Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Circadian clock communication during homeostasis and ageing

Abstract

Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs. Numerous inputs for a specific tissue are produced by the activity of circadian clocks of other tissues or cell types, generating a form of crosstalk known as clock communication. In mammals, the central clock in the hypothalamus integrates signals from external light–dark cycles to align peripheral clocks elsewhere in the body. This regulation is complemented by a tissue-specific milieu of external, systemic and niche inputs that modulate and cooperate with the cellular circadian clock machinery of a tissue to tailor its functional output. These mechanisms of clock communication decay during ageing, and growing evidence suggests that this decline might drive ageing-related morbidities. Dietary, behavioural and pharmacological interventions may offer the possibility to overcome these changes and in turn improve healthspan.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cellular circadian clock machinery and associated oscillators.
Fig. 2: Central–peripheral clock entrainment.
Fig. 3: Circadian inputs and outputs of peripheral tissues.
Fig. 4: Ageing-associated decay in clock communication.

Similar content being viewed by others

References

  1. Billman, G. E. Homeostasis: the underappreciated and far too often ignored central organizing principle of physiology. Front. Physiol. 11, 200 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Eelderink-Chen, Z. et al. A circadian clock in a nonphotosynthetic prokaryote. Sci. Adv. 7, eabe2086 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanchez, S. E. & Kay, S. A. The plant circadian clock: from a simple timekeeper to a complex developmental manager. Cold Spring Harb. Perspect. Biol. 8, a027748 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Takahashi, J. S. Transcriptional architecture of the mammalian circadian clock. Nat. Rev. Genet. 18, 164–179 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Balsalobre, A., Damiola, F. & Schibler, U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93, 929–937 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Zhang, R., Lahens, N. F., Ballance, H. I., Hughes, M. E. & Hogenesch, J. B. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc. Natl Acad. Sci. USA 111, 16219–16224 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen, M. et al. Reprogramming of rhythmic liver metabolism by intestinal clock. J. Hepatol. 79, 741–757 (2023).

    Article  CAS  PubMed  Google Scholar 

  8. Delbès, A.-S. et al. Mice with humanized livers reveal the role of hepatocyte clocks in rhythmic behavior. Sci. Adv. 9, eadf2982 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Greco, C. M. et al. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Sci. Adv. 7, eabi7828 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guan, D. et al. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science 369, 1388–1394 (2020). A study demonstrating intra-organ clock communication between different cell types.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manella, G. et al. The liver-clock coordinates rhythmicity of peripheral tissues in response to feeding. Nat. Metab. 3, 829 (2021). Together with Greco et al. (2021), this study reports the capacity of the liver clock to influence the daily physiology of distal peripheral tissues.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Smith, J. G. et al. Liver and muscle circadian clocks cooperate to support glucose tolerance in mice. Cell Rep. 42, 112588 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hartl, F. U. Cellular homeostasis and aging. Annu. Rev. Biochem. 85, 1–4 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Hood, S. & Amir, S. The aging clock: circadian rhythms and later life. J. Clin. Invest. 127, 437–446 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Welz, P.-S. & Benitah, S. A. Molecular connections between circadian clocks and aging. J. Mol. Biol. 432, 3661–3679 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Gekakis, N. et al. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. King, D. P. et al. Positional cloning of the mouse circadian clock gene. Cell 89, 641–653 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Shearman, L. P. et al. Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Busino, L. et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science 316, 900–904 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Godinho, S. I. H. et al. The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science 316, 897–900 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Meng, Q.-J. et al. Setting clock speed in mammals: the CK1ε tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78–88 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siepka, S. M. et al. Circadian mutant Overtime reveals F-box protein FBXL3 regulation of Cryptochrome and Period gene expression. Cell 129, 1011–1023 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Preitner, N. et al. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Sato, T. K. et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527–537 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Gachon, F. et al. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 18, 1397–1412 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mitsui, S., Yamaguchi, S., Matsuo, T., Ishida, Y. & Okamura, H. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15, 995–1006 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mure, L. S. et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science 359, eaao0318 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang, Y. et al. A proteomics landscape of circadian clock in mouse liver. Nat. Commun. 9, 1553 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang, J. et al. Nuclear proteomics uncovers diurnal regulatory landscapes in mouse liver. Cell Metab. 25, 102–117 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kojima, S., Sher-Chen, E. L. & Green, C. B. Circadian control of mRNA polyadenylation dynamics regulates rhythmic protein expression. Genes Dev. 26, 2724–2736 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lipton, J. O. et al. The circadian protein BMAL1 regulates translation in response to S6K1-mediated phosphorylation. Cell 161, 1138–1151 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. O’Neill, J. S. & Reddy, A. B. Circadian clocks in human red blood cells. Nature 469, 498–503 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Henslee, E. A. et al. Rhythmic potassium transport regulates the circadian clock in human red blood cells. Nat. Commun. 8, 1978 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hastings, M. H., Maywood, E. S. & Brancaccio, M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat. Rev. Neurosci. 19, 453–469 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Hattar, S., Liao, H.-W., Takao, M., Berson, D. M. & Yau, K.-W. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065–1070 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moore, R. Y. & Lenn, N. J. A retinohypothalamic projection in the rat. J. Comp. Neurol. 146, 1–14 (1972).

    Article  CAS  PubMed  Google Scholar 

  38. Panda, S. et al. Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298, 2213–2216 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Moore, R. Y. & Eichler, V. B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42, 201–206 (1972).

    Article  CAS  PubMed  Google Scholar 

  40. Oster, H. et al. The functional and clinical significance of the 24-hour rhythm of circulating glucocorticoids. Endocr. Rev. 38, 3–45 (2017).

    Article  PubMed  Google Scholar 

  41. Oster, H. et al. The circadian rhythm of glucocorticoids is regulated by a gating mechanism residing in the adrenal cortical clock. Cell Metab. 4, 163–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Kroon, J. et al. A physiological glucocorticoid rhythm is an important regulator of brown adipose tissue function. Mol. Metab. 47, 101179 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schilperoort, M. et al. Loss of glucocorticoid rhythm induces an osteoporotic phenotype in female mice. Aging Cell 20, e13474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tholen, S. et al. Flattening of circadian glucocorticoid oscillations drives acute hyperinsulinemia and adipocyte hypertrophy. Cell Rep. 39, 111018 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balsalobre, A. et al. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Reddy, A. B. et al. Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45, 1478–1488 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Torra, I. P. et al. Circadian and glucocorticoid regulation of Rev-erbα expression in liver. Endocrinology 141, 3799–3806 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Dickmeis, T., Weger, B. D. & Weger, M. The circadian clock and glucocorticoids-interactions across many time scales. Mol. Cell Endocrinol. 380, 2–15 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. Lamia, K. A. et al. Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature 480, 552–556 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang, X. et al. Nuclear receptor expression links the circadian clock to metabolism. Cell 126, 801–810 (2006).

    Article  CAS  PubMed  Google Scholar 

  51. Quagliarini, F. et al. Cistromic reprogramming of the diurnal glucocorticoid hormone response by high-fat diet. Mol. Cell 76, 531–545 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Soták, M. et al. Peripheral circadian clocks are diversely affected by adrenalectomy. Chronobiol. Int. 33, 520–529 (2016).

    Article  PubMed  Google Scholar 

  53. Sujino, M. et al. Differential entrainment of peripheral clocks in the rat by glucocorticoid and feeding. Endocrinology 153, 2277–2286 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Cipolla-Neto, J. & Amaral, F. G. D. Melatonin as a hormone: new physiological and clinical insights. Endocr. Rev. 39, 990–1028 (2018).

    Article  PubMed  Google Scholar 

  55. Pevet, P. & Challet, E. Melatonin: both master clock output and internal time-giver in the circadian clocks network. J. Physiol. Paris 105, 170–182 (2011).

    Article  PubMed  Google Scholar 

  56. Lewy, A. J., Wehr, T. A., Goodwin, F. K., Newsome, D. A. & Markey, S. P. Light suppresses melatonin secretion in humans. Science 210, 1267–1269 (1980).

    Article  CAS  PubMed  Google Scholar 

  57. Zeitzer, J. M., Dijk, D. J., Kronauer, R., Brown, E. & Czeisler, C. Sensitivity of the human circadian pacemaker to nocturnal light: melatonin phase resetting and suppression. J. Physiol. 526, 695–702 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Cecon, E., Oishi, A. & Jockers, R. Melatonin receptors: molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 175, 3263–3280 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Dardente, H. et al. Melatonin induces Cry1 expression in the pars tuberalis of the rat. Brain Res. Mol. Brain Res. 114, 101–106 (2003).

    Article  CAS  PubMed  Google Scholar 

  60. Messager, S., Garabette, M. L., Hastings, M. H. & Hazlerigg, D. G. Tissue-specific abolition of Per1 expression in the pars tuberalis by pinealectomy in the Syrian hamster. Neuroreport 12, 579–582 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. von Gall, C. et al. Rhythmic gene expression in pituitary depends on heterologous sensitization by the neurohormone melatonin. Nat. Neurosci. 5, 234–238 (2002).

    Article  Google Scholar 

  62. Alonso-Vale, M. I. C. et al. Melatonin and the circadian entrainment of metabolic and hormonal activities in primary isolated adipocytes. J. Pineal Res. 45, 422–429 (2008).

    Article  CAS  PubMed  Google Scholar 

  63. de Farias Tda, S. et al. Pinealectomy interferes with the circadian clock genes expression in white adipose tissue. J. Pineal Res. 58, 251–261 (2015).

    Article  PubMed  Google Scholar 

  64. Torres-Farfan, C. et al. A circadian clock entrained by melatonin is ticking in the rat fetal adrenal. Endocrinology 152, 1891–1900 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Gillette, M. U. & McArthur, A. J. Circadian actions of melatonin at the suprachiasmatic nucleus. Behav. Brain Res. 73, 135–139 (1996).

    Article  CAS  PubMed  Google Scholar 

  66. Agez, L., Laurent, V., Pévet, P., Masson-Pévet, M. & Gauer, F. Melatonin affects nuclear orphan receptors mRNA in the rat suprachiasmatic nuclei. Neuroscience 144, 522–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Lu, Q. & Kim, J. Y. Mammalian circadian networks mediated by the suprachiasmatic nucleus. FEBS J. 289, 6589–6604 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Brownstein, M. & Axelrod, J. Pineal gland: 24-hour rhythm in norepinephrine turnover. Science 184, 163–165 (1974).

    Article  CAS  PubMed  Google Scholar 

  69. Ziegler, M. C., Lake, C. R., Wood, J. H. & Ebert, M. H. Circadian rhythm in cerebrospinal fluid noradrenaline of man and monkey. Nature 264, 656–658 (1976).

    Article  CAS  PubMed  Google Scholar 

  70. Leach, S. & Suzuki, K. Adrenergic signaling in circadian control of immunity. Front. Immunol. 11, 1235 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cailotto, C. et al. The suprachiasmatic nucleus controls the daily variation of plasma glucose via the autonomic output to the liver: are the clock genes involved? Eur. J. Neurosci. 22, 2531–2540 (2005).

    Article  PubMed  Google Scholar 

  72. Terazono, H. et al. Adrenergic regulation of clock gene expression in mouse liver. Proc. Natl Acad. Sci. USA 100, 6795–6800 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ishida, A. et al. Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2, 297–307 (2005).

    Article  CAS  PubMed  Google Scholar 

  74. Fu, L., Patel, M. S., Bradley, A., Wagner, E. F. & Karsenty, G. The molecular clock mediates leptin-regulated bone formation. Cell 122, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Vujovic, N., Davidson, A. J. & Menaker, M. Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R355–R360 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Basso, A. & Piantanelli, L. Influence of age on circadian rhythms of adrenoceptors in brain cortex, heart and submandibular glands of BALB/c mice: when circadian studies are not only useful but necessary. Exp. Gerontol. 37, 1441–1450 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Morf, J. & Schibler, U. Body temperature cycles. Cell Cycle 12, 539–540 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Refinetti, R. Circadian rhythmicity of body temperature and metabolism. Temperature 7, 321–362 (2020).

    Article  Google Scholar 

  79. Brown, S. A., Zumbrunn, G., Fleury-Olela, F., Preitner, N. & Schibler, U. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12, 1574–1583 (2002).

    Article  CAS  PubMed  Google Scholar 

  80. Buhr, E. D., Yoo, S.-H. & Takahashi, J. S. Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379–385 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Reinke, H. et al. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev. 22, 331–345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Saini, C., Morf, J., Stratmann, M., Gos, P. & Schibler, U. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 26, 567–580 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liu, Z. et al. SIRT7 couples light-driven body temperature cues to hepatic circadian phase coherence and gluconeogenesis. Nat. Metab. 1, 1141–1156 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Gotic, I. et al. Temperature regulates splicing efficiency of the cold-inducible RNA-binding protein gene Cirbp. Genes Dev. 30, 2005–2017 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Morf, J. et al. Cold-inducible RNA-binding protein modulates circadian gene expression posttranscriptionally. Science 338, 379–383 (2012).

    Article  CAS  PubMed  Google Scholar 

  86. Hoekstra, M. M., Emmenegger, Y., Hubbard, J. & Franken, P. Cold-inducible RNA-binding protein (CIRBP) adjusts clock-gene expression and REM-sleep recovery following sleep deprivation. Elife 8, e43400 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kornmann, B., Schaad, O., Bujard, H., Takahashi, J. S. & Schibler, U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLOS Biol. 5, e34 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Miyake, T. et al. Minimal upstream open reading frame of Per2 mediates phase fitness of the circadian clock to day/night physiological body temperature rhythm. Cell Rep. 42, 112157 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Shao, X., Miyake, T., Inoue, Y., Hasegawa, E. & Doi, M. Temperature-dependent upregulation of Per2 protein expression is mediated by eIF2α kinases PERK and PKR through PI3K activation. Biol. Pharm. Bull. 47, 600–605 (2024).

    Article  CAS  PubMed  Google Scholar 

  90. Damiola, F. et al. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Pickel, L. & Sung, H.-K. Feeding rhythms and the circadian regulation of metabolism. Front. Nutr. https://doi.org/10.3389/fnut.2020.00039 (2020).

  92. Wehrens, S. M. T. et al. Meal timing regulates the human circadian system. Curr. Biol. 27, 1768–1775 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Stokkan, K. A., Yamazaki, S., Tei, H., Sakaki, Y. & Menaker, M. Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493 (2001). Together with Damiola et al. (2000), this reports that feeding rhythms can entrain peripheral clocks.

    Article  CAS  PubMed  Google Scholar 

  94. Challet, E. The circadian regulation of food intake. Nat. Rev. Endocrinol. 15, 393–405 (2019).

    Article  PubMed  Google Scholar 

  95. Chen, S. et al. Angptl8 mediates food-driven resetting of hepatic circadian clock in mice. Nat. Commun. 10, 3518 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Crosby, P. et al. Insulin/IGF-1 drives PERIOD synthesis to entrain circadian rhythms with feeding time. Cell 177, 896–909 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fougeray, T. et al. The hepatocyte insulin receptor is required to program the liver clock and rhythmic gene expression. Cell Rep. 39, 110674 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Landgraf, D. et al. Oxyntomodulin regulates resetting of the liver circadian clock by food. eLife 4, e06253 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Sato, M., Murakami, M., Node, K., Matsumura, R. & Akashi, M. The role of the endocrine system in feeding-induced tissue-specific circadian entrainment. Cell Rep. 8, 393–401 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. Adamovich, Y. et al. Oxygen and carbon dioxide rhythms are circadian clock controlled and differentially directed by behavioral signals. Cell Metab. 29, 1092–1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  101. Reinke, H. & Asher, G. Crosstalk between metabolism and circadian clocks. Nat. Rev. Mol. Cell Biol. 20, 227–241 (2019).

    Article  CAS  PubMed  Google Scholar 

  102. Asher, G. et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328 (2008).

    Article  CAS  PubMed  Google Scholar 

  103. Nakahata, Y. et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lamia, K. A. et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437–440 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Asher, G. et al. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943–953 (2010).

    Article  CAS  PubMed  Google Scholar 

  106. Kinouchi, K. et al. Fasting imparts a switch to alternative daily pathways in liver and muscle. Cell Rep. 25, 3299–3314 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kuroda, H. et al. Meal frequency patterns determine the phase of mouse peripheral circadian clocks. Sci. Rep. 2, 711 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Mukherji, A., Kobiita, A. & Chambon, P. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc. Natl Acad. Sci. USA 112, E6683–E6690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xie, X. et al. Natural food intake patterns have little synchronizing effect on peripheral circadian clocks. BMC Biol. 18, 160 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Kumar, A. et al. Brain-muscle communication prevents muscle aging by maintaining daily physiology. Science 384, 563–572 (2024).

    Article  CAS  PubMed  Google Scholar 

  111. Le Minh, N., Damiola, F., Tronche, F., Schütz, G. & Schibler, U. Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20, 7128–7136 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Xin, H. et al. A multi-tissue multi-omics analysis reveals distinct kineztics in entrainment of diurnal transcriptomes by inverted feeding. iScience 24, 102335 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Welz, P.-S. et al. BMAL1-driven tissue clocks respond independently to light to maintain homeostasis. Cell 177, 1436–1447 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Koronowski, K. B. et al. Defining the independence of the liver circadian clock. Cell 177, 1448–1462 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Mortimer, T. et al. The epidermal circadian clock integrates and subverts brain signals to guarantee skin homeostasis. Cell Stem Cell 31, 834–849 (2024).

    Article  CAS  PubMed  Google Scholar 

  116. Greenwell, B. J. et al. Rhythmic food intake drives rhythmic gene expression more potently than the hepatic circadian clock in mice. Cell Rep. 27, 649–657 (2019).

    Article  CAS  PubMed  Google Scholar 

  117. Lundell, L. S. et al. Time-restricted feeding alters lipid and amino acid metabolite rhythmicity without perturbing clock gene expression. Nat. Commun. 11, 4643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Deota, S. et al. Diurnal transcriptome landscape of a multi-tissue response to time-restricted feeding in mammals. Cell Metab. 35, 150–165 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Dyar, K. A. et al. The calcineurin-NFAT pathway controls activity-dependent circadian gene expression in slow skeletal muscle. Mol. Metab. 4, 823–833 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Adamovich, Y. et al. Circadian clocks and feeding time regulate the oscillations and levels of hepatic triglycerides. Cell Metab. 19, 319–330 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Atger, F. et al. Circadian and feeding rhythms differentially affect rhythmic mRNA transcription and translation in mouse liver. Proc. Natl Acad. Sci. USA 112, E6579–E6588 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Vollmers, C. et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc. Natl Acad. Sci. 106, 21453–21458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Chaix, A., Lin, T., Le, H. D., Chang, M. W. & Panda, S. Time-restricted feeding prevents obesity and metabolic syndrome in mice lacking a circadian clock. Cell Metab. 29, 303–319 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Alkhoury, C. et al. Class 3 PI3K coactivates the circadian clock to promote rhythmic de novo purine synthesis. Nat. Cell Biol. 25, 975–988 (2023). An elegant study delineating a mechanism that allows systemic signals to shape liver clock output.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Petrus, P. et al. The central clock suffices to drive the majority of circulatory metabolic rhythms. Sci. Adv. 8, eabo2896 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Masri, S. et al. Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659–672 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Thaiss, C. A. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell 167, 1495–1510 (2016).

    Article  CAS  PubMed  Google Scholar 

  128. Thaiss, C. A. et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514–529 (2014). Together with Thaiss et al. (2016), this study reports that host–microbiota interactions in the gut could regulate peripheral tissue circadian rhythms.

    Article  CAS  PubMed  Google Scholar 

  129. Tahara, Y. et al. Gut microbiota-derived short chain fatty acids induce circadian clock entrainment in mouse peripheral tissue. Sci. Rep. 8, 1395 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Weger, B. D. et al. The mouse microbiome is required for sex-specific diurnal rhythms of gene expression and metabolism. Cell Metab. 29, 362–382 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Murakami, M. et al. Gut microbiota directs PPARγ‐driven reprogramming of the liver circadian clock by nutritional challenge. EMBO Rep. 17, 1292–1303 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brooks, J. F. et al. The microbiota coordinates diurnal rhythms in innate immunity with the circadian clock. Cell 184, 4154–4167.e12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Godinho-Silva, C. et al. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574, 254–258 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Talbot, J. et al. Feeding-dependent VIP neuron–ILC3 circuit regulates the intestinal barrier. Nature 579, 575–580 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang, Y. et al. The intestinal microbiota regulates body composition through NFIL3 and the circadian clock. Science 357, 912–916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Noguchi, T., Wang, L. L. & Welsh, D. K. Fibroblast PER2 circadian rhythmicity depends on cell density. J. Biol. Rhythms 28, 183–192 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. O’Neill, J. S. & Hastings, M. H. Increased coherence of circadian rhythms in mature fibroblast cultures. J. Biol. Rhythms 23, 483–488 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Guenthner, C. J. et al. Circadian rhythms of PER2::LUC in individual primary mouse hepatocytes and cultures. PLoS ONE 9, e87573 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Park, J.-S. et al. Differential phase arrangement of cellular clocks along the tonotopic axis of the mouse cochlea ex vivo. Curr. Biol. 27, 2623–2629 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Finger, A.-M. et al. Intercellular coupling between peripheral circadian oscillators by TGF-β signaling. Sci. Adv. 7, eabg5174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nagoshi, E. et al. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119, 693–705 (2004).

    Article  CAS  PubMed  Google Scholar 

  142. Welsh, D. K., Yoo, S.-H., Liu, A. C., Takahashi, J. S. & Kay, S. A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression. Curr. Biol. 14, 2289–2295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Williams, J. et al. Epithelial and stromal circadian clocks are inversely regulated by their mechano-matrix environment. J. Cell Sci. 131, jcs208223 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Yang, N. et al. Cellular mechano-environment regulates the mammary circadian clock. Nat. Commun. 8, 14287 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Yoo, S.-H. et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl Acad. Sci. USA 101, 5339–5346 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Abenza, J. F. et al. Mechanical control of the mammalian circadian clock via YAP/TAZ and TEAD. J. Cell Biol. 222, e202209120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Guan, D. et al. Hepatocyte SREBP signaling mediates clock communication within the liver. J. Clin. Invest. 133, e163018 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Fortin, B. M. et al. Circadian control of tumor immunosuppression affects efficacy of immune checkpoint blockade. Nat. Immunol. 25, 1257–1269 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, C., Lutes, L. K., Barnoud, C. & Scheiermann, C. The circadian immune system. Sci. Immunol. 7, eabm2465 (2022).

    Article  CAS  PubMed  Google Scholar 

  150. Wang, C. et al. Dendritic cells direct circadian anti-tumour immune responses. Nature 614, 136–143 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Lamia, K. A., Storch, K.-F. & Weitz, C. J. Physiological significance of a peripheral tissue circadian clock. Proc. Natl Acad. Sci. USA 105, 15172–15177 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Brooks, T. G. et al. Nitecap: an exploratory circadian analysis web application. J. Biol. Rhythms 37, 43–52 (2022).

    Article  PubMed  Google Scholar 

  153. Sinturel, F. et al. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 35, 329–334 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Heyde, I. & Oster, H. Induction of internal circadian desynchrony by misaligning zeitgebers. Sci. Rep. 12, 1601 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Scheer, F. A. J. L., Hilton, M. F., Mantzoros, C. S. & Shea, S. A. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc. Natl Acad. Sci. USA 106, 4453–4458 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pati, P. et al. Liver circadian clock disruption alters perivascular adipose tissue gene expression and aortic function in mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 320, R960–R971 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Schroder, E. A. et al. Intrinsic muscle clock is necessary for musculoskeletal health. J. Physiol. 593, 5387–5404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Marcheva, B. et al. P2Y1 purinergic receptor identified as a diabetes target in a small-molecule screen to reverse circadian β-cell failure. eLife 11, e75132 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Marcheva, B. et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinemia and diabetes. Nature 466, 627–631 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rakshit, K. & Matveyenko, A. V. Induction of core circadian clock transcription factor bmal1 enhances β-cell function and protects against obesity-induced glucose intolerance. Diabetes 70, 143–154 (2021).

    Article  CAS  PubMed  Google Scholar 

  161. Brown, M. R. et al. Time-restricted feeding prevents deleterious metabolic effects of circadian disruption through epigenetic control of β-cell function. Sci. Adv. 7, eabg6856 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Petrenko, V. et al. Pancreatic α- and β-cellular clocks have distinct molecular properties and impact on islet hormone secretion and gene expression. Genes Dev. 31, 383–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nono Nankam, P. A. & Blüher, M. Retinol-binding protein 4 in obesity and metabolic dysfunctions. Mol. Cell Endocrinol. 531, 111312 (2021).

    Article  CAS  PubMed  Google Scholar 

  164. Ma, X., Zhou, Z., Chen, Y., Wu, Y. & Liu, Y. RBP4 functions as a hepatokine in the regulation of glucose metabolism by the circadian clock in mice. Diabetologia 59, 354–362 (2016).

    Article  CAS  PubMed  Google Scholar 

  165. Chavan, R. et al. REV-ERBα regulates Fgf21 expression in the liver via hepatic nuclear factor 6. Biol. Open 6, 1–7 (2016).

    CAS  PubMed Central  Google Scholar 

  166. Tong, X. et al. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J. Biol. Chem. 285, 36401–36409 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Oishi, K., Uchida, D. & Ishida, N. Circadian expression of FGF21 is induced by PPARα activation in the mouse liver. FEBS Lett. 582, 3639–3642 (2008).

    Article  CAS  PubMed  Google Scholar 

  168. Perrin, L. et al. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Mol. Metab. 4, 834–845 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Hunter, A. L. et al. Nuclear receptor REVERBα is a state-dependent regulator of liver energy metabolism. Proc. Natl Acad. Sci. USA 117, 25869–25879 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chavan, R. et al. Liver-derived ketone bodies are necessary for food anticipation. Nat. Commun. 7, 10580 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Paschos, G. K. et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat. Med. 18, 1768–1777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Wang, H. et al. Time-restricted feeding shifts the skin circadian clock and alters UVB-induced DNA damage. Cell Rep. 20, 1061–1072 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Moline, M. L. et al. Age-related differences in recovery from simulated jet lag. Sleep 15, 28–40 (1992).

    Article  CAS  PubMed  Google Scholar 

  174. Zhang, Y. et al. Effects of aging on light-induced phase-shifting of circadian behavioral rhythms, fos expression and CREB phosphorylation in the hamster suprachiasmatic nucleus. Neuroscience 70, 951–961 (1996).

    Article  CAS  PubMed  Google Scholar 

  175. Lauretti, E., Di Meco, A., Merali, S. & Praticò, D. Circadian rhythm dysfunction: a novel environmental risk factor for Parkinson’s disease. Mol. Psychiatry 22, 280–286 (2017).

    Article  CAS  PubMed  Google Scholar 

  176. Leng, Y. et al. Association of circadian abnormalities in older adults with an increased risk of developing Parkinson disease. JAMA Neurol. 77, 1270–1278 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Sterniczuk, R., Dyck, R. H., Laferla, F. M. & Antle, M. C. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 1. Circadian changes. Brain Res. 1348, 139–148 (2010).

    Article  CAS  PubMed  Google Scholar 

  178. Tranah, G. J. et al. Circadian activity rhythms and risk of incident dementia and mild cognitive impairment in older women. Ann. Neurol. 70, 722–732 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Asai, M. et al. Circadian profile of Per gene mRNA expression in the suprachiasmatic nucleus, paraventricular nucleus, and pineal body of aged rats. J. Neurosci. Res. 66, 1133–1139 (2001).

    Article  CAS  PubMed  Google Scholar 

  180. Duffy, J. F., Zeitzer, J. M. & Czeisler, C. A. Decreased sensitivity to phase-delaying effects of moderate intensity light in older subjects. Neurobiol. Aging 28, 799–807 (2007).

    Article  PubMed  Google Scholar 

  181. Kolker, D. E. et al. Aging alters circadian and light-induced expression of clock genes in golden hamsters. J. Biol. Rhythms 18, 159–169 (2003).

    Article  CAS  PubMed  Google Scholar 

  182. Broendsted, A. E., Hansen, M. S., Lund-Andersen, H., Sander, B. & Kessel, L. Human lens transmission of blue light: a comparison of autofluorescence-based and direct spectral transmission determination. Ophthalmic Res. 46, 118–124 (2011).

    Article  PubMed  Google Scholar 

  183. Kessel, L., Lundeman, J. H., Herbst, K., Andersen, T. V. & Larsen, M. Age-related changes in the transmission properties of the human lens and their relevance to circadian entrainment. J. Cataract. Refract. Surg. 36, 308–312 (2010).

    Article  PubMed  Google Scholar 

  184. Esquiva, G., Lax, P., Pérez-Santonja, J. J., García-Fernández, J. M. & Cuenca, N. Loss of melanopsin-expressing ganglion cell subtypes and dendritic degeneration in the aging human retina. Front. Aging Neurosci. 9, 79 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Herbst, K. et al. Intrinsically photosensitive retinal ganglion cell function in relation to age: a pupillometric study in humans with special reference to the age-related optic properties of the lens. BMC Ophthalmol. 12, 4 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Cai, A., Scarbrough, K., Hinkle, D. A. & Wise, P. M. Fetal grafts containing suprachiasmatic nuclei restore the diurnal rhythm of CRH and POMC mRNA in aging rats. Am. J. Physiol. 273, R1764–R1770 (1997).

    CAS  PubMed  Google Scholar 

  187. Van Reeth, O., Zhang, Y., Zee, P. C. & Turek, F. W. Grafting fetal suprachiasmatic nuclei in the hypothalamus of old hamsters restores responsiveness of the circadian clock to a phase shifting stimulus. Brain Res. 643, 338–342 (1994).

    Article  PubMed  Google Scholar 

  188. Viswanathan, N. & Davis, F. C. Suprachiasmatic nucleus grafts restore circadian function in aged hamsters. Brain Res. 686, 10–16 (1995).

    Article  CAS  PubMed  Google Scholar 

  189. Madeira, M. D., Sousa, N., Santer, R. M., Paula-Barbosa, M. M. & Gundersen, H. J. Age and sex do not affect the volume, cell numbers, or cell size of the suprachiasmatic nucleus of the rat: an unbiased stereological study. J. Comp. Neurol. 361, 585–601 (1995).

    Article  CAS  PubMed  Google Scholar 

  190. Farajnia, S. et al. Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J. Neurosci. 32, 5891–5899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Hofman, M. A. & Swaab, D. F. Alterations in circadian rhythmicity of the vasopressin-producing neurons of the human suprachiasmatic nucleus (SCN) with aging. Brain Res. 651, 134–142 (1994).

    Article  CAS  PubMed  Google Scholar 

  192. Nakamura, T. J. et al. Age-related decline in circadian output. J. Neurosci. 31, 10201–10205 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Bonaconsa, M. et al. Differential modulation of clock gene expression in the suprachiasmatic nucleus, liver and heart of aged mice. Exp. Gerontol. 55, 70–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  194. Nakamura, T. J. et al. Age-related changes in the circadian system unmasked by constant conditions. eNeuro, https://doi.org/10.1523/ENEURO.0064-15.2015 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Yamazaki, S. et al. Effects of aging on central and peripheral mammalian clocks. Proc. Natl Acad. Sci. USA 99, 10801–10806 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Chang, H.-C. & Guarente, L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153, 1448–1460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hofman, M. A. & Swaab, D. F. Living by the clock: the circadian pacemaker in older people. Ageing Res. Rev. 5, 33–51 (2006).

    Article  CAS  PubMed  Google Scholar 

  198. Czeisler, C. A. et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284, 2177–2181 (1999).

    Article  CAS  PubMed  Google Scholar 

  199. Van Cauter, E., Leproult, R. & Plat, L. Age-related changes in slow wave sleep and REM sleep and relationship with growth hormone and cortisol levels in healthy men. JAMA 284, 861–868 (2000).

    Article  PubMed  Google Scholar 

  200. Van Cauter, E., Leproult, R. & Kupfer, D. J. Effects of gender and age on the levels and circadian rhythmicity of plasma cortisol. J. Clin. Endocrinol. Metab. 81, 2468–2473 (1996).

    PubMed  Google Scholar 

  201. Vgontzas, A. N. et al. Impaired nighttime sleep in healthy old versus young adults is associated with elevated plasma interleukin-6 and cortisol levels: physiologic and therapeutic implications. J. Clin. Endocrinol. Metab. 88, 2087–2095 (2003).

    Article  CAS  PubMed  Google Scholar 

  202. Magri, F. et al. Changes in endocrine circadian rhythms as markers of physiological and pathological brain aging. Chronobiol. Int. 14, 385–396 (1997).

    Article  CAS  PubMed  Google Scholar 

  203. Wilkinson, C. W., Peskind, E. R. & Raskind, M. A. Decreased hypothalamic–pituitary–adrenal axis sensitivity to cortisol feedback inhibition in human aging. Neuroendocrinology 65, 79–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  204. Emery Thompson, M. et al. Wild chimpanzees exhibit humanlike aging of glucocorticoid regulation. Proc. Natl Acad. Sci. USA 117, 8424–8430 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Waldhauser, F. et al. Alterations in nocturnal serum melatonin levels in humans with growth and aging. J. Clin. Endocrinol. Metab. 66, 648–652 (1988).

    Article  CAS  PubMed  Google Scholar 

  206. Zhao, Z.-Y., Xie, Y., Fu, Y.-R., Bogdan, A. & Touitou, Y. Aging and the circadian rhythm of melatonin: a cross-sectional study of Chinese subjects 30–110 yr of age. Chronobiol. Int. 19, 1171–1182 (2002).

    Article  CAS  PubMed  Google Scholar 

  207. Li, J., Vitiello, M. V. & Gooneratne, N. Sleep in normal aging. Sleep Med. Clin. 13, 1–11 (2018).

    Article  PubMed  Google Scholar 

  208. Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 1255–1273 (2004).

    Article  PubMed  Google Scholar 

  209. Duffy, J. F. et al. Peak of circadian melatonin rhythm occurs later within the sleep of older subjects. Am. J. Physiol. Endocrinol. Metab. 282, E297–E303 (2002).

    Article  CAS  PubMed  Google Scholar 

  210. Duffy, J. F., Dijk, D. J., Klerman, E. B. & Czeisler, C. A. Later endogenous circadian temperature nadir relative to an earlier wake time in older people. Am. J. Physiol. 275, R1478–R1487 (1998).

    CAS  PubMed  Google Scholar 

  211. Bierwolf, C., Struve, K., Marshall, L., Born, J. & Fehm, H. L. Slow wave sleep drives inhibition of pituitary-adrenal secretion in humans. J. Neuroendocrinol. 9, 479–484 (1997).

    Article  CAS  PubMed  Google Scholar 

  212. Weitzman, E. D., Zimmerman, J. C., Czeisler, C. A. & Ronda, J. Cortisol secretion is inhibited during sleep in normal man. J. Clin. Endocrinol. Metab. 56, 352–358 (1983).

    Article  CAS  PubMed  Google Scholar 

  213. Ferrara, N. et al. β-adrenergic receptor responsiveness in aging heart and clinical implications. Front. Physiol. 4, 396 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Pfeifer, M. A. et al. Differential changes of autonomic nervous system function with age in man. Am. J. Med. 75, 249–258 (1983).

    Article  CAS  PubMed  Google Scholar 

  215. Tahara, Y. et al. Age-related circadian disorganization caused by sympathetic dysfunction in peripheral clock regulation. npj Aging Mech. Dis. 3, 1–11 (2017).

    Article  Google Scholar 

  216. Pagani, L. et al. Serum factors in older individuals change cellular clock properties. Proc. Natl Acad. Sci. USA 108, 7218–7223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Ando, H. et al. Influence of age on clock gene expression in peripheral blood cells of healthy women. J. Gerontol. A Biol. Sci. Med. Sci. 65, 9–13 (2010).

    Article  PubMed  Google Scholar 

  218. Luo, W. et al. Old flies have a robust central oscillator but weaker behavioral rhythms that can be improved by genetic and environmental manipulations. Aging Cell 11, 428–438 (2012).

    Article  CAS  PubMed  Google Scholar 

  219. Sellix, M. T. et al. Aging differentially affects the re-entrainment response of central and peripheral circadian oscillators. J. Neurosci. 32, 16193–16202 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Chen, C.-Y. et al. Effects of aging on circadian patterns of gene expression in the human prefrontal cortex. Proc. Natl Acad. Sci. USA 113, 206–211 (2016). Together with Sato et al. (2017) and Solanas et al. (2017), this study reports that ageing leads to a general rewiring of the circadian transcriptome in the prefrontal cortex, liver, epidermal stem cells and muscle stem cells.

    Article  CAS  PubMed  Google Scholar 

  221. Sato, S. et al. Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell 170, 664–677 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Solanas, G. et al. Aged stem cells reprogram their daily rhythmic functions to adapt to stress. Cell 170, 678–692 (2017).

    Article  CAS  PubMed  Google Scholar 

  223. Talamanca, L., Gobet, C. & Naef, F. Sex-dimorphic and age-dependent organization of 24-hour gene expression rhythms in humans. Science 379, 478–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  224. Wolff, C. A. et al. Defining the age-dependent and tissue-specific circadian transcriptome in male mice. Cell Rep. 42, 111982 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Blacher, E. et al. Aging disrupts circadian gene regulation and function in macrophages. Nat. Immunol. 23, 229–236 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. Wu, J. et al. The rhythmic coupling of Egr-1 and Cidea regulates age-related metabolic dysfunction in the liver of male mice. Nat. Commun. 14, 1634 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Davidson, A. J., Yamazaki, S., Arble, D. M., Menaker, M. & Block, G. D. Resetting of central and peripheral circadian oscillators in aged rats. Neurobiol. Aging 29, 471–477 (2008).

    Article  PubMed  Google Scholar 

  228. Manoogian, E. N. C., Chow, L. S., Taub, P. R., Laferrère, B. & Panda, S. Time-restricted eating for the prevention and management of metabolic diseases. Endocr. Rev. 43, 405–436 (2022).

    Article  PubMed  Google Scholar 

  229. Regmi, P. & Heilbronn, L. K. Time-restricted eating: benefits, mechanisms, and challenges in translation. iScience 23, 101161 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Whittaker, D. S. et al. Circadian modulation by time-restricted feeding rescues brain pathology and improves memory in mouse models of Alzheimer’s disease. Cell Metab. 35, 1704–1721 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang, H.-B. et al. Time-restricted feeding improves circadian dysfunction as well as motor symptoms in the Q175 mouse model of Huntington’s disease. eNeuro, https://doi.org/10.1523/ENEURO.0431-17.2017 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Acosta-Rodríguez, V. et al. Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6 J mice. Science 376, 1192–1202 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Ulgherait, M. et al. Circadian autophagy drives iTRF-mediated longevity. Nature 598, 353–358 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Gubin, D. G., Gubin, G. D., Waterhouse, J. & Weinert, D. The circadian body temperature rhythm in the elderly: effect of single daily melatonin dosing. Chronobiol. Int. 23, 639–658 (2006).

    Article  CAS  PubMed  Google Scholar 

  235. Dowling, G. A. et al. Melatonin for sleep disturbances in Parkinson’s disease. Sleep Med. 6, 459–466 (2005).

    Article  PubMed  Google Scholar 

  236. Medeiros, C. A. M. et al. Effect of exogenous melatonin on sleep and motor dysfunction in Parkinson’s disease. A randomized, double blind, placebo-controlled study. J. Neurol. 254, 459–464 (2007).

    Article  CAS  PubMed  Google Scholar 

  237. Fainstein, I., Bonetto, A. J., Brusco, L. I. & Cardinali, D. P. Effects of melatonin in elderly patients with sleep disturbance: a pilot study. Curr. Ther. Res. 58, 990–1000 (1997).

    Article  CAS  Google Scholar 

  238. Hanford, N. & Figueiro, M. Light therapy and Alzheimer’s disease and related dementia: past, present, and future. J. Alzheimers Dis. 33, 913–922 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Levine, D. C. et al. NAD+ controls circadian reprogramming through PER2 nuclear translocation to counter aging. Mol. Cell 78, 835–849.e7 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Valentinuzzi, V. S., Scarbrough, K., Takahashi, J. S. & Turek, F. W. Effects of aging on the circadian rhythm of wheel-running activity in C57BL/6 mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 273, R1957–R1964 (1997).

    Article  CAS  Google Scholar 

  241. Zwighaft, Z. et al. Circadian clock control by polyamine levels through a mechanism that declines with age. Cell Metab. 22, 874–885 (2015).

    Article  CAS  PubMed  Google Scholar 

  242. Pucciarelli, S. et al. Spermidine and spermine are enriched in whole blood of nona/centenarians. Rejuvenation Res. 15, 590–595 (2012).

    Article  CAS  PubMed  Google Scholar 

  243. He, B. et al. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab. 23, 610–621 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Nohara, K. et al. Nobiletin fortifies mitochondrial respiration in skeletal muscle to promote healthy aging against metabolic challenge. Nat. Commun. 10, 3923 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  245. Ralph, C. L., Mull, D., Lynch, H. J. & Hedlund, L. A melatonin rhythm persists in rat pineals in darkness. Endocrinology 89, 1361–1366 (1971).

    Article  CAS  PubMed  Google Scholar 

  246. Reppert, S. M. et al. Effects of damage to the suprachiasmatic area of the anterior hypothalamus on the daily melatonin and cortisol rhythms in the rhesus monkey. J. Neurosci. 1, 1414–1425 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Lynch, H. J., Wurtman, R. J., Moskowitz, M. A., Archer, M. C. & Ho, M. H. Daily rhythm in human urinary melatonin. Science 187, 169–171 (1975).

    Article  CAS  PubMed  Google Scholar 

  248. Halberg, F. Physiologic 24-hour periodicity; general and procedural considerations with reference to the adrenal cycle. Int. Z. Vitaminforsch Beih. 10, 225–296 (1959).

    CAS  PubMed  Google Scholar 

  249. Migeon, C. J. et al. The diurnal variation of plasma levels and urinary excretion on 17-hydroxycorticosteroids in normal subjects, night workers and blind subjects. J. Clin. Endocrinol. Metab. 16, 622–633 (1956).

    Article  CAS  PubMed  Google Scholar 

  250. Kalsbeek, A. & Strubbe, J. H. Circadian control of insulin secretion is independent of the temporal distribution of feeding. Physiol. Behav. 63, 553–558 (1998).

    Article  CAS  PubMed  Google Scholar 

  251. Simon, C., Brandenberger, G. & Follenius, M. Ultradian oscillations of plasma glucose, insulin, and C-peptide in man during continuous enteral nutrition. J. Clin. Endocrinol. Metab. 64, 669–674 (1987).

    Article  CAS  PubMed  Google Scholar 

  252. Simon, C., Brandenberger, G., Saini, J., Ehrhart, J. & Follenius, M. Slow oscillations of plasma glucose and insulin secretion rate are amplified during sleep in humans under continuous enteral nutrition. Sleep 17, 333–338 (1994).

    Article  CAS  PubMed  Google Scholar 

  253. Chang, A. M. & Halter, J. B. Aging and insulin secretion. Am. J. Physiol. Endocrinol. Metab. 284, E7–E12 (2003).

    Article  CAS  PubMed  Google Scholar 

  254. Ruiter, M. et al. The daily rhythm in plasma glucagon concentrations in the rat is modulated by the biological clock and by feeding behavior. Diabetes 52, 1709–1715 (2003).

    Article  CAS  PubMed  Google Scholar 

  255. Ikeda, Y. et al. Glucagon and/or IGF-1 production regulates resetting of the liver circadian clock in response to a protein or amino acid-only diet. EBioMedicine 28, 210–224 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Petrenko, V. & Dibner, C. Cell-specific resetting of mouse islet cellular clocks by glucagon, glucagon-like peptide 1 and somatostatin. Acta Physiol. 222, e13021 (2018).

    Article  CAS  Google Scholar 

  257. Dudl, R. J. & Ensinck, J. W. Insulin and glucagon relationships during aging in man. Metabolism 26, 33–41 (1977).

    Article  CAS  PubMed  Google Scholar 

  258. Simonson, D. C. & DeFronzo, R. A. Glucagon physiology and aging: evidence for enhanced hepatic sensitivity. Diabetologia 25, 1–7 (1983).

    Article  CAS  PubMed  Google Scholar 

  259. Pu, D. et al. Circulating ANGPTL8 is associated with the presence of metabolic syndrome and insulin resistance in polycystic ovary syndrome young women. Mediators Inflamm. 2019, 6321427 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  260. Zheng, T. et al. Triglyceride-mediated influence of serum angiopoietin-like protein 8 on subclinical atherosclerosis in type 2 diabetic patients: results from the GDMD study in China. Cardiovasc. Diabetol. 17, 84 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  261. Bao, A.-M. et al. Diurnal rhythm of free estradiol during the menstrual cycle. Eur. J. Endocrinol. 148, 227–232 (2003).

    Article  CAS  PubMed  Google Scholar 

  262. Nakamura, T. J., Sellix, M. T., Menaker, M. & Block, G. D. Estrogen directly modulates circadian rhythms of PER2 expression in the uterus. Am. J. Physiol. Endocrinol. Metab. 295, E1025–E1031 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Nakamura, T. J. et al. Estrogen differentially regulates expression of Per1 and Per2 genes between central and peripheral clocks and between reproductive and nonreproductive tissues in female rats. J. Neurosci. Res. 82, 622–630 (2005).

    Article  CAS  PubMed  Google Scholar 

  264. Perrin, J. S., Segall, L. A., Harbour, V. L., Woodside, B. & Amir, S. The expression of the clock protein PER2 in the limbic forebrain is modulated by the estrous cycle. Proc. Natl Acad. Sci. USA 103, 5591–5596 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Burger, H. G., Hale, G. E., Robertson, D. M. & Dennerstein, L. A review of hormonal changes during the menopausal transition: focus on findings from the Melbourne Women’s Midlife Health Project. Hum. Reprod. Update 13, 559–565 (2007).

    Article  CAS  PubMed  Google Scholar 

  266. Schwartz, W. J. & Reppert, S. M. Neural regulation of the circadian vasopressin rhythm in cerebrospinal fluid: a pre-eminent role for the suprachiasmatic nuclei. J. Neurosci. 5, 2771–2778 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Groblewski, T. A., Nunez, A. A. & Gold, R. M. Circadian rhythms in vasopressin deficient rats. Brain Res. Bull. 6, 125–130 (1981).

    Article  CAS  PubMed  Google Scholar 

  268. Kalsbeek, A., Fliers, E., Hofman, M. A., Swaab, D. F. & Buijs, R. M. Vasopressin and the output of the hypothalamic biological clock. J. Neuroendocrinol. 22, 362–372 (2010).

    Article  CAS  PubMed  Google Scholar 

  269. Linsell, C. R., Lightman, S. L., Mullen, P. E., Brown, M. J. & Causon, R. C. Circadian rhythms of epinephrine and norepinephrine in man. J. Clin. Endocrinol. Metab. 60, 1210–1215 (1985).

    Article  CAS  PubMed  Google Scholar 

  270. Lakatua, D. J. et al. Chronobiology of catecholamine excretion in different age groups. Prog. Clin. Biol. Res. 227B, 31–50 (1987).

    CAS  PubMed  Google Scholar 

  271. Nicolau, G. Y. et al. Differences in the circadian rhythm parameters of urinary free epinephrine, norepinephrine and dopamine between children and elderly subjects. Endocrinologie 23, 189–199 (1985).

    CAS  PubMed  Google Scholar 

  272. Iwase, S., Mano, T., Watanabe, T., Saito, M. & Kobayashi, F. Age-related changes of sympathetic outflow to muscles in humans. J. Gerontol. 46, M1–M5 (1991).

    Article  CAS  PubMed  Google Scholar 

  273. Rowe, J. W. & Troen, B. R. Sympathetic nervous system and aging in man. Endocr. Rev. 1, 167–179 (1980).

    Article  CAS  PubMed  Google Scholar 

  274. Wallin, B. G. et al. Plasma noradrenaline correlates to sympathetic muscle nerve activity in normotensive man. Acta Physiol. Scand. 111, 69–73 (1981).

    Article  CAS  PubMed  Google Scholar 

  275. Coleman, J. L. et al. Diurnal variations in articular cartilage thickness and strain in the human knee. J. Biomech. 46, 541–547 (2013).

    Article  PubMed  Google Scholar 

  276. Dudek, M. et al. Mechanical loading and hyperosmolarity as a daily resetting cue for skeletal circadian clocks. Nat. Commun. 14, 7237 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Davy, J. On the temperature of man. Phil. Trans. R. Soc. Lond. 135, 319–333 (1845).

    Google Scholar 

  278. Refinetti, R. Comparison of the body temperature rhythms of diurnal and nocturnal rodents. J. Exp. Zool. 275, 67–70 (1996).

    Article  CAS  PubMed  Google Scholar 

  279. Czeisler, C. A. et al. Association of sleep-wake habits in older people with changes in output of circadian pacemaker. Lancet 340, 933–936 (1992).

    Article  CAS  PubMed  Google Scholar 

  280. Dijk, D.-J., Duffy, J. F. & Czeisler, C. A. Contribution of circadian physiology and sleep homeostasis to age-related changes in human sleep. Chronobiol. Int. 17, 285–311 (2000).

    Article  CAS  PubMed  Google Scholar 

  281. Vitiello, M. V. et al. Circadian temperature rhythms in young adult and aged men. Neurobiol. Aging 7, 97–100 (1986).

    Article  CAS  PubMed  Google Scholar 

  282. Adamovich, Y., Ladeuix, B., Golik, M., Koeners, M. P. & Asher, G. Rhythmic oxygen levels reset circadian clocks through HIF1α. Cell Metab. 25, 93–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  283. Peek, C. B. et al. Circadian clock interaction with HIF1α mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 25, 86–92 (2017).

    Article  CAS  PubMed  Google Scholar 

  284. Manella, G. et al. Hypoxia induces a time- and tissue-specific response that elicits intertissue circadian clock misalignment. Proc. Natl Acad. Sci. USA 117, 779–786 (2020).

    Article  CAS  PubMed  Google Scholar 

  285. Leone, V. et al. Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681–689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Ghosh, T. S., Shanahan, F. & O’Toole, P. W. The gut microbiome as a modulator of healthy ageing. Nat. Rev. Gastroenterol. Hepatol. 19, 565–584 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  287. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. Hallmarks of aging: an expanding universe. Cell 186, 243–278 (2023).

    Article  PubMed  Google Scholar 

  288. Gliniak, C. M., Brown, J. M. & Noy, N. The retinol-binding protein receptor STRA6 regulates diurnal insulin responses. J. Biol. Chem. 292, 15080–15093 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  289. Kettner, N. M. et al. Circadian dysfunction induces leptin resistance in mice. Cell Metab. 22, 448–459 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Yi, S. A. et al. S6K1 controls adiponectin expression by inducing a transcriptional switch: BMAL1-to-EZH2. Exp. Mol. Med. 54, 324–333 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Brandenberger, G. & Weibel, L. The 24-h growth hormone rhythm in men: sleep and circadian influences questioned. J. Sleep Res. 13, 251–255 (2004).

    Article  PubMed  Google Scholar 

  292. Sonntag, W. E., Steger, R. W., Forman, L. J. & Meites, J. Decreased pulsatile release of growth hormone in old male rats. Endocrinology 107, 1875–1879 (1980).

    Article  CAS  PubMed  Google Scholar 

  293. Corpas, E., Harman, S. M. & Blackman, M. R. Human growth hormone and human aging. Endocr. Rev. 14, 20–39 (1993).

    Article  CAS  PubMed  Google Scholar 

  294. Abe, K., Kroning, J., Greer, M. A. & Critchlow, V. Effects of destruction of the suprachiasmatic nuclei on the circadian rhythms in plasma corticosterone, body temperature, feeding and plasma thyrotropin. Neuroendocrinology 29, 119–131 (1979).

    Article  CAS  PubMed  Google Scholar 

  295. Watts, A. G., Tanimura, S. & Sanchez-Watts, G. Corticotropin-releasing hormone and arginine vasopressin gene transcription in the hypothalamic paraventricular nucleus of unstressed rats: daily rhythms and their interactions with corticosterone. Endocrinology 145, 529–540 (2004).

    Article  CAS  PubMed  Google Scholar 

  296. Resko, J. A. & Eik-nes, K. B. Diurnal testosterone levels in peripheral plasma of human male subjects. J. Clin. Endocrinol. Metab. 26, 573–576 (1966).

    Article  CAS  PubMed  Google Scholar 

  297. Bremner, W. J., Vitiello, M. V. & Prinz, P. N. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J. Clin. Endocrinol. Metab. 56, 1278–1281 (1983).

    Article  CAS  PubMed  Google Scholar 

  298. Feldman, H. A. et al. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J. Clin. Endocrinol. Metab. 87, 589–598 (2002).

    Article  CAS  PubMed  Google Scholar 

  299. Hardman, J. A. et al. The peripheral clock regulates human pigmentation. J. Invest. Dermatol. 135, 1053–1064 (2015).

    Article  CAS  PubMed  Google Scholar 

  300. Fuleihan, G. E.-H. et al. The parathyroid hormone circadian rhythm is truly endogenous — a general clinical research center study. J. Clin. Endocrinol. Metab. 82, 281–286 (1997).

    CAS  Google Scholar 

  301. Philippe, J. & Dibner, C. Thyroid circadian timing: roles in physiology and thyroid malignancies. J. Biol. Rhythms 30, 76–83 (2015).

    Article  CAS  PubMed  Google Scholar 

  302. Roelfsema, F. et al. Thyrotropin secretion in healthy subjects is robust and independent of age and gender, and only weakly dependent on body mass index. J. Clin. Endocrinol. Metab. 99, 570–578 (2014).

    Article  CAS  PubMed  Google Scholar 

  303. Russell, W. et al. Free triiodothyronine has a distinct circadian rhythm that is delayed but parallels thyrotropin levels. J. Clin. Endocrinol. Metab. 93, 2300–2306 (2008).

    Article  CAS  PubMed  Google Scholar 

  304. Chaker, L., Cappola, A. R., Mooijaart, S. P. & Peeters, R. P. Clinical aspects of thyroid function during ageing. Lancet Diabetes Endocrinol. 6, 733–742 (2018).

    Article  PubMed  Google Scholar 

  305. van Coevorden, A. et al. Decreased basal and stimulated thyrotropin secretion in healthy elderly men. J. Clin. Endocrinol. Metab. 69, 177–185 (1989).

    Article  PubMed  Google Scholar 

  306. Schoeller, D. A., Cella, L. K., Sinha, M. K. & Caro, J. F. Entrainment of the diurnal rhythm of plasma leptin to meal timing. J. Clin. Invest. 100, 1882–1887 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Shea, S. A., Hilton, M. F., Orlova, C., Ayers, R. T. & Mantzoros, C. S. Independent circadian and sleep/wake regulation of adipokines and glucose in humans. J. Clin. Endocrinol. Metab. 90, 2537–2544 (2005).

    Article  CAS  PubMed  Google Scholar 

  308. Zhao, Z.-Y. et al. Age-related modifications of circadian rhythm of serum leptin in healthy men. Gerontology 48, 309–314 (2002).

    Article  CAS  PubMed  Google Scholar 

  309. Qian, J., Morris, C. J., Caputo, R., Garaulet, M. & Scheer, F. A. Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans. Int. J. Obes. 43, 1644 (2019).

    Article  CAS  Google Scholar 

  310. Bodosi, B. et al. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287, R1071–R1079 (2004).

    Article  CAS  PubMed  Google Scholar 

  311. Rigamonti, A. E. et al. Plasma ghrelin concentrations in elderly subjects: comparison with anorexic and obese patients. J. Endocrinol. 175, R1–R5 (2002).

    Article  CAS  PubMed  Google Scholar 

  312. Charloux, A., Gronfier, C., Lonsdorfer-Wolf, E., Piquard, F. & Brandenberger, G. Aldosterone release during the sleep-wake cycle in humans. Am. J. Physiol. Endocrinol. Metab. 276, E43–E49 (1999).

    Article  CAS  Google Scholar 

  313. Cugini, P. et al. Circadian as well as circannual rhythms of circulating aldosterone have decreased amplitude in aging women. J. Endocrinol. Invest. 6, 17–22 (1983).

    Article  CAS  PubMed  Google Scholar 

  314. Nokin, J., Vekemans, M., L’Hermite, M. & Robyn, C. Circadian periodicity of serum prolactin concentration in man. Br. Med. J. 3, 561–562 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  315. Greenspan, S. L., Klibanski, A., Rowe, J. W. & Elahi, D. Age alters pulsatile prolactin release: influence of dopaminergic inhibition. Am. J. Physiol. 258, E799–E804 (1990).

    CAS  PubMed  Google Scholar 

  316. Yu, H. et al. Circadian rhythm of circulating fibroblast growth factor 21 is related to diurnal changes in fatty acids in humans. Clin. Chem. 57, 691–700 (2011).

    Article  CAS  PubMed  Google Scholar 

  317. Hanks, L. J. et al. Circulating levels of fibroblast growth factor-21 increase with age independently of body composition indices among healthy individuals. J. Clin. Transl. Endocrinol. 2, 77–82 (2015).

    PubMed  PubMed Central  Google Scholar 

  318. Gavrila, A. et al. Diurnal and ultradian dynamics of serum adiponectin in healthy men: comparison with leptin, circulating soluble leptin receptor, and cortisol patterns. J. Clin. Endocrinol. Metab. 88, 2838–2843 (2003).

    Article  CAS  PubMed  Google Scholar 

  319. Gómez-Abellán, P. et al. Circadian expression of adiponectin and its receptors in human adipose tissue. Endocrinology 151, 115–122 (2010).

    Article  PubMed  Google Scholar 

  320. Arai, Y., Kamide, K. & Hirose, N. Adipokines and aging: findings from centenarians and the very old. Front. Endocrinol. 10, 142 (2019).

    Article  Google Scholar 

  321. Li, N. et al. Adiponectin preserves metabolic fitness during aging. eLife 10, e65108 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  322. García-García, A. et al. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 133, 224–236 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  323. Kalsbeek, A. et al. Circadian control of the daily plasma glucose rhythm: an interplay of GABA and glutamate. PLoS ONE 3, e3194 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  324. Patke, A., Young, M. W. & Axelrod, S. Molecular mechanisms and physiological importance of circadian rhythms. Nat. Rev. Mol. Cell Biol. 21, 67–84 (2020).

    Article  CAS  PubMed  Google Scholar 

  325. Husse, J., Leliavski, A., Tsang, A. H., Oster, H. & Eichele, G. The light–dark cycle controls peripheral rhythmicity in mice with a genetically ablated suprachiasmatic nucleus clock. FASEB J. 28, 4950–4960 (2014).

    Article  CAS  PubMed  Google Scholar 

  326. Akhtar, R. A. et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550 (2002).

    Article  CAS  PubMed  Google Scholar 

  327. Tahara, Y. et al. In vivo monitoring of peripheral circadian clocks in the mouse. Curr. Biol. 22, 1029–1034 (2012).

    Article  CAS  PubMed  Google Scholar 

  328. Yang, G. et al. Timing of expression of the core clock gene Bmal1 influences its effects on aging and survival. Sci. Transl. Med. 8, 324ra16–324ra16 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  329. Cervantes, M. et al. BMAL1 associates with NOP58 in the nucleolus and contributes to pre-rRNA processing. iScience 23, 101151 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  330. Liang, C. et al. BMAL1 moonlighting as a gatekeeper for LINE1 repression and cellular senescence in primates. Nucleic Acids Res. 50, 3323–3347 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  331. Liu, T. et al. Nucleus-exported CLOCK acetylates PRPS to promote de novo nucleotide synthesis and liver tumour growth. Nat. Cell Biol. 25, 273–284 (2023).

    CAS  PubMed  Google Scholar 

  332. Gagliano, O. et al. Synchronization between peripheral circadian clock and feeding-fasting cycles in microfluidic device sustains oscillatory pattern of transcriptome. Nat. Commun. 12, 6185 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Han, K. & Huang, Y. Microfluidic approach for modeling coupled circadian clock. Methods Mol. Biol. 2689, 107–118 (2023).

    Article  CAS  PubMed  Google Scholar 

  334. Picollet-D’hahan, N., Zuchowska, A., Lemeunier, I. & Gac, S. L. Multiorgan-on-a-chip: a systemic approach to model and decipher inter-organ communication. Trends Biotechnol. 39, 788–810 (2021).

    Article  PubMed  Google Scholar 

  335. Khamissi, F. Z. et al. Identification of kidney injury–released circulating osteopontin as causal agent of respiratory failure. Sci. Adv. 8, eabm5900 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Alvarez-Castelao, B., Schanzenbächer, C. T., Langer, J. D. & Schuman, E. M. Cell-type-specific metabolic labeling, detection and identification of nascent proteomes in vivo. Nat. Protoc. 14, 556–575 (2019).

    Article  CAS  PubMed  Google Scholar 

  337. Hui, S. et al. Quantitative fluxomics of circulating metabolites. Cell Metab. 32, 676–688 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Darr, J. et al. iTAG-RNA isolates cell-specific transcriptional responses to environmental stimuli and identifies an RNA-based endocrine axis. Cell Rep. 30, 3183–3194 (2020).

    Article  CAS  PubMed  Google Scholar 

  339. Saini, C. et al. Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev. 27, 1526–1536 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  340. Kettner, N. M. et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell 30, 909–924 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  341. Bowman, C. et al. A method for characterizing daily physiology from widely used wearables. Cell Rep. Methods 1, 100058 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Phillips, N. E., Collet, T.-H. & Naef, F. Uncovering personalized glucose responses and circadian rhythms from multiple wearable biosensors with Bayesian dynamical modeling. Cell Rep. Methods 3, 100545 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Vadgama, P. Monitoring with in vivo electrochemical sensors: navigating the complexities of blood and tissue reactivity. Sensors 20, 3149 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Kleiman, D., Littor, M., Nawas, M., Ben-Haroush Schyr, R. & Ben-Zvi, D. Simple continuous glucose monitoring in freely moving mice. J. Vis. Exp. 192, e64743 (2023).

    Google Scholar 

  345. Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 12, eaaw0285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank K. Koronowski, P. S. Welz and V. Sica for their comments and proofreading. Work in the laboratory of J.G.S. is supported by funding from Agencia Estatal de Investigación (AEI) (RYC2022-035133-I and PID2023-150233NA-100), and AFM-Téléthon (28842).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Thomas Mortimer, Jacob G. Smith, Pura Muñoz-Cánoves or Salvador Aznar Benitah.

Ethics declarations

Competing interests

S.A.B. is a cofounder and scientific adviser of ONA Therapeutics. P.M.-C. is an employee of Altos Labs. T.M. and J.G.S. declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mortimer, T., Smith, J.G., Muñoz-Cánoves, P. et al. Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol (2025). https://doi.org/10.1038/s41580-024-00802-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41580-024-00802-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing