Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible

Abstract

Human induced pluripotent stem cells (hiPSCs) were first generated in 2007, but the full translational potential of this valuable tool has yet to be realized. The potential applications of hiPSCs are especially relevant to neurology, as brain cells from patients are rarely available for research. hiPSCs from individuals with neuropsychiatric or neurodegenerative diseases have facilitated biological and multi-omics studies as well as large-scale screening of chemical libraries. However, researchers are struggling to improve the scalability, reproducibility and quality of this descriptive disease modelling. Addressing these limitations will be the first step towards a new era in hiPSC research — that of predictive disease modelling — involving the correlation and integration of in vitro experimental data with longitudinal clinical data. This approach is a key element of the emerging precision medicine paradigm, in which hiPSCs could become a powerful diagnostic and prognostic tool. Here, we consider the steps necessary to achieve predictive modelling of neurodegenerative disease with hiPSCs, using Huntington disease as an example.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed approach to predictive HD modelling based on patient-derived hiPSCs.

Similar content being viewed by others

References

  1. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Shi, Y., Inoue, H., Wu, J. C. & Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115–130 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Rubin, L. L. Stem cells and drug discovery: the beginning of a new era? Cell 132, 549–552 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Trevisan, M. et al. Modeling viral infectious diseases and development of antiviral therapies using human induced pluripotent stem cell-derived systems. Viruses 7, 3835–3856 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Huang, J. et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response. Cell Stem Cell 27, 962–973.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cayo, M. A. et al. A drug screen using human iPSC-derived hepatocyte-like cells reveals cardiac glycosides as a potential treatment for hypercholesterolemia. Cell Stem Cell 20, 478–489.e5 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Eglen, R. M. & Reisine, T. Human iPS cell-derived patient tissues and 3D cell culture part 1: target identification and lead optimization. SLAS Technol. 24, 3–17 (2019).

    CAS  PubMed  Google Scholar 

  9. Kandasamy, K. et al. Prediction of drug-induced nephrotoxicity and injury mechanisms with human induced pluripotent stem cell-derived cells and machine learning methods. Sci. Rep. 5, 12337 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu, Y.-Y., Chiu, F.-L., Yeh, C.-S. & Kuo, H.-C. Opportunities and challenges for the use of induced pluripotent stem cells in modelling neurodegenerative disease. Open Biol. 9, 180177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, L., Chao, J. & Shi, Y. Modeling neurological diseases using iPSC-derived neural cells: iPSC modeling of neurological diseases. Cell Tissue Res. 371, 143–151 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. McNeish, J., Gardner, J. P., Wainger, B. J., Woolf, C. J. & Eggan, K. From dish to bedside: lessons learned while translating findings from a stem cell model of disease to a clinical trial. Cell Stem Cell 17, 8–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Okano, H., Yasuda, D., Fujimori, K., Morimoto, S. & Takahashi, S. Ropinirole, a new ALS drug candidate developed using iPSCs. Trends Pharmacol. Sci. 41, 99–109 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Kovalchuk, M. O. et al. Acute effects of riluzole and retigabine on axonal excitability in patients with amyotrophic lateral sclerosis: a randomized, double-blind, placebo-controlled, crossover trial. Clin. Pharmacol. Ther. 104, 1136–1145 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Yousefi, N., Abdollahii, S., Kouhbanani, M. A. J. & Hassanzadeh, A. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: mirage or reality? J. Cell. Physiol. 235, 9166–9184 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Ahmadian-Moghadam, H., Sadat-Shirazi, M. S. & Zarrindast, M. R. Therapeutic potential of stem cells for treatment of neurodegenerative diseases. Biotechnol. Lett. 42, 1073–1101 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Levy, M., Boulis, N., Rao, M. & Svendsen, C. N. Regenerative cellular therapies for neurologic diseases. Brain Res. 1638, 88–96 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Allsopp, T. E., Ebneth, A. & Cabrera-Socorro, A. Deploying human pluripotent stem cells to treat central nervous system disorders: facts, challenges and realising the potential. Stem Cell Res. 41, 101581 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Schweitzer, J. S. et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s disease. N. Engl. J. Med. 382, 1926–1932 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guhr, A. et al. Recent trends in research with human pluripotent stem cells: impact of research and use of cell lines in experimental research and clinical trials. Stem Cell Rep. 11, 485–496 (2018).

    Article  Google Scholar 

  21. Marton, R. M. & Ioannidis, J. P. A. A comprehensive analysis of protocols for deriving dopaminergic neurons from human pluripotent stem cells. Stem Cell Transl. Med. 8, 366–374 (2019).

    Article  Google Scholar 

  22. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kriks, S. et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 480, 547–551 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu, B.-Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl Acad. Sci. USA 107, 4335–4340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yaffe, M. P., Noggle, S. A. & Solomon, S. L. Raising the standards of stem cell line quality. Nat. Cell Biol. 18, 236–237 (2016).

    Article  PubMed  CAS  Google Scholar 

  26. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaskova, E. A., Stekleneva, A. E., Medvedev, S. P. & Zakian, S. M. ‘Epigenetic memory’ phenomenon in induced pluripotent stem cells. Acta Naturae 5, 15–21 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lo Sardo, V. et al. Influence of donor age on induced pluripotent stem cells. Nat. Biotechnol. 35, 69–74 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Huh, C. J. et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. eLife 5, e18648 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Kang, E. et al. Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell 18, 625–636 (2016).

    Article  CAS  PubMed  Google Scholar 

  32. Kirkeby, A. et al. Predictive markers guide differentiation to improve graft outcome in clinical translation of hESC-based therapy for Parkinson’s disease. Cell Stem Cell 20, 135–148 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kee, N. et al. Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages. Cell Stem Cell 20, 29–40 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Daley, G. Q. et al. Setting global standards for stem cell research and clinical translation: the 2016 ISSCR guidelines. Stem Cell Rep. 6, 787–797 (2016).

    Article  Google Scholar 

  35. International Society for Stem Cell Research. Guidelines for Stem Cell Research and Clinical Translation (ISSCR, 2016).

  36. De Sousa, P. A. et al. Rapid establishment of the European Bank for induced Pluripotent Stem Cells (EBiSC) – the Hot Start experience. Stem Cell Res. 20, 105–114 (2017).

    Article  PubMed  Google Scholar 

  37. Huang, C. Y. et al. Human iPSC banking: barriers and opportunities. J. Biomed. Sci. 26, 87 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Harvey, E., Hewison, C., Nevalainen, D. E. & Lloyd, H. L. Maintaining quality in blood banking. Blood Rev. 9, 15–24 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Toombs, J. et al. Generation of twenty four induced pluripotent stem cell lines from twenty four members of the Lothian Birth Cohort 1936. Stem Cell Res. 46, 101851 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sarvari, M., Alavi-Moghadam, S., Larijani, B., Rezazadeh, I. & Arjmand, B. in Biomedical Product Development: Bench to Bedside, Ch 6 (eds Arjmand, B., Payab, M. & Goodarzi, P.) 61–68 (Springer, 2020).

  41. Barker, R. A., Parmar, M., Studer, L. & Takahashi, J. Human trials of stem cell-derived dopamine neurons for Parkinson’s disease: dawn of a new era. Cell Stem Cell 21, 569–573 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Lee, K. M. et al. The application of human pluripotent stem cells to model the neuronal and glial components of neurodevelopmental disorders. Mol. Psychiatry 25, 368–378 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Ardhanareeswaran, K., Mariani, J., Coppola, G., Abyzov, A. & Vaccarino, F. M. Normal development of neuronal networks requires a delicate balance of proliferation and differentiation of specific neuronal lineages, and appropriate migration and integration of these specific neuronal subtypes into neuronal circuits. Nat.Rev. Neurol. 13, 265–278 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wang, M., Zhang, L. & Gage, F. H. Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein Cell 11, 45–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Noh, H., Shao, Z., Coyle, J. T. & Chung, S. Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). Biochim. Biophys. Acta Mol. Basis Dis. 1863, 2382–2387 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Csobonyeiova, M., Polak, S. & Danisovic, L. Recent overview of the use of iPSCs Huntington’s disease modeling and therapy. Int. J. Mol. Sci. 21, 2239 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  47. Han, F. et al. The application of patient-derived induced pluripotent stem cells for modeling and treatment of Alzheimer’s disease. Brain Sci. Adv. 5, 21–40 (2019).

    Article  Google Scholar 

  48. Majolo, F., Marinowic, D. R., MacHado, D. C. & Da Costa, J. C. Important advances in Alzheimer’s disease from the use of induced pluripotent stem cells. J. Biomed. Sci. 26, 15 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ke, M., Chong, C. M. & Su, H. Using induced pluripotent stem cells for modeling Parkinson’s disease. World J. Stem Cell 11, 634–649 (2019).

    Article  Google Scholar 

  50. Espay, A. J., Brundin, P. & Lang, A. E. Precision medicine for disease modification in Parkinson disease. Nat. Rev. Neurol. 13, 119–126 (2017).

    Article  PubMed  Google Scholar 

  51. Roos, R. A. C. et al. Huntington’s disease: a clinical review. Orphanet J. Rare Dis. 5, 40 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Geater, C., Hernandez, S., Thompson, L. & Mattis, V. B. in Huntington’s Disease. (eds Precious, S., Rosser, A. & Dunnett, S.) 41–73 (Humana, 2018). [Series Methods in Molecular Biology Vol. 1780].

  53. Ledolter, J. & Kardon, R. H. Focus on data: statistical design of experiments and sample size selection using power analysis. Investig. Ophthalmol. Vis. Sci. 61, 11 (2020).

    Article  Google Scholar 

  54. Regent, F. et al. Automation of human pluripotent stem cell differentiation toward retinal pigment epithelial cells for large-scale productions. Sci. Rep. 9, 10646 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Dhingra, A. et al. Automated production of human induced pluripotent stem cell-derived cortical and dopaminergic neurons with integrated live-cell monitoring. J. Vis. Exp. 2020, https://doi.org/10.3791/61525 (2020).

  56. Virlogeux, A. et al. Reconstituting corticostriatal network on-a-chip reveals the contribution of the presynaptic compartment to Huntington’s disease. Cell Rep. 22, 110–122 (2018).

    Article  CAS  PubMed  Google Scholar 

  57. Zhuang, P., Sun, A. X., An, J., Chua, C. K. & Chew, S. Y. 3D neural tissue models: from spheroids to bioprinting. Biomaterials 154, 113–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  58. Salaris, F. & Rosa, A. Construction of 3D in vitro models by bioprinting human pluripotent stem cells: challenges and opportunities. Brain Res. 1723, 146393 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. https://doi.org/10.1038/s41573-020-0079-3 (2020).

    Article  PubMed  Google Scholar 

  60. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  CAS  PubMed  Google Scholar 

  61. Miura, Y. et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat. Biotechnol. 38, 1421–1430 (2020).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Fortunato, A., Grainger, D. W. & Abou-El-Enein, M. Enhancing patient-level clinical data access to promote evidence-based practice and incentivize therapeutic innovation. Adv. Drug Deliv. Rev. 136–137, 97–104 (2018).

    Article  PubMed  CAS  Google Scholar 

  63. Hampel, H. et al. A precision medicine initiative for Alzheimer’s disease: the road ahead to biomarker-guided integrative disease modeling. Climacteric 20, 107–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  64. Younesi, E. & Hofmann-Apitius, M. From integrative disease modeling to predictive, preventive, personalized and participatory (P4) medicine. EPMA J. 4, 23 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ielapi, N. et al. Precision medicine and precision nursing: the era of biomarkers and precision health. Int. J. Gen. Med. 13, 1705 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hampel, H. J., Bryant, S. E. O., Castrillo, J. I. & Ritchie, C. PRECISION MEDICINE - the golden gate for detection, treatment and prevention of Alzheimer’s disease. J. Prev. Alzheimers Dis. 3, 243–259 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Krzyszczyk, P. et al. The growing role of precision and personalized medicine for cancer treatment. Technology 6, 70–100 (2019).

    Google Scholar 

  68. Boufraqech, M. & Nilubol, N. Multi-omics signatures and translational potential to improve thyroid cancer patient outcome. Cancers 11, 1988 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  69. Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Rabbani, M. et al. Role of artificial intelligence in the care of patients with nonsmall cell lung cancer. Eur. J. Clin. Invest. 48, e12901 (2018).

    Article  Google Scholar 

  71. Ramazzotti, D., Lal, A., Wang, B., Batzoglou, S. & Sidow, A. Multi-omic tumor data reveal diversity of molecular mechanisms that correlate with survival. Nat. Commun. 9, 4453 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Bonetto, V. et al. A systematic review of suggested molecular strata, biomarkers and their tissue sources in ALS. Front. Neurol. 10, 400 (2019).

    Article  Google Scholar 

  73. Hampel, H. et al. Revolution of Alzheimer precision neurology. Passageway of systems biology and neurophysiology. J. Alzheimer’s Dis. 64, S47–S105 (2018).

    Article  Google Scholar 

  74. Blinova, K. et al. Clinical trial in a dish: personalized stem cell-derived cardiomyocyte assay compared with clinical trial results for two QT-prolonging drugs. Clin. Transl. Sci. 12, 687–697 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tucker, K. et al. Protecting patient privacy when sharing patient-level data from clinical trials. BMC Med. Res. Methodol. 16, 77 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fröhlich, H. et al. From hype to reality: data science enabling personalized medicine. BMC Med. 16, 150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Fujita, K. A. et al. Integrating pathways of Parkinson’s disease in a molecular interaction map. Mol. Neurobiol. 49, 88–102 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Mizuno, S. et al. AlzPathway: a comprehensive map of signaling pathways of Alzheimer’s disease. BMC Syst. Biol. 6, 52 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  CAS  PubMed  Google Scholar 

  80. Elger, C. E. & Lehnertz, K. Seizure prediction by non-linear time series analysis of brain electrical activity. Eur. J. Neurosci. 10, 786–789 (1998).

    Article  CAS  PubMed  Google Scholar 

  81. Mormann, F., Andrzejak, R. G., Elger, C. E. & Lehnertz, K. Seizure prediction: the long and winding road. Brain 130, 314–333 (2007).

    Article  PubMed  Google Scholar 

  82. Cook, M. J. et al. Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. Lancet Neurol. 12, 563–571 (2013).

    Article  PubMed  Google Scholar 

  83. Kuhlmann, L., Lehnertz, K., Richardson, M. P., Schelter, B. & Zaveri, H. P. Seizure prediction – ready for a new era. Nat. Rev. Neurol. 14, 618–630 (2018).

    Article  PubMed  Google Scholar 

  84. Chen, L., Liu, R., Liu, Z. P., Li, M. & Aihara, K. Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Sci. Rep. 2, 342 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Liu, X. et al. Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLoS Comput. Biol. 13, e1005633 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Kay, C., Hayden, M. R. & Leavitt, B. R. in Huntington Disease Ch. 3 (eds Feigin, S. A. & Anderson, K. E.) 31–46 (Elsevier, 2017). [Series Handbook of Clinical Neurology Vol. 144].

  87. Landwehrmeyer, G. B. et al. Data analytics from Enroll-HD, a global clinical research platform for Huntington’s disease. Mov. Disord. Clin. Pract. 4, 212–224 (2017).

    Article  PubMed  Google Scholar 

  88. Ross, C. A. & Tabrizi, S. J. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 10, 83–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  89. Duyao, M. et al. Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat. Genet. 4, 387–392 (1993).

    Article  CAS  PubMed  Google Scholar 

  90. MacDonald, M. E. et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72, 971–983 (1993).

    Article  Google Scholar 

  91. Rosenblatt, A. et al. The association of CAG repeat length with clinical progression in Huntington disease. Neurology 66, 1016–1020 (2006).

    Article  CAS  PubMed  Google Scholar 

  92. Cannella, M. et al. The gender effect in juvenile Huntington disease patients of Italian origin. Am. J. Med. Genet. 125B, 92–98 (2004).

    Article  PubMed  Google Scholar 

  93. Swami, M. et al. Somatic expansion of the Huntington’s disease CAG repeat in the brain is associated with an earlier age of disease onset. Hum. Mol. Genet. 15, 3039–3047 (2009).

    Article  CAS  Google Scholar 

  94. Kennedy, L. et al. Dramatic tissue-specific mutation length increases are an early molecular event in Huntington disease pathogenesis. Hum. Mol. Genet. 12, 3359–3367 (2003).

    Article  CAS  PubMed  Google Scholar 

  95. Langbehn, D. R. et al. A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin. Genet. 65, 267–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  96. Wexler, N. S. et al. Venezuelan kindreds reveal that genetic and environmental factors modulate Huntington’s disease age of onset. Proc. Natl Acad. Sci. USA 101, 3498–3503 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wright, G. E. B. et al. Interrupting sequence variants and age of onset in Huntington’s disease: clinical implications and emerging therapies. Lancet Neurol. 19, 930–939 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Wright, G. E. B. et al. Length of uninterrupted CAG, independent of polyglutamine size, results in increased somatic instability, hastening onset of Huntington disease. Am. J. Hum. Genet. 104, 1116–1126 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lee, J. M. et al. CAG repeat not polyglutamine length determines timing of Huntington’s disease onset. Cell 178, 887–900.e14 (2019).

    Article  CAS  Google Scholar 

  100. Li, J. L. et al. A genome scan for modifiers of age at onset in Huntington disease: the HD MAPS study. Am. J. Hum. Genet. 73, 682–687 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lee, J. M. et al. Identification of genetic factors that modify clinical onset of Huntington’s disease. Cell 162, 516–526 (2015).

    Article  CAS  Google Scholar 

  102. [No authors listed]. Unified Huntington’s disease rating scale: reliability and consistency. Mov. Disord. 11, 136–142 (1996).

    Article  Google Scholar 

  103. Franciosi, S., Shim, Y., Lau, M., Hayden, M. R. & Leavitt, B. R. A systematic review and meta-analysis of clinical variables used in Huntington disease research. Mov. Disord. 28, 1987–1994 (2013).

    Article  PubMed  Google Scholar 

  104. Reilmann, R. & Schubert, R. in Huntington Disease Ch. 18 (eds Feigin, S. A. & Anderson, K. E.) 209–225 (Elsevier, 2017). [Series Handbook of Clinical Neurology Vol 144].

  105. Caligiuri, M., Snell, C., Park, S. & Corey-Bloom, J. Handwriting movement abnormalities in symptomatic and premanifest Huntington’s disease. Mov. Disord. Clin. Pract. 6, 586–592 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Byrne, L. M. et al. Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington’s disease. Sci. Transl. Med. 10, eaat7108 (2018).

    Article  PubMed  CAS  Google Scholar 

  107. Zeun, P., Scahill, R. I., Tabrizi, S. J. & Wild, E. J. Fluid and imaging biomarkers for Huntington’s disease. Mol. Cell. Neurosci. 97, 67–80 (2019).

    Article  CAS  PubMed  Google Scholar 

  108. Pflanz, C. P. et al. One-year changes in brain microstructure differentiate preclinical Huntington’s disease stages. NeuroImage Clin. 25, 102099 (2020).

    Article  PubMed  Google Scholar 

  109. Nance, M. A. in Huntington Disease Ch. 1 (eds Feigin, S. A. & Anderson, K. E.) 3–14 (Elsevier, 2017). [Series Handbook of Clinical Neurology Vol. 144].

  110. Wijeratne, P. A. et al. Robust markers and sample sizes for multicenter trials of Huntington disease. Ann. Neurol. 87, 751–762 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Jeon, I. et al. Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cell 30, 2054–2062 (2012).

    Article  CAS  Google Scholar 

  112. An, M. C. et al. Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11, 253–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chae, J. I. L. et al. Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington’s disease patient. Biochem. J. 446, 359–371 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Sassone, J., Papadimitriou, E. & Thomaidou, D. Regenerative approaches in Huntington’s disease: from mechanistic insights to therapeutic protocols. Front. Neurosci. 12, 800 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Conforti, P. et al. Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes. Proc. Natl Acad. Sci. USA 115, E762–E771 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wiatr, K., Szlachcic, W. J., Trzeciak, M., Figlerowicz, M. & Figiel, M. Huntington disease as a neurodevelopmental disorder and early signs of the disease in stem cells. Mol. Neurobiol. 55, 3351–3371 (2018).

    Article  CAS  PubMed  Google Scholar 

  117. Lim, R. G. et al. Developmental alterations in Huntington’s disease neural cells and pharmacological rescue in cells and mice. Nat. Neurosci. 20, 648–660 (2017).

    Article  CAS  Google Scholar 

  118. Haremaki, T. et al. Self-organizing neuruloids model developmental aspects of Huntington’s disease in the ectodermal compartment. Nat. Biotechnol. 37, 1198–1208 (2019).

    Article  CAS  PubMed  Google Scholar 

  119. Moss, D. J. H. et al. Identification of genetic variants associated with Huntington’s disease progression: a genome-wide association study. Lancet Neurol. 16, 701–711 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Böhnke, L., Traxler, L., Herdy, J. R. & Mertens, J. Human neurons to model aging: a dish best served old. Drug Discov. Today Dis. Models 27, 43–49 (2018).

    Article  PubMed  Google Scholar 

  121. Sidhaye, J. & Knoblich, J. A. Brain organoids: an ensemble of bioassays to investigate human neurodevelopment and disease. Cell Death Differ. 28, 52–67 (2021).

    Article  PubMed  Google Scholar 

  122. Rifes, P. et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat. Biotechnol. 38, 1265–1273 (2020).

    Article  CAS  PubMed  Google Scholar 

  123. Vicente, J. et al. Mechanistic model-informed proarrhythmic risk assessment of drugs: review of the “CiPA” initiative and design of a prospective clinical validation study. Clin. Pharmacol. Ther. 103, 54–66 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Blinova, K. et al. Clinical trial in a dish: personalized stem cell derived cardiomyocyte assay compared to clinical trial results for two QT prolonging drugs. Clin. Transl. Sci. 12, 687–697 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Biggs, R., Carpenter, S. R. & Brock, W. A. Turning back from the brink: detecting an impending regime shift in time to avert it. Proc. Natl Acad. Sci. USA 106, 826–831 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Rowland, B. D. & Peeper, D. S. KLF4, p21 and context-dependent opposing forces in cancer. Nat. Rev. Cancer 6, 11–23 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Merkle, F. T. et al. Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature 545, 229–233 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  131. Zheng, W., Wang, Y., Chang, T., Huang, H. & Yee, J. K. Significant differences in genotoxicity induced by retrovirus integration in human T cells and induced pluripotent stem cells. Gene 519, 142–149 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. D’Antonio, M. et al. Insights into the mutational burden of human induced pluripotent stem cells from an integrative multi-omics approach. Cell Rep. 24, 883–894 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Ma, H. et al. Abnormalities in human pluripotent cells due to reprogramming mechanisms. Nature 511, 177–183 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Strässler, E. T., Aalto-Setälä, K., Kiamehr, M., Landmesser, U. & Kränkel, N. Age is relative–impact of donor age on induced pluripotent stem cell-derived cell functionality. Front. Cardiovasc. Med. 5, 4 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Hiura, H. et al. Stability of genomic imprinting in human induced pluripotent stem cells. BMC Genet. 14, 32 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pick, M. et al. Clone- and gene-specific aberrations of parental imprinting in human induced pluripotent stem cell. Stem Cells 27, 2686–2690 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Perrera, V. & Martello, G. How does reprogramming to pluripotency affect genomic imprinting? Front. Cell Dev. Biol. 7, 76 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Anguera, M. C. et al. Molecular signatures of human induced pluripotent stem cells highlight sex differences and cancer genes. Cell Stem Cell 11, 75–90 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Vallot, C. et al. Erosion of X chromosome inactivation in human pluripotent cells initiates with XACT coating and depends on a specific heterochromatin landscape. Cell Stem Cell 16, 533–546 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Ichida, J. K. & Kiskinis, E. Probing disorders of the nervous system using reprogramming approaches. EMBO J. 34, 1456–1477 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Nekrasov, E. D. et al. Manifestation of Huntington’s disease pathology in human induced pluripotent stem cell-derived neurons. Mol. Neurodegener. 11, 27 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Sullivan, S. et al. Quality control guidelines for clinical-grade human induced pluripotent stem cell lines. Regen. Med. 13, 859–866 (2018).

    Article  CAS  PubMed  Google Scholar 

  144. King, T. J. & Briggs, R. Changes in the nuclei of differentiating gastrula cells, as demonstrated by nuclear transplantation. Proc. Natl Acad. Sci. USA 41, 321–325 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Gurdon, J. B., Elsdale, T. R. & Fischberg, M. Sexually mature individuals of Xenopus laevis from the transplantation of single somatic nuclei. Nature 182, 64–65 (1958).

    Article  CAS  PubMed  Google Scholar 

  146. McGrath, J. & Solter, D. Nuclear transplantation in the mouse embryo by microsurgery and cell fusion. Science 220, 1300–1302 (1983).

    Article  CAS  PubMed  Google Scholar 

  147. Campbell, K. H. S., McWhir, J., Ritchie, W. A. & Wilmut, I. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380, 64–66 (1996).

    Article  CAS  PubMed  Google Scholar 

  148. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    Article  CAS  PubMed  Google Scholar 

  150. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Mandai, M. et al. Autologous induced stem-cell-derived retinal cells for macular degeneration. N. Engl. J. Med. 376, 1038–1046 (2017).

    Article  CAS  PubMed  Google Scholar 

  152. Mallapaty, S. Revealed: two men in China were first to receive pioneering stem-cell treatment for heart disease. Nature 581, 249–250 (2020).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors was funded by the CHDI Foundation (JSC A11103), a non-profit biomedical research organization exclusively dedicated to developing therapeutics that will substantially improve the life of individuals affected by HD; Novel Strategies for Cell based Neural Reconstruction 2020-23 (NSC-reconstruct), the European Union’s Horizon 2020 Research and Innovation Programme grant agreement no. 874758; Fondazione Telethon – Italy (Grant no. GGP17102); and Programmi di Ricerca Scientifica di rilevanza Nazionale, grant 2008JKSHKN_001 and Prot. 2015AY9AYB Ministero dell’Università e della Ricerca Scientifica.

Author information

Authors and Affiliations

Authors

Contributions

P.R.d.V.C., D.B. and P.C. researched data for the article. P.R.d.V.C., D.B. and E.C. made a substantial contribution to discussion of content, wrote the article, and reviewed and edited the manuscript before submission.

Corresponding authors

Correspondence to Pia Rivetti di Val Cervo or Elena Cattaneo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neurology thanks V. Khurana, who co-reviewed with S. Srinivasan, P. De Sousa, C. Svendsen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

California Institute for Regenerative Medicine iPSC repository: https://www.cirm.ca.gov/researchers/ipsc-repository

ClinicalTrials.gov: www.clinicaltrials.gov

European Bank for induced Pluripotent Stem Cells: www.ebisc.org

Human Induced Pluripotent Stem Cell Initiative: www.hipsci.org

New York Stem Cell Foundation repository: https://nyscf.org/research-institute/repository-stem-cell-search/

RIKEN BRC Cell Bank: https://cell.brc.riken.jp/en/

WHO International Clinical Trials Registry Platform: https://www.who.int/clinical-trials-registry-platform

WiCell Research Institute: www.wicell.org/

Glossary

Non-integrative delivery systems

Systems that favour the transient expression of reprogramming factors without their genomic integration.

OncomiRs

Cancer-associated microRNAs.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivetti di Val Cervo, P., Besusso, D., Conforti, P. et al. hiPSCs for predictive modelling of neurodegenerative diseases: dreaming the possible. Nat Rev Neurol 17, 381–392 (2021). https://doi.org/10.1038/s41582-021-00465-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41582-021-00465-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing