuropathic pain. Eur. J. Pain. 17, 571–580 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Woodham, P., Anderson, P. N., Nadim, W. & Turmaine, M. Satellite cells surrounding axotomized rat dorsal root ganglion cells increase expression of GFAP-like protein. Neurosci. Lett. 98, 8–12 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Hanani, M., Huang, T. Y., Cherkas, P. S., Ledda, M. & Pannese, E. Glial cell plasticity in sensory ganglia induced by nerve damage. Neuroscience 114, 279–283 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Ohara, P. T., Vit, J. P., Bhargava, A. & Jasmin, L. Evidence for a role of connexin 43 in trigeminal pain using RNA interference in vivo. J. Neurophysiol. 100, 3064–3073 (2008). This paper shows that Cx43 expression increases in SGCs in a pain model, and that blocking this expression reduces pain behaviour.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blum, E., Procacci, P., Conte, V. & Hanani, M. Systemic inflammation alters satellite glial cell function and structure. A possible contribution to pain. Neuroscience 274, 209–217 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Vit, J. P., Ohara, P. T., Bhargava, A., Kelley, K. & Jasmin, L. Silencing the Kir4.1 potassium channel subunit in satellite glial cells of the rat trigeminal ganglion results in pain-like behavior in the absence of nerve injury. J. Neurosci. 28, 4161–4171 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takeda, M., Takahashi, M., Nasu, M. & Matsumoto, S. Peripheral inflammation suppresses inward rectifying potassium currents of satellite glial cells in the trigeminal ganglia. Pain 152, 2147–2156 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Tang, X., Schmidt, T. M., Perez-Leighton, C. E. & Kofuji, P. Inwardly rectifying potassium channel Kir4.1 is responsible for the native inward potassium conductance of satellite glial cells in sensory ganglia. Neuroscience 166, 397–407 (2010). Together with Vit et al. (2008) and Takeda et al. (2011), this study reports that K + channel Kir4.1 expression increases in SGCs following nerve damage, which can lead to neuronal hyperexcitability.

    Article  CAS  PubMed  Google Scholar 

  31. Kushnir, R., Cherkas, P. S. & Hanani, M. Peripheral inflammation upregulates P2X receptor expression in satellite glial cells of mouse trigeminal ganglia: a calcium imaging study. Neuropharmacology 61, 739–746 (2011). This paper describes an increased sensitivity of SGCs to ATP in two pain models in mice.

    Article  CAS  PubMed  Google Scholar 

  32. Dubový, P., Klusáková, I., Svízenská, I. & Brázda, V. Satellite glial cells express IL-6 and corresponding signal-transducing receptors in the dorsal root ganglia of rat neuropathic pain model. Neuron Glia Biol. 6, 73–83 (2010).

    Article  PubMed  Google Scholar 

  33. Souza, G. R. et al. Fractalkine mediates inflammatory pain through activation of satellite glial cells. Proc. Natl Acad. Sci. USA 110, 11193–11198 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Afroz, S. et al. CGRP induces differential regulation of cytokines from satellite glial cells in trigeminal ganglia and orofacial nociception. Int. J. Mol. Sci. 20, 711 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  35. Mitterreiter, J. G. et al. Satellite glial cells in human trigeminal ganglia have a broad expression of functional Toll-like receptors. Eur. J. Immunol. 47, 1181–1187 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Takeda, M., Takahashi, M. & Matsumoto, S. Contribution of the activation of satellite glia in sensory ganglia to pathological pain. Neurosci. Biobehav. Rev. 33, 784–792 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Cherkas, P. S. et al. The effects of axotomy on neurons and satellite glial cells in mouse trigeminal ganglion. Pain 110, 290–298 (2004).

    Article  PubMed  Google Scholar 

  38. Cui, Y. et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression. Nature 554, 323–327 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Manteniotis, S. et al. Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in trigeminal ganglia. PLoS ONE 8, e79523 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Procacci, P., Magnaghi, V. & Pannese, E. Perineuronal satellite cells in mouse spinal ganglia express the gap junction protein connexin 43 throughout life with decline in old age. Brain Res. Bull. 75, 562–569 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Lee-Kubli, C. A. et al. Analysis of the behavioral, cellular and molecular characteristics of pain in severe rodent spinal cord injury. Exp. Neurol. 278, 91–104 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Kaji, K. et al. Connexin 43 contributes to ectopic orofacial pain following inferior alveolar nerve injury. Mol. Pain. 12, 1–12 (2016).

    Article  CAS  Google Scholar 

  43. Komiya, H. et al. Connexin 43 expression in satellite glial cells contributes to ectopic tooth-pulp pain. J. Oral. Sci. 60, 493–499 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, Y. S. et al. Coupled activation of primary sensory neurons contributes to chronic pain. Neuron 91, 1085–1096 (2016). This first study of calcium imaging in sensory neurons in live mice describes the role of the SGC gap junctions in increasing neuronal interactions and pain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Spray, D. C. & Hanani, M. Gap junctions, pannexins and pain. Neurosci. Lett. 695, 46–52 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Garrett, F. G. & Durham, P. L. Differential expression of connexins in trigeminal ganglion neurons and satellite glial cells in response to chronic or acute joint inflammation. Neuron Glia Biol. 4, 295–306 (2008).

    Article  PubMed  Google Scholar 

  47. Pannese, E., Ledda, M., Cherkas, P. S., Huang, T. Y. & Hanani, M. Satellite cell reactions to axon injury of sensory ganglion neurons: increase in number of gap junctions and formation of bridges connecting previously separate perineuronal sheaths. Anat. Embryol. 206, 337–347 (2003).

    Article  CAS  Google Scholar 

  48. Huang, T. Y. & Hanani, M. Morphological and electrophysiological changes in mouse dorsal root ganglia after partial colonic obstruction. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G670–G678 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Song, D. D., Li, Y., Tang, D., Huang, L. Y. & Yuan, Y. Z. Neuron–glial communication mediated by TNF-α and glial activation in dorsal root ganglia in visceral inflammatory hypersensitivity. Am. J. Physiol. Gastrointest. Liver Physiol. 306, G788–G795 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Dublin, P. & Hanani, M. Satellite glial cells in sensory ganglia: their possible contribution to inflammatory pain. Brain Behav. Immun. 21, 592–598 (2007). This paper provides evidence that blocking the increased SGC coupling can reduce pain behaviour in mice.

    Article  CAS  PubMed  Google Scholar 

  51. Ledda, M., Blum, E., De Palo, S. & Hanani, M. Augmentation in gap junction-mediated cell coupling in dorsal root ganglia following sciatic nerve neuritis in the mouse. Neuroscience 164, 1538–1545 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Jin, Y. Z. et al. Connexin 43 contributes to temporomandibular joint inflammation induced-hypernociception via sodium channel 1.7 in trigeminal ganglion. Neurosci. Lett. 707, 134301 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Spray, D. C. et al. Gap junction mediated signaling between satellite glia and neurons in trigeminal ganglia. Glia 67, 791–801 (2019). This study uses dual whole-cell voltage clamp methodology to quantify gap junction-mediated coupling between SGCs and neurons in dissociated trigeminal ganglion cultures.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Durham, P. L. & Garrett, F. G. Neurological mechanisms of migraine: potential of the gap-junction modulator tonabersat in prevention of migraine. Cephalalgia 29, 1–6 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hanstein, R. et al. Focal inflammation causes carbenoxolone-sensitive tactile hypersensitivity in mice. Open. Pain. J. 3, 123–133 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lemes, J. B. P. et al. Participation of satellite glial cells of the dorsal root ganglia in acute nociception. Neurosci. Lett. 676, 8–12 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Sosinsky, G. et al. Pannexin channels are not gap junction hemichannels. Channels 5, 193–197 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dahl, G., Qiu, F. & Wang, J. The bizarre pharmacology of the ATP release channel pannexin1. Neuropharmacology 75, 583–593 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Zhang, Y., Laumet, G., Chen, S. R., Hittelman, W. N. & Pan, H. L. Pannexin-1 up-regulation in the dorsal root ganglion contributes to neuropathic pain development. J. Biol. Chem. 290, 14647–14655 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hanstein, R., Hanani, M., Scemes, E. & Spray, D. C. Glial pannexin1 contributes to tactile hypersensitivity in a mouse model of orofacial pain. Sci. Rep. 6, 38266 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Feldman-Goriachnik, R., Belzer, V. & Hanani, M. Systemic inflammation activates satellite glial cells in the mouse nodose ganglion and alters their functions. Glia 63, 2121–2132 (2015).

    Article  PubMed  Google Scholar 

  62. Magni, G., Riccio, D. & Ceruti, S. Tackling chronic pain and inflammation through the purinergic system. Curr. Med. Chem. 25, 3830–3865 (2018). This paper summarizes purinergic interactions between neurons and glia, with the emphasis on sensory ganglia.

    Article  CAS  PubMed  Google Scholar 

  63. Braun, N. et al. Association of the ecto-ATPase NTPDase2 with glial cells of the peripheral nervous system. Glia 45, 124–132 (2004).

    Article  PubMed  Google Scholar 

  64. Weick, M. et al. P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience 120, 969–977 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Ceruti, S., Fumagalli, M., Villa, G., Verderio, C. & Abbracchio, M. P. Purinoceptor-mediated calcium signaling in primary neuron-glia trigeminal cultures. Cell Calcium 43, 576–590 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Suadicani, S. O. et al. Bidirectional calcium signaling between satellite glial cells and neurons in cultured mouse trigeminal ganglia. Neuron Glia Biol. 6, 43–51 (2010).

    Article  PubMed  Google Scholar 

  67. Warwick, R. A. & Hanani, M. Involvement of aberrant calcium signalling in herpetic neuralgia. Exp. Neurol. 277, 10–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  68. Zhang, X., Chen, Y., Wang, C. & Huang, L. Y. Neuronal somatic ATP release triggers neuron–satellite glial cell communication in dorsal root ganglia. Proc. Natl Acad. Sci. USA 104, 9864–9869 (2007). This is the first report on the release of ATP from sensory neurons, which acts on P2X7 receptors in SGCs and induces them to release TNF, which in turn increases neuronal excitability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xu, G. Y., Shenoy, M., Winston, J. H., Mittal, S. & Pasricha, P. J. P2X receptor-mediated visceral hyperalgesia in a rat model of chronic visceral hypersensitivity. Gut 57, 1230–1237 (2008).

    Article  CAS  PubMed  Google Scholar 

  70. Chessell, I. P. et al. Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114, 386–396 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Zhou, J., Chung, K. & Chung, J. M. Development of purinergic sensitivity in sensory neurons after peripheral nerve injury in the rat. Brain Res. 915, 161–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  72. Eftekhari, S. et al. Differential distribution of calcitonin gene-related peptide and its receptor components in the human trigeminal ganglion. Neuroscience 169, 683–696 (2010).

    Article  CAS  PubMed  Google Scholar 

  73. Eftekhari, S. et al. Localization of CGRP, CGRP receptor, PACAP and glutamate in trigeminal ganglion. Relation to the blood–brain barrier. Brain Res. 1600, 93–109 (2015).

    Article  CAS  PubMed  Google Scholar 

  74. Noseda, R. et al. Fluorescently-labeled fremanezumab is distributed to sensory and autonomic ganglia and the dura but not to the brain of rats with uncompromised blood brain barrier. Cephalalgia 40, 229–240 (2020).

    Article  PubMed  Google Scholar 

  75. Chen, C. et al. Long-term imaging of dorsal root ganglia in awake behaving mice. Nat. Commun. 10, 3087 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Emery, E. C. et al. In vivo characterization of distinct modality-specific subsets of somatosensory neurons using GCaMP. Sci. Adv. 2, 11 (2016).

    Article  CAS  Google Scholar 

  77. Devor, M. & Wall, P. D. Cross-excitation in dorsal root ganglia of nerve-injured and intact rats. J. Neurophysiol. 64, 1733–1746 (1990).

    Article  CAS  PubMed  Google Scholar 

  78. Amir, R. & Devor, M. Chemically mediated cross-excitation in rat dorsal root ganglia. J. Neurosci. 16, 4733–4741 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Oh, E. J. & Weinreich, D. Chemical communication between vagal afferent somata in nodose ganglia of the rat and the guinea pig in vitro. J. Neurophysiol. 87, 2801–2807 (2002). Together with Amir and Devor (1996), this study presents electrophysiological evidence that cross depolarization is chemically mediated.

    Article  CAS  PubMed  Google Scholar 

  80. Hanani, M. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: implications for chronic pain. Brain Res. 1487, 183–191 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Carvalho, G. B., Mulpuri, Y., Damasio, A. & Spigelman, I. A role for the P2Y1 receptor in nonsynaptic cross-depolarization in the rat dorsal root ganglia. Neuroscience 423, 98–108 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Xie, W., Strong, J. A. & Zhang, J. M. Early blockade of injured primary sensory afferents reduces glial cell activation in two rat neuropathic pain models. Neuroscience 160, 847–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  83. Belzer, V. & Hanani, M. Nitric oxide as a messenger between neurons and satellite glial cells in dorsal root ganglia. Glia 67, 1296–1307 (2019).

    Article  PubMed  Google Scholar 

  84. Devor, M., Amir, R. & Rappaport, Z. H. Pathophysiology of trigeminal neuralgia: the ignition hypothesis. Clin. J. Pain. 18, 4–13 (2002).

    Article  PubMed  Google Scholar 

  85. Barrot, M. Tests and models of nociception and pain in rodents. Neuroscience 211, 39–50 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Blum, E., Procacci, P., Conte, V., Sartori, P. & Hanani, M. Long term effects of lipopolysaccharide on satellite glial cells in mouse dorsal root ganglia. Exp. Cell Res. 350, 236–241 (2017).

    Article  CAS  PubMed  Google Scholar 

  87. Peters, C. M. et al. Intravenous paclitaxel administration in the rat induces a peripheral sensory neuropathy characterized by macrophage infiltration and injury to sensory neurons and their supporting cells. Exp. Neurol. 203, 42–54 (2007).

    Article  CAS  PubMed  Google Scholar 

  88. Wang, S. et al. P2Y12 shRNA treatment decreases SGC activation to relieve diabetic neuropathic pain in type 2 diabetes mellitus rats. J. Cell Physiol. 233, 9620–9628 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Hanani, M., Blum, E., Liu, S., Peng, L. & Liang, S. Satellite glial cells in dorsal root ganglia are activated in streptozotocin-treated rodents. J. Cell Mol. Med. 18, 2367–2371 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W. & Kelley, K. W. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat. Rev. Neurosci. 9, 46–56 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Leshchenko, Y. et al. Carbenoxolone does not cross the blood brain barrier: an HPLC study. BMC Neurosci. 7, 3 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Haroutiunian, S., Nikolajsen, L., Finnerup, N. B. & Jensen, T. S. The neuropathic component in persistent postsurgical pain: a systematic literature review. Pain 154, 95–102 (2013).

    Article  PubMed  Google Scholar 

  93. Steyaert, A. & De Kock, M. Chronic postsurgical pain. Curr. Opin. Anaesthesiol. 25, 584–588 (2012).

    Article  PubMed  Google Scholar 

  94. Wylde, V. et al. Systematic review of management of chronic pain after surgery. Brit. J. Surg. 104, 1293–1306 (2017).

    Article  CAS  PubMed  Google Scholar 

  95. Flatters, S. J. Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Pain 135, 119–130 (2008).

    Article  PubMed  Google Scholar 

  96. Woolf, C. J. Central sensitization: implications for the diagnosis and treatment of pain. Pain 152, S2–S15 (2011).

    Article  PubMed  Google Scholar 

  97. Romero, A., Romero-Alejo, E., Vasconcelos, N. & Puig, M. M. Glial cell activation in the spinal cord and dorsal root ganglia induced by surgery in mice. Eur. J. Pharmacol. 702, 126–134 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Song, J. et al. The role of P2X7R/ERK signaling in dorsal root ganglia satellite glial cells in the development of chronic postsurgical pain induced by skin/muscle incision and retraction (SMIR). Brain Behav. Immun. 69, 180–189 (2018).

    Article  CAS  PubMed  Google Scholar 

  99. Yamakita, S. et al. Synergistic activation of ERK1/2 between A-fiber neurons and glial cells in the DRG contributes to pain hypersensitivity after tissue injury. Mol. Pain. 14, 1744806918767508 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Pogatzki, E. M., Vandermeulen, E. P. & Brennan, T. J. Effect of plantar local anesthetic injection on dorsal horn neuron activity and pain behaviors caused by incision. Pain 97, 151–156 (2002).

    Article  PubMed  Google Scholar 

  101. Yatziv, S. L. & Devor, M. Suppression of neuropathic pain by selective silencing of dorsal root ganglion ectopia using nonblocking concentrations of lidocaine. Pain 160, 2105–2114 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Feldman, E. L., Nave, K. A., Jensen, T. S. & Bennett, D. L. H. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron 93, 1296–1313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tesfaye, S. & Selvarajah, D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab. Res. Rev. 28, 8–14 (2012).

    Article  PubMed  Google Scholar 

  104. Gonçalves, N. P., Vægter, C. B. & Pallesen, L. T. Peripheral glial cells in the development of diabetic neuropathy. Front. Neurol. 9, 268 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Rahman, M. H. et al. Pyruvate dehydrogenase kinase-mediated glycolytic metabolic shift in the dorsal root ganglion drives painful diabetic neuropathy. J. Biol. Chem. 291, 6011–6025 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Verkhratsky, A. & Fernyhough, P. Calcium signalling in sensory neurones and peripheral glia in the context of diabetic neuropathies. Cell Calcium 56, 362–371 (2014).

    Article  CAS  PubMed  Google Scholar 

  107. Hong, S., Morrow, T. J., Paulson, P. E., Isom, L. L. & Wiley, J. W. Early painful diabetic neuropathy is associated with differential changes in tetrodotoxin-sensitive and -resistant sodium channels in dorsal root ganglion neurons in the rat. J. Biol. Chem. 279, 29341–29350 (2004).

    Article  CAS  PubMed  Google Scholar 

  108. Zochodne, D. W. Diabetic polyneuropathy: an update. Curr. Opin. Neurol. 21, 527–533 (2008).

    Article  CAS  PubMed  Google Scholar 

  109. Brownlee, M. & Cerami, A. The biochemistry of the complications of diabetes mellitus. Annu. Rev. Biochem. 50, 385–432 (1981).

    Article  CAS  PubMed  Google Scholar 

  110. Schemmel, K. E., Padiyara, R. S. & D’Souza, J. J. Aldose reductase inhibitors in the treatment of diabetic peripheral neuropathy: a review. J. Diabetes Complicat. 24, 354–360 (2010).

    Article  Google Scholar 

  111. Jiang, Y., Calcutt, N. A., Ramos, K. M. & Mizisin, A. P. Novel sites of aldose reductase immunolocalization in normal and streptozotocin-diabetic rats. J. Peripher. Nerv. Syst. 11, 274–285 (2006).

    Article  CAS  PubMed  Google Scholar 

  112. Huang, Q., Liu, Q. & Ouyang, D. Sorbinil, an aldose reductase inhibitor, in fighting against diabetic complications. Med. Chem. 15, 3–7 (2019).

    Article  CAS  PubMed  Google Scholar 

  113. Liu, S. et al. lncRNA NONRATT021972 siRNA regulates neuropathic pain behaviors in type 2 diabetic rats through the P2X7 receptor in dorsal root ganglia. Mol. Brain 9, 44 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Coddou, C., Yan, Z., Obsil, T., Huidobro-Toro, J. P. & Stojilkovic, S. S. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 63, 641–683 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Teixeira, J. M. et al. Diabetes-induced neuropathic mechanical hyperalgesia depends on P2X4 receptor activation in dorsal root ganglia. Neuroscience 398, 158–170 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Johnson, R. W. & Rice, A. S. Clinical practice. Postherpetic neuralgia. N. Engl. J. Med. 371, 1526–1533 (2014).

    Article  CAS  PubMed  Google Scholar 

  117. Steiner, I. & Benninger, F. Manifestations of herpes virus infections in the nervous system. Neurol. Clin. 36, 725–738 (2018).

    Article  PubMed  Google Scholar 

  118. Fatahzadeh, M. & Schwartz, R. A. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol. 57, 737–763 (2007).

    Article  PubMed  Google Scholar 

  119. Feller, L., Khammissa, R. A. G., Fourie, J., Bouckaert, M. & Lemmer, J. Postherpetic neuralgia and trigeminal neuralgia. Pain. Res. Treat. 2017, 1681765 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Zerboni, L., Ku, C. C., Jones, C. D., Zehnder, J. L. & Arvin, A. M. Varicella-zoster virus infection of human dorsal root ganglia in vivo. Proc. Natl Acad. Sci. USA 102, 6490–6495 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Zerboni, L. & Arvin, A. Neuronal subtype and satellite cell tropism are determinants of varicella-zoster virus virulence in human dorsal root ganglia xenografts in vivo. PLoS Pathog. 11, e1004989 (2015). This paper shows that both neurons and SGCs are infected by varicella zoster herpesvirus in human DRG grafted into mice.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Silva, J. R. et al. Neuroimmune–glia interactions in the sensory ganglia account for the development of acute herpetic neuralgia. J. Neurosci. 237, 6408–6422 (2017).

    Article  Google Scholar 

  123. Zerboni, L., Sen, N., Oliver, S. L. & Arvin, A. M. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 12, 197–210 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Weed, D. J. & Nicola, A. V. Herpes simplex virus membrane fusion. Adv. Anat. Embryol. Cell Biol. 223, 29–47 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Mangus, L. M. et al. SIV-induced immune activation and metabolic alterations in the dorsal root ganglia during acute infection. J. Neuropathol. Exp. Neurol. 78, 78–87 (2019).

    Article  CAS  PubMed  Google Scholar 

  126. Li, Y. C., Bai, W. Z., Hirano, N., Hayashida, T. & Hashikawa, T. Coronavirus infection of rat dorsal root ganglia: ultrastructural characterization of viral replication, transfer, and the early response of satellite cells. Virus Res. 163, 628–635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hanani, M. Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res. Brain Res. Rev. 64, 304–327 (2010).

    Article  CAS  Google Scholar 

  128. Verkhratsky, A. & Nedergaard, M. Astroglial cradle in the life of the synapse. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130595 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Feldman-Goriachnik, R., Wu, B. & Hanani, M. Cholinergic responses of satellite glial cells in the superior cervical ganglia. Neurosci. Lett. 671, 19–24 (2018).

    Article  CAS  PubMed  Google Scholar 

  130. Feldman-Goriachnik, R. & Hanani, M. The effects of sympathetic nerve damage on satellite glial cells in the mouse superior cervical ganglion. Auton. Neurosci. 221, 102584 (2019).

    Article  CAS  PubMed  Google Scholar 

  131. Enes, J. et al. Satellite glial cells modulate cholinergic transmission between sympathetic neurons. PLoS ONE 15, e0218643 (2020). This paper shows that SGCs in sympathetic ganglia modulate neuron-to-neuron cholinergic neurotransmission, promote synapse formation and contribute to neuronal survival.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shim, H., Rose, J., Halle, S. & Shekane, P. Complex regional pain syndrome: a narrative review for the practising clinician. Br. J. Anaesth. 123, e424–e433 (2109).

    Article  Google Scholar 

  133. McLachlan, E. M., Jänig, W., Devor, M. & Michaelis, M. Peripheral nerve injury triggers noradrenergic sprouting within dorsal root ganglia. Nature 363, 543–546 (1993).

    Article  CAS  PubMed  Google Scholar 

  134. Li, A. L., Zhang, J. D., Xie, W., Strong, J. A. & Zhang, J. M. Inflammatory changes in paravertebral sympathetic ganglia in two rat pain models. Neurosci. Bull. 34, 85–97 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Xie, A. X., Lee, J. J. & McCarthy, K. D. Ganglionic GFAP+ glial Gq-GPCR signaling enhances heart functions in vivo. J. C. I. Insight 2, e90565 (2017). This study shows that stimulation of SGCs in sympathetic ganglia influences cardiac functions via actions of SGCs on sympathetic neurons.

    Google Scholar 

  136. Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J. L. & Shivkumar, K. Cardiac innervation and sudden cardiac death. Circ. Res. 116, 2005–2019 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hu, P. & McLachlan, E. M. Macrophage and lymphocyte invasion of dorsal root ganglia after peripheral nerve lesions in the rat. Neuroscience 112, 23–38 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. Ji, R. R., Chamessian, A. & Zhang, Y. Q. Pain regulation by non-neuronal cells and inflammation. Science 354, 572–577 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Shinoda, M., Kubo, A., Hayashi, Y. & Iwata, K. Peripheral and central mechanisms of persistent orofacial pain. Front. Neurosci. 13, 1227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Carlin, D., Halevi, A. E., Ewan, E. E., Moore, A. M. & Cavalli, V. Nociceptor deletion of Tsc2 enhances axon regeneration by inducing a conditioning injury response in dorsal root ganglia. eNeuro 6, ENEURO.0168-19.2019 (2019).

    Article  Google Scholar 

  141. Jager, S. E. et al. Changes in the transcriptional fingerprint of satellite glial cells following peripheral nerve injury. Glia 68, 1375–1395 (2020).

    Article  PubMed  Google Scholar 

  142. Haberberger, R. V., Barry, C., Dominguez, N. & Matusica, D. Human dorsal root ganglia. Front. Cell. Neurosci. 13, 271 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Tongtako, W. Canine dorsal root ganglia satellite glial cells represent an exceptional cell population with astrocytic and oligodendrocytic properties. Sci. Rep. 7, 13915 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Takahashi, M. & Osumi, N. Identification of a novel type II classical cadherin: rat cadherin19 is expressed in the cranial ganglia and Schwann cell precursors during development. Dev. Dyn. 232, 200–208 (2005).

    Article  CAS  PubMed  Google Scholar 

  145. George, D., Ahrens, P. & Lambert, S. Satellite glial cells represent a population of developmentally arrested Schwann cells. Glia 66, 1496–1506 (2018).

    Article  PubMed  Google Scholar 

  146. Koike, T., Wakabayashi, T., Mori, T., Hirahara, Y. & Yamada, H. Sox2 promotes survival of satellite glial cells in vitro. Biochem. Biophys. Res. Commun. 464, 269–274 (2015).

    Article  CAS  PubMed  Google Scholar 

  147. Arora, D. K. et al. Evidence of postnatal neurogenesis in dorsal root ganglion: role of nitric oxide and neuronal restrictive silencer transcription factor. J. Molec. Neurosci. 32, 97–107 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Li, H. Y., Say, E. H. & Zhou, X. F. Isolation and characterization of neural crest progenitors from adult dorsal root ganglia. Stem Cell 25, 2053–2065 (2007).

    Article  CAS  Google Scholar 

  149. Fex Svenningsen, A., Colman, D. R. & Pedraza, L. Satellite cells of dorsal root ganglia are multipotential glial precursors. Neuron Glia Biol. 1, 85–93 (2004).

    Article  PubMed  Google Scholar 

  150. Belzer, V., Shraer, N. & Hanani, M. Phenotypic changes in satellite glial cells in cultured trigeminal ganglia. Neuron Glia Biol. 6, 237–243 (2010).

    Article  PubMed  Google Scholar 

  151. Weider, M. et al. Elevated in vivo levels of a single transcription factor directly convert satellite glia into oligodendrocyte-like cells. PLoS Genet. 11, e1005008 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. van Velzen, M. et al. Neuron-interacting satellite glial cells in human trigeminal ganglia have an APC phenotype. J. Immunol. 183, 2456–2461 (2009). This paper shows that SGCs in human trigeminal ganglia display some properties of immune cells and have a unique leukocyte phenotype.

    Article  PubMed  CAS  Google Scholar 

  153. Wu, H. H. et al. Glial precursors clear sensory neuron corpses during development via Jedi-1, an engulfment receptor. Nat. Neurosci. 12, 1534–1541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Nadeau, J. R., Wilson-Gerwing, T. D. & Verge, V. M. Induction of a reactive state in perineuronal satellite glial cells akin to that produced by nerve injury is linked to the level of p75NTR expression in adult sensory neurons. Glia 62, 763–777 (2014).

    Article  PubMed  Google Scholar 

  155. Shinder, V. et al. Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J. Neurocytol. 28, 743–761 (1999).

    Article  CAS  PubMed  Google Scholar 

  156. Yoshioka, M. et al. Expression of HIV-1 and interleukin-6 in lumbosacral dorsal root ganglia of patients with AIDS. Neurology 44, 1120–1130 (1994).

    Article  CAS  PubMed  Google Scholar 

  157. Koeppen, A. H., Becker, A. B., Qian, J. & Feustel, P. J. Friedreich ataxia: hypoplasia of spinal cord and dorsal root ganglia. J. Neuropathol. Exp. Neurol. 76, 101–108 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors were supported by the Israel Science Foundation (ISF 508/13 and ISF 1297/18 to M.H.), US–Israel Binational Science Foundation (BSF-2011044 to M.H. and D.C.S.) and NIH (R01NS092786, R01NS092466 and R21NS116892 to D.C.S.).

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Menachem Hanani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks the other anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Satellite glial cells

(SGCs). Glial cells that surround neurons in sensory, sympathetic and parasympathetic ganglia (they should not be confused with satellite cells, which are the progenitor cells in striated muscles).

Sympathetic ganglia

Clusters of neuron cell bodies that innervate smooth muscles, heart and glands; paravertebral ganglia are arranged along the spinal column, and prevertebral ones are located in the abdomen.

Dorsal root ganglia

(DRG). Clusters of cells located near the spinal cord containing the cell bodies of peripheral neurons that innervate most body parts, including internal organs.

Sensory ganglia

Clusters of neuron cell bodies that have a single axon that bifurcates to two branches; one branch runs to the periphery and can detect various stimuli, and the other projects into the central nervous system.

P2 purinergic receptors

(P2Rs). Receptors for the neurotransmitter adenosine (P1) and ATP (P2). There are seven ionotropic receptors (P2X1–P2X7) and eight G protein-coupled receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11–P2Y14).

Trigeminal ganglia

(TG). Clusters of cells located at the base of the skull (but outside the brain) that contain the cell bodies of neurons that innervate the face, teeth and scalp.

Nodose ganglia

Clusters of neuron cell bodies that innervate many visceral organs, such as the intestine and heart.

Allodynia

Pain resulting from a non-noxious stimulus to normal skin.

Kir4.1 channels

Inward rectifier channels that tend to favour the influx of potassium ions into cells over their efflux.

Gap junctions

Intercellular channels that provide a pathway for diffusion of ions and small molecules between cells; they are made of connexin (Cx) proteins.

Dye coupling

A method for studying gap junction-mediated coupling between cells, based on injecting a cell with a dye that passes these junctions and examining whether the dye passed to nearby cells.

Neuralgia

Pain extending along the course of nerves; for example, trigeminal neuralgia.

Lipopolysaccharide

(LPS). A component of the wall of Gram-negative bacteria; LPS acts on Toll-like receptor 4 (TLR4), which, in sensory ganglia, is located on the surface of the sensory neurons.

Central sensitization

A state when the central nervous system becomes highly reactive, causing even mild stimuli to be sensed as painful.

Extracellular-signal regulated kinase

(ERK). A member of the MAP kinase family that is involved in multiple cellular processes.

DREADD

(Designer receptors exclusively activated by designer drugs). A method that utilizes G protein-coupled receptors engineered to respond exclusively to synthetic ligands.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanani, M., Spray, D.C. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 21, 485–498 (2020). https://doi.org/10.1038/s41583-020-0333-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41583-020-0333-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing