Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The fibrogenic niche in kidney fibrosis: components and mechanisms

Abstract

Kidney fibrosis, characterized by excessive deposition of extracellular matrix (ECM) that leads to tissue scarring, is the final common outcome of a wide variety of chronic kidney diseases. Rather than being distributed uniformly across the kidney parenchyma, renal fibrotic lesions initiate at certain focal sites in which the fibrogenic niche is formed in a spatially confined fashion. This niche provides a unique tissue microenvironment that is orchestrated by a specialized ECM network consisting of de novo-induced matricellular proteins. Other structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular vesicles, soluble factors and metabolites. ECM proteins in the fibrogenic niche recruit soluble factors including WNTs and transforming growth factor-β from the extracellular milieu, creating a distinctive profibrotic microenvironment. Studies using decellularized ECM scaffolds from fibrotic kidneys show that the fibrogenic niche autonomously promotes fibroblast proliferation, tubular injury, macrophage activation and endothelial cell depletion, pathological features that recapitulate key events in the pathogenesis of chronic kidney disease. The concept of the fibrogenic niche represents a paradigm shift in understanding of the mechanism of kidney fibrosis that could lead to the development of non-invasive biomarkers and novel therapies not only for chronic kidney disease, but also for fibrotic diseases of other organs.

Key points

  • Kidney fibrosis initiates at certain focal sites in which the fibrogenic niche is formed; this niche provides a specialized microenvironment that triggers fibroblast activation and induces fibrotic lesions.

  • The structural elements of the fibrogenic niche include kidney resident and infiltrated inflammatory cells, extracellular matrix (ECM) network, extracellular vesicles, soluble factors and metabolites.

  • The fibrogenic niche is orchestrated by a specialized ECM network that consists of structurally unrelated, de novo-induced matricellular proteins such as tenascin C, connective tissue growth factor, fibrillin 1 and periostin.

  • Decellularized ECM scaffolds from fibrotic kidneys spontaneously promote fibroblast proliferation, tubular epithelial-to-mesenchymal transition, macrophage activation and endothelial cell apoptosis, and therefore recapitulate major events in the pathogenesis of chronic kidney disease.

  • Components of the fibrogenic niche such as tenascin C recruit various soluble factors from the extracellular milieu, including WNTs, hedgehog and transforming growth factor-β, resulting in a distinctive microenvironment with high levels of profibrotic factors.

  • The development of therapies that target and disrupt the formation of the fibrogenic niche could be a novel and effective strategy for the treatment of fibrotic chronic kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Renal fibrosis initiates at distinctive focal sites of the kidney parenchyma.
Fig. 2: Cellular and molecular components of the kidney fibrogenic niche.
Fig. 3: Modes of action of matricellular proteins.
Fig. 4: Potential clinical implications of the kidney fibrogenic niche hypothesis.

Similar content being viewed by others

References

  1. Webster, A. C., Nagler, E. V., Morton, R. L. & Masson, P. Chronic kidney disease. Lancet 389, 1238–1252 (2017).

    Article  PubMed  Google Scholar 

  2. GBD Chronic Kidney Disease Collaboration Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 395, 709–733 (2020).

    Article  Google Scholar 

  3. Chen, T. K., Knicely, D. H. & Grams, M. E. Chronic kidney disease diagnosis and management: a review. JAMA 322, 1294–1304 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A. & Rodrigues-Diez, R. R. Targeting the progression of chronic kidney disease. Nat. Rev. Nephrol. 16, 269–288 (2020).

    Article  PubMed  Google Scholar 

  5. Breyer, M. D. & Susztak, K. The next generation of therapeutics for chronic kidney disease. Nat. Rev. Drug Discov. 15, 568–588 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fu, H. et al. Tenascin-C is a major component of the fibrogenic niche in kidney fibrosis. J. Am. Soc. Nephrol. 28, 785–801 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Tan, R. J.; Bastacky, S. I.; Liu, Y. in Molecular Pathology 2nd edn (eds Coleman W. B. & Tsongalis G. J.) 531–553 (Elsevier, 2018).

  8. Brody, S. L. et al. Chemokine receptor 2-targeted molecular imaging in pulmonary fibrosis. A clinical trial. Am. J. Resp. Crit. Care 203, 78–89 (2021).

    Article  CAS  Google Scholar 

  9. Gupta, V., Gupta, I., Park, J., Bram, Y. & Schwartz, R. E. Hedgehog signaling demarcates a niche of fibrogenic peribiliary mesenchymal cells. Gastroenterology 159, 624–638 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. Ramachandran, P. et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level. Nature 575, 512–518 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Herrera, J., Henke, C. A. & Bitterman, P. B. Extracellular matrix as a driver of progressive fibrosis. J. Clin. Invest. 128, 45–53 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lovisa, S., Zeisberg, M. & Kalluri, R. Partial epithelial-to-mesenchymal transition and other new mechanisms of kidney fibrosis. Trends Endocrinol. Metab. 27, 681–695 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Zhou, D. & Liu, Y. Renal fibrosis in 2015: understanding the mechanisms of kidney fibrosis. Nat. Rev. Nephrol. 12, 68–70 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7, 684–696 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Humphreys, B. D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 80, 309–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Schunk, S. J., Floege, J., Fliser, D. & Speer, T. WNT-beta-catenin signalling — a versatile player in kidney injury and repair. Nat. Rev. Nephrol. 17, 172–184 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Moeller, M. J. et al. New aspects of kidney fibrosis-from mechanisms of injury to modulation of disease. Front. Med. 8, 814497 (2021).

    Article  Google Scholar 

  18. Ding, H. et al. MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome. Mol. Ther. 29, 2308–2320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lane, S. W., Williams, D. A. & Watt, F. M. Modulating the stem cell niche for tissue regeneration. Nat. Biotechnol. 32, 795–803 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Potapov, I., Garcia-Prat, L., Ravichandran, S., Munoz-Canoves, P. & Del Sol, A. Computational modelling of stem cell-niche interactions facilitates discovery of strategies to enhance tissue regeneration and counteract ageing. FEBS J. 289, 1486–1491 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Liu, Y. New insights into epithelial-mesenchymal transition in kidney fibrosis. J. Am. Soc. Nephrol. 21, 212–222 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Miao, J. et al. Wnt/beta-catenin/RAS signaling mediates age-related renal fibrosis and is associated with mitochondrial dysfunction. Aging Cell 18, e13004 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Canaud, G. et al. Cyclin G1 and TASCC regulate kidney epithelial cell G2-M arrest and fibrotic maladaptive repair. Sci. Transl Med. 11, eaav4754 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferenbach, D. A. & Bonventre, J. V. Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat. Rev. Nephrol. 11, 264–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheng, L. & Zhuang, S. New insights into the role and mechanism of partial epithelial-mesenchymal transition in kidney fibrosis. Front. Physiol. 11, 569322 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen, S. et al. β-Catenin-controlled tubular cell-derived exosomes play a key role in fibroblast activation via the OPN-CD44 axis. J. Extracell. Vesicles 11, e12203 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, J., Zhou, L. & Liu, Y. Cellular senescence in kidney fibrosis: pathologic significance and therapeutic strategies. Front. Pharmacol. 11, 601325 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baar, M. P. et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell 169, 132–147.e16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tan, H., Xu, J. & Liu, Y. Ageing, cellular senescence and chronic kidney disease: experimental evidence. Curr. Opin. Nephrol. Hypertens. 31, 235–243 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Hurwitz, S. N. & Meckes, D. G. Jr Extracellular vesicle integrins distinguish unique cancers. Proteomes 7, 14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang, M., Jordan, V., Blenkiron, C. & Chamley, L. W. Biodistribution of extracellular vesicles following administration into animals: a systematic review. J. Extracell. Vesicles 10, e12085 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Brigstock, D. R. Extracellular vesicles in organ fibrosis: mechanisms, therapies, and diagnostics. Cells 10, 1596 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Karpman, D., Stahl, A. L. & Arvidsson, I. Extracellular vesicles in renal disease. Nat. Rev. Nephrol. 13, 545–562 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Kok, H. M., Falke, L. L., Goldschmeding, R. & Nguyen, T. Q. Targeting CTGF, EGF and PDGF pathways to prevent progression of kidney disease. Nat. Rev. Nephrol. 10, 700–711 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Meng, X. M., Nikolic-Paterson, D. J. & Lan, H. Y. TGF-beta: the master regulator of fibrosis. Nat. Rev. Nephrol. 12, 325–338 (2016).

    Article  CAS  PubMed  Google Scholar 

  36. Kooman, J. P., Kotanko, P., Schols, A. M., Shiels, P. G. & Stenvinkel, P. Chronic kidney disease and premature ageing. Nat. Rev. Nephrol. 10, 732–742 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Zhu, H. et al. Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via αvβ6 integrin signaling. Kidney Int. 97, 1017–1031 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Theocharis, A. D., Manou, D. & Karamanos, N. K. The extracellular matrix as a multitasking player in disease. FEBS J. 286, 2830–2869 (2019).

    Article  CAS  PubMed  Google Scholar 

  39. Vasanthan, K. S., Srinivasan, V. & Pandita, D. Extracellular matrix extraction techniques and applications in biomedical engineering. Regen. Med. 16, 775–802 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Sobreiro-Almeida, R., Quinteira, R. & Neves, N. M. Renal regeneration: the role of extracellular matrix and current ECM-based tissue engineered strategies. Adv. Healthc. Mater. 10, e2100160 (2021).

    Article  PubMed  CAS  Google Scholar 

  41. Safdari, M., Bibak, B., Soltani, H. & Hashemi, J. Recent advancements in decellularized matrix technology for bone tissue engineering. Differentiation 121, 25–34 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Li, L. et al. Fibrillin-1-enriched microenvironment drives endothelial injury and vascular rarefaction in chronic kidney disease. Sci. Adv. 7, eabc7170 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feng, D., Ngov, C., Henley, N., Boufaied, N. & Gerarduzzi, C. Characterization of matricellular protein expression signatures in mechanistically diverse mouse models of kidney injury. Sci. Rep. 9, 16736 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Yin, Q. & Liu, H. Connective tissue growth factor and renal fibrosis. Adv. Exp. Med. Biol. 1165, 365–380 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Mael-Ainin, M., Abed, A., Conway, S. J., Dussaule, J. C. & Chatziantoniou, C. Inhibition of periostin expression protects against the development of renal inflammation and fibrosis. J. Am. Soc. Nephrol. 25, 1724–1736 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Murphy-Ullrich, J. E. Thrombospondin 1 and its diverse roles as a regulator of extracellular matrix in fibrotic disease. J. Histochem. Cytochem. 67, 683–699 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wong, S. L. & Sukkar, M. B. The SPARC protein: an overview of its role in lung cancer and pulmonary fibrosis and its potential role in chronic airways disease. Br. J. Pharmacol. 174, 3–14 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Gerarduzzi, C. et al. Silencing SMOC2 ameliorates kidney fibrosis by inhibiting fibroblast to myofibroblast transformation. JCI Insight 2, e90299 (2017).

    Article  PubMed Central  Google Scholar 

  49. Gerarduzzi, C., Hartmann, U., Leask, A. & Drobetsky, E. The matrix revolution: matricellular proteins and restructuring of the cancer microenvironment. Cancer Res. 80, 2705–2717 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Wallace, D. P. Periostin in the kidney. Adv. Exp. Med. Biol. 1132, 99–112 (2019).

    Article  CAS  PubMed  Google Scholar 

  51. Theocharis, A. D., Skandalis, S. S., Gialeli, C. & Karamanos, N. K. Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Tucic, M., Stamenkovic, V. & Andjus, P. The extracellular matrix glycoprotein tenascin C and adult neurogenesis. Front. Cell Dev. Biol. 9, 674199 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Midwood, K. S., Chiquet, M., Tucker, R. P. & Orend, G. Tenascin-C at a glance. J. Cell Sci. 129, 4321–4327 (2016).

    CAS  PubMed  Google Scholar 

  54. Rayego-Mateos, S. et al. Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin. Sci. 135, 1999–2029 (2021).

    Article  CAS  Google Scholar 

  55. Toda, N., Mukoyama, M., Yanagita, M. & Yokoi, H. CTGF in kidney fibrosis and glomerulonephritis. Inflamm. Regen. 38, 14 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Chen, Z. et al. Connective tissue growth factor: from molecular understandings to drug discovery. Front. Cell Dev. Biol. 8, 593269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zaykov, V. & Chaqour, B. The CCN2/CTGF interactome: an approach to understanding the versatility of CCN2/CTGF molecular activities. J. Cell Commun. Signal. 15, 567–580 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Robertson, I., Jensen, S. & Handford, P. TB domain proteins: evolutionary insights into the multifaceted roles of fibrillins and LTBPs. Biochem. J. 433, 263–276 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Adamo, C. S., Zuk, A. V. & Sengle, G. The fibrillin microfibril/elastic fibre network: a critical extracellular supramolecular scaffold to balance skin homoeostasis. Exp. Dermatol. 30, 25–37 (2021).

    Article  CAS  PubMed  Google Scholar 

  60. Prakoura, N. & Chatziantoniou, C. Periostin in kidney diseases. Cell Mol. Life Sci. 74, 4315–4320 (2017).

    Article  CAS  PubMed  Google Scholar 

  61. An, J. N. et al. Periostin induces kidney fibrosis after acute kidney injury via the p38 MAPK pathway. Am. J. Physiol. Renal Physiol. 316, F426–F437 (2019).

    Article  CAS  PubMed  Google Scholar 

  62. Prakoura, N. et al. NFκB-induced periostin activates integrin-beta3 signaling to promote renal injury in GN. J. Am. Soc. Nephrol. 28, 1475–1490 (2017).

    Article  CAS  PubMed  Google Scholar 

  63. Bian, X. et al. Knockdown of periostin attenuates 5/6 nephrectomy-induced intrarenal renin-angiotensin system activation, fibrosis, and inflammation in rats. J. Cell Physiol. 234, 22857–22873 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Um, J. E. et al. Periostin-binding DNA aptamer treatment attenuates renal fibrosis under diabetic conditions. Sci. Rep. 7, 8490 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Julovi, S. M. et al. Blocking thrombospondin-1 signaling via CD47 mitigates renal interstitial fibrosis. Lab. Invest. 100, 1184–1196 (2020).

    Article  CAS  PubMed  Google Scholar 

  66. Maimaitiyiming, H., Clemons, K., Zhou, Q., Norman, H. & Wang, S. Thrombospondin1 deficiency attenuates obesity-associated microvascular complications in ApoE−/− mice. PLoS ONE 10, e0121403 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Bige, N. et al. Thrombospondin-1 plays a profibrotic and pro-inflammatory role during ureteric obstruction. Kidney Int. 81, 1226–1238 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Toba, H., Ikemoto, M. J., Kobara, M. & Nakata, T. Secreted protein acidic and rich in cysteine (SPARC) and a disintegrin and metalloproteinase with thrombospondin type 1 motif (ADAMTS1) increments by the renin-angiotensin system induce renal fibrosis in deoxycorticosterone acetate-salt hypertensive rats. Eur. J. Pharmacol. 914, 174681 (2022).

    Article  CAS  PubMed  Google Scholar 

  69. Schmidt, I. M. et al. Cadherin-11, Sparc-related modular calcium binding protein-2, and Pigment epithelium-derived factor are promising non-invasive biomarkers of kidney fibrosis. Kidney Int. 100, 672–683 (2021).

    Article  CAS  PubMed  Google Scholar 

  70. Sorushanova, A. et al. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Adv. Mater. 31, e1801651 (2019).

    Article  PubMed  CAS  Google Scholar 

  71. Karsdal, M. A. et al. The good and the bad collagens of fibrosis — their role in signaling and organ function. Adv. Drug Deliv. Rev. 121, 43–56 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Buchtler, S. et al. Cellular origin and functional relevance of collagen I production in the kidney. J. Am. Soc. Nephrol. 29, 1859–1873 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zollinger, A. J. & Smith, M. L. Fibronectin, the extracellular glue. Matrix Biol. 60–61, 27–37 (2017).

    Article  PubMed  CAS  Google Scholar 

  74. Klingberg, F. et al. The fibronectin ED-A domain enhances recruitment of latent TGF-beta-binding protein-1 to the fibroblast matrix. J. Cell Sci. 131, jcs201293 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Sun, Q. et al. Elastin imaging enables noninvasive staging and treatment monitoring of kidney fibrosis. Sci. Transl Med. 11, eaat4865 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hu, C. et al. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr. Med. Chem. 22, 2858–2870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Afratis, N. A. et al. Syndecans — key regulators of cell signaling and biological functions. FEBS J. 284, 27–41 (2017).

    Article  CAS  PubMed  Google Scholar 

  78. Barbouri, D. et al. Syndecans as modulators and potential pharmacological targets in cancer progression. Front. Oncol. 4, 4 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Beauvais, D. M. & Rapraeger, A. C. Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. J. Cell Sci. 123, 3796–3807 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Cui, J., Jin, S., Jin, C. & Jin, Z. Syndecan-1 regulates extracellular matrix expression in keloid fibroblasts via TGF-beta1/Smad and MAPK signaling pathways. Life Sci. 254, 117326 (2020).

    Article  CAS  PubMed  Google Scholar 

  81. Scarpellini, A. et al. Syndecan-4 knockout leads to reduced extracellular transglutaminase-2 and protects against tubulointerstitial fibrosis. J. Am. Soc. Nephrol. 25, 1013–1027 (2014).

    Article  CAS  PubMed  Google Scholar 

  82. Schulz, M., Diehl, V., Trebicka, J., Wygrecka, M. & Schaefer, L. Biglycan: a regulator of hepatorenal inflammation and autophagy. Matrix Biol. 100-101, 150–161 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Nastase, M. V. et al. Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the kidney. Matrix Biol. 68–69, 293–317 (2018).

    Article  PubMed  CAS  Google Scholar 

  84. Moreth, K. et al. Biglycan-triggered TLR-2- and TLR-4-signaling exacerbates the pathophysiology of ischemic acute kidney injury. Matrix Biol. 35, 143–151 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Klingberg, F. et al. Prestress in the extracellular matrix sensitizes latent TGF-beta1 for activation. J. Cell Biol. 207, 283–297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kaul, A. et al. Hyaluronan, a double-edged sword in kidney diseases. Pediatr. Nephrol. 37, 735–744 (2022).

    Article  PubMed  Google Scholar 

  87. Albeiroti, S., Soroosh, A. & de la Motte, C. A. Hyaluronan’s role in fibrosis: a pathogenic factor or a passive player? Biomed. Res. Int. 2015, 790203 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Rudnicki, M. et al. Increased renal versican expression is associated with progression of chronic kidney disease. PLoS ONE 7, e44891 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wozniak, J., Floege, J., Ostendorf, T. & Ludwig, A. Key metalloproteinase-mediated pathways in the kidney. Nat. Rev. Nephrol. 17, 513–527 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Liu, Z., Tan, R. J. & Liu, Y. The many faces of matrix metalloproteinase-7 in kidney diseases. Biomolecules 10, 960 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  91. Tan, R. J. & Liu, Y. Matrix metalloproteinases in kidney homeostasis and diseases. Am. J. Physiol. Renal Physiol. 302, F1351–F1361 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zuo, Y. et al. Identification of matrix metalloproteinase-10 as a key mediator of podocyte injury and proteinuria. Kidney Int. 100, 837–849 (2021).

    Article  CAS  PubMed  Google Scholar 

  93. Hu, C. et al. Matrix metalloproteinase-10 protects against acute kidney injury by augmenting epidermal growth factor receptor signaling. Cell Death Dis. 12, 70 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Fu, H. et al. Matrix metalloproteinase-7 protects against acute kidney injury by priming renal tubules for survival and regeneration. Kidney Int. 95, 1167–1180 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tan, R. J. et al. Tubular injury triggers podocyte dysfunction by beta-catenin-driven release of MMP-7. JCI Insight 4, e122399 (2019).

    Article  PubMed Central  Google Scholar 

  96. Sun, X. & Liu, Y. Matrix metalloproteinase-10 in kidney injury repair and disease. Int. J. Mol. Sci. 23, 2131 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Prat-Duran, J., Pinilla, E., Norregaard, R., Simonsen, U. & Buus, N. H. Transglutaminase 2 as a novel target in chronic kidney disease — methods, mechanisms and pharmacological inhibition. Pharmacol. Ther. 222, 107787 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Nguyen, L. T. et al. Lysyl oxidase inhibitors attenuate cyclosporin A-induced nephropathy in mouse. Sci. Rep. 11, 12437 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Zhou, D. et al. Early activation of fibroblasts is required for kidney repair and regeneration after injury. FASEB J. 33, 12576–12587 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, S. et al. Tenascin-C protects against acute kidney injury by recruiting Wnt ligands. Kidney Int. 95, 62–74 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Yuan, Q., Tan, R. J. & Liu, Y. Myofibroblast in kidney fibrosis: origin, activation, and regulation. Adv. Exp. Med. Biol. 1165, 253–283 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Xiao, L. et al. Sustained activation of Wnt/β-catenin signaling drives AKI to CKD progression. J. Am. Soc. Nephrol. 27, 1727–1740 (2016).

    Article  CAS  PubMed  Google Scholar 

  103. Zhou, D. et al. Sonic hedgehog is a novel tubule-derived growth factor for interstitial fibroblasts after kidney injury. J. Am. Soc. Nephrol. 25, 2187–2200 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Cooper, J. G. et al. Fibronectin EDA forms the chronic fibrotic scar after contusive spinal cord injury. Neurobiol. Dis. 116, 60–68 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Klingberg, F., Hinz, B. & White, E. S. The myofibroblast matrix: implications for tissue repair and fibrosis. J. Pathol. 229, 298–309 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zeisberg, M. & Kalluri, R. The role of epithelial-to-mesenchymal transition in renal fibrosis. J. Mol. Med. 82, 175–181 (2004).

    Article  PubMed  Google Scholar 

  107. Shafieian, M., Chen, S. & Wu, S. Integrin-linked kinase mediates CTGF-induced epithelial to mesenchymal transition in alveolar type II epithelial cells. Pediatr. Res. 77, 520–527 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Midwood, K. et al. Tenascin-C is an endogenous activator of Toll-like receptor 4 that is essential for maintaining inflammation in arthritic joint disease. Nat. Med. 15, 774–780 (2009).

    Article  CAS  PubMed  Google Scholar 

  109. Sanchez-Lopez, E. et al. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-κB. J. Am. Soc. Nephrol. 20, 1513–1526 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Li, Y., Qi, X., Tong, X. & Wang, S. Thrombospondin 1 activates the macrophage Toll-like receptor 4 pathway. Cell Mol. Immunol. 10, 506–512 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Socha, M. J., Manhiani, M., Said, N., Imig, J. D. & Motamed, K. Secreted protein acidic and rich in cysteine deficiency ameliorates renal inflammation and fibrosis in angiotensin hypertension. Am. J. Pathol. 171, 1104–1112 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Toba, H. et al. Secreted protein acidic and rich in cysteine facilitates age-related cardiac inflammation and macrophage M1 polarization. Am. J. Physiol. Cell Physiol. 308, C972–C982 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Poluzzi, C. et al. Biglycan evokes autophagy in macrophages via a novel CD44/Toll-like receptor 4 signaling axis in ischemia/reperfusion injury. Kidney Int. 95, 540–562 (2019).

    Article  CAS  PubMed  Google Scholar 

  114. Zeng-Brouwers, J., Pandey, S., Trebicka, J., Wygrecka, M. & Schaefer, L. Communications via the small leucine-rich proteoglycans: molecular specificity in inflammation and autoimmune diseases. J. Histochem. Cytochem. 68, 887–906 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Tang, P. C. et al. Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition. Adv. Sci. 9, e2101235 (2022).

    Article  CAS  Google Scholar 

  116. Tang, P. M., Nikolic-Paterson, D. J. & Lan, H. Y. Macrophages: versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol. 15, 144–158 (2019).

    Article  PubMed  Google Scholar 

  117. Doi, K., Noiri, E. & Fujita, T. Role of vascular endothelial growth factor in kidney disease. Curr. Vasc. Pharmacol. 8, 122–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  118. Belotti, D., Capelli, C., Resovi, A., Introna, M. & Taraboletti, G. Thrombospondin-1 promotes mesenchymal stromal cell functions via TGFβ and in cooperation with PDGF. Matrix Biol. 55, 106–116 (2016).

    Article  CAS  PubMed  Google Scholar 

  119. Sun, D. et al. Thrombospondin-1 short hairpin RNA suppresses tubulointerstitial fibrosis in the kidney of ureteral obstruction by ameliorating peritubular capillary injury. Kidney Blood Press. Res. 35, 35–47 (2012).

    Article  PubMed  CAS  Google Scholar 

  120. Srivastava, S. P., Hedayat, A. F., Kanasaki, K. & Goodwin, J. E. microRNA crosstalk influences epithelial-to-mesenchymal, endothelial-to-mesenchymal, and macrophage-to-mesenchymal transitions in the kidney. Front. Pharmacol. 10, 904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Xu-Dubois, Y. C. et al. Markers of endothelial-to-mesenchymal transition: evidence for antibody-endothelium interaction during antibody-mediated rejection in kidney recipients. J. Am. Soc. Nephrol. 27, 324–332 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Tan, R. J., Zhou, D. & Liu, Y. Signaling crosstalk between tubular epithelial cells and interstitial fibroblasts after kidney injury. Kidney Dis. 2, 136–144 (2016).

    Article  Google Scholar 

  123. Liu, B. C., Tang, T. T., Lv, L. L. & Lan, H. Y. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int. 93, 568–579 (2018).

    Article  CAS  PubMed  Google Scholar 

  124. Zhou, D. et al. Tubule-derived Wnts are required for fibroblast activation and kidney fibrosis. J. Am. Soc. Nephrol. 28, 2322–2336 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Liu, X. et al. Tubule-derived exosomes play a central role in fibroblast activation and kidney fibrosis. Kidney Int. 97, 1181–1195 (2020).

    Article  CAS  PubMed  Google Scholar 

  126. Achterberg, V. F. et al. The nano-scale mechanical properties of the extracellular matrix regulate dermal fibroblast function. J. Invest. Dermatol. 134, 1862–1872 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Pakshir, P. & Hinz, B. The big five in fibrosis: macrophages, myofibroblasts, matrix, mechanics, and miscommunication. Matrix Biol. 68–69, 81–93 (2018).

    Article  PubMed  CAS  Google Scholar 

  128. Lu, P., Weaver, V. M. & Werb, Z. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196, 395–406 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. De Laporte, L., Rice, J. J., Tortelli, F. & Hubbell, J. A. Tenascin C promiscuously binds growth factors via its fifth fibronectin type III-like domain. PLoS ONE 8, e62076 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schnittert, J., Bansal, R., Storm, G. & Prakash, J. Integrins in wound healing, fibrosis and tumor stroma: high potential targets for therapeutics and drug delivery. Adv. Drug Deliv. Rev. 129, 37–53 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Sun, Z., Costell, M. & Fassler, R. Integrin activation by talin, kindlin and mechanical forces. Nat. Cell Biol. 21, 25–31 (2019).

    Article  CAS  PubMed  Google Scholar 

  133. Horton, E. R. et al. The integrin adhesome network at a glance. J. Cell Sci. 129, 4159–4163 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Hahm, K. et al. αvβ6 integrin regulates renal fibrosis and inflammation in Alport mouse. Am. J. Pathol. 170, 110–125 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624 (2013).

    Article  CAS  PubMed  Google Scholar 

  136. Bandyopadhyay, A. & Raghavan, S. Defining the role of integrin αvβ6 in cancer. Curr. Drug Targets 10, 645–652 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Weston, B. S., Wahab, N. A. & Mason, R. M. CTGF mediates TGF-β-induced fibronectin matrix deposition by upregulating active α5β1 integrin in human mesangial cells. J. Am. Soc. Nephrol. 14, 601–610 (2003).

    Article  CAS  PubMed  Google Scholar 

  138. Lin, M. et al. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 86–102 (2012).

    Article  CAS  PubMed  Google Scholar 

  139. Souza, A. C. et al. TLR4 mutant mice are protected from renal fibrosis and chronic kidney disease progression. Physiol. Rep. 3, e12558 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ma, J. et al. TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PLoS ONE 9, e97985 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Pushpakumar, S. et al. Toll-like receptor 4 deficiency reduces oxidative stress and macrophage mediated inflammation in hypertensive kidney. Sci. Rep. 7, 6349 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Kimura, T. et al. Tenascin-C accelerates adverse ventricular remodelling after myocardial infarction by modulating macrophage polarization. Cardiovasc. Res. 115, 614–624 (2019).

    Article  CAS  PubMed  Google Scholar 

  143. Bhattacharyya, S. et al. Tenascin-C drives persistence of organ fibrosis. Nat. Commun. 7, 11703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Gondokaryono, S. P. et al. The extra domain A of fibronectin stimulates murine mast cells via Toll-like receptor 4. J. Leukoc. Biol. 82, 657–665 (2007).

    Article  CAS  PubMed  Google Scholar 

  145. Schaefer, L. et al. The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages. J. Clin. Invest. 115, 2223–2233 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Ren, Q., Chen, J. & Liu, Y. LRP5 and LRP6 in Wnt signaling: similarity and divergence. Front. Cell Dev. Biol. 9, 670960 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Mo, H. et al. CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling. Theranostics 12, 767–781 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zuo, Y. & Liu, Y. New insights into the role and mechanism of Wnt/β-catenin signalling in kidney fibrosis. Nephrology 23 (Suppl. 4), 38–43 (2018).

    Article  CAS  PubMed  Google Scholar 

  149. Zhou, L. & Liu, Y. Wnt/β-catenin signalling and podocyte dysfunction in proteinuric kidney disease. Nat. Rev. Nephrol. 11, 535–545 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Zhou, T. et al. Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic nephropathy. Diabetologia 55, 255–266 (2012).

    Article  CAS  PubMed  Google Scholar 

  151. Ren, S. et al. LRP-6 is a coreceptor for multiple fibrogenic signaling pathways in pericytes and myofibroblasts that are inhibited by DKK-1. Proc. Natl Acad. Sci. USA 110, 1440–1445 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Berendsen, A. D. et al. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc. Natl Acad. Sci. USA 108, 17022–17027 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aggelidakis, J. et al. Biglycan regulates MG63 osteosarcoma cell growth through a LPR6/β-catenin/IGFR-IR signaling axis. Front. Oncol. 8, 470 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Li, J. et al. Fibronectin type III domain containing four promotes differentiation of C2C12 through the Wnt/β-catenin signaling pathway. FASEB J. 34, 7759–7772 (2020).

    Article  CAS  PubMed  Google Scholar 

  155. Kim, K. A. et al. R-Spondin proteins: a novel link to β-catenin activation. Cell Cycle 5, 23–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Johnson, B. G. et al. Connective tissue growth factor domain 4 amplifies fibrotic kidney disease through activation of LDL receptor-related protein 6. J. Am. Soc. Nephrol. 28, 1769–1782 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Walraven, M. & Hinz, B. Therapeutic approaches to control tissue repair and fibrosis: extracellular matrix as a game changer. Matrix Biol. 71–72, 205–224 (2018).

    Article  PubMed  CAS  Google Scholar 

  158. Szeto, S. G. et al. YAP/TAZ are mechanoregulators of TGF-β-Smad signaling and renal fibrogenesis. J. Am. Soc. Nephrol. 27, 3117–3128 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Chen, H. et al. Mechanosensing by the alpha6-integrin confers an invasive fibroblast phenotype and mediates lung fibrosis. Nat. Commun. 7, 12564 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Htwe, S. S. et al. Role of Rho-associated coiled-coil forming kinase isoforms in regulation of stiffness-induced myofibroblast differentiation in lung fibrosis. Am. J. Respir. Cell Mol. Biol. 56, 772–783 (2017).

    Article  CAS  PubMed  Google Scholar 

  161. Sivaraman, K. & Shanthi, C. Matrikines for therapeutic and biomedical applications. Life Sci. 214, 22–33 (2018).

    Article  CAS  PubMed  Google Scholar 

  162. Farris, A. B. & Alpers, C. E. What is the best way to measure renal fibrosis?: A pathologist’s perspective. Kidney Int. Suppl. 4, 9–15 (2014).

    Article  Google Scholar 

  163. Chen, Y. et al. Assessment of a computerized quantitative quality control tool for whole slide images of kidney biopsies. J. Pathol. 253, 268–278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bulow, R. D. & Boor, P. Extracellular matrix in kidney fibrosis: more than just a scaffold. J. Histochem. Cytochem. 67, 643–661 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Hwang, J. H. et al. Urinary periostin excretion predicts renal outcome in IgA nephropathy. Am. J. Nephrol. 44, 481–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  166. Paunas, F. T. I. et al. Characterization of glomerular extracellular matrix in IgA nephropathy by proteomic analysis of laser-captured microdissected glomeruli. BMC Nephrol. 20, 410 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yang, X. et al. Urinary matrix metalloproteinase 7 and prediction of IgA nephropathy progression. Am. J. Kidney Dis. 75, 384–393 (2020).

    Article  CAS  PubMed  Google Scholar 

  168. Nanthakumar, C. B. et al. Dissecting fibrosis: therapeutic insights from the small-molecule toolbox. Nat. Rev. Drug Discov. 14, 693–720 (2015).

    Article  CAS  PubMed  Google Scholar 

  169. Venning, F. A., Wullkopf, L. & Erler, J. T. Targeting ECM disrupts cancer progression. Front. Oncol. 5, 224 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Arpino, V., Brock, M. & Gill, S. E. The role of TIMPs in regulation of extracellular matrix proteolysis. Matrix Biol. 44–46, 247–254 (2015).

    Article  PubMed  CAS  Google Scholar 

  171. Zhou, D. et al. Matrix metalloproteinase-7 is a urinary biomarker and pathogenic mediator of kidney fibrosis. J. Am. Soc. Nephrol. 28, 598–611 (2017).

    Article  CAS  PubMed  Google Scholar 

  172. Yuan, Q. et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat. Commun. 13, 438 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sun, Y. et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell 184, 404–421.e16 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Wilson, P. C. & Humphreys, B. D. Single-cell genomics and gene editing: implications for nephrology. Nat. Rev. Nephrol. 15, 63–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis. Nature 589, 281–286 (2021).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work was supported by the National Natural Science Foundation of China (NSFC) grant 81920108007, National Institutes of Health grant DK064005 and Bioland Laboratory grants 2018GZR110104001 and 2018GZR110102004. L.L. was supported by NSFC grant 82100785 and China Postdoctoral Science Foundation grant 2021M691471.

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived the article and provided the outlines of the manuscript. L.L. researched data for the article. L.L. and Y.L. wrote the manuscript. L.L. and H.F. made the figures. All authors made substantial contributions to discussions of the content and edited the manuscript before submission.

Corresponding author

Correspondence to Youhua Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Nephrology thanks Christos Chatziantoniou, Hui Yao Lan and Marta Ruiz-Ortega, who co-reviewed with Raul R. Rodrigues-Diez, for their contributions to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Proteolysis: https://www.sciencedirect.com/topics/medicine-and-dentistry/protein-degradation

Glossary

Partial epithelial-to-mesenchymal transition

(Partial EMT). Tubular epithelial cells undergo a process of partial EMT in vivo in which they exhibit some phenotypic changes but stay within the tubular compartment. Partial EMT could be viewed as a transitional stage in which epithelial cells can further regress to cell-cycle arrest and senescence or return to normal epithelia.

Extracellular vesicles

Lipid bilayer-encircled particles that are released from almost all cell types and carry a cargo of proteins, mRNAs, microRNAs, long non-coding RNAs, lipids and metabolites. Extracellular vesicles can mediate cell–cell communication and signal exchange and are thought to have important roles in regulating biological processes including embryogenesis, injury repair and regeneration and the pathogenesis of disease.

Stem cell niche

A specific tissue microenvironment in which stem cells are present in an undifferentiated and self-renewable state.

Kidney tissue scaffolds

(KTS). Decellularized extracellular matrix scaffold derived from normal or diseased kidneys that retains the critical structural, mechanical and physiological properties of renal structures.

Matrikines

Peptides that are liberated by partial proteolysis of extracellular matrix proteins such as collagens, fibronectin, laminins, elastin and matricellular proteins. Matrikines are able to regulate biological processes and often have activities that are different from those of their parent proteins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Fu, H. & Liu, Y. The fibrogenic niche in kidney fibrosis: components and mechanisms. Nat Rev Nephrol 18, 545–557 (2022). https://doi.org/10.1038/s41581-022-00590-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41581-022-00590-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing