Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation

Abstract

The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer–promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer–promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer–promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Models of enhancer–promoter interactions.
Fig. 2: Models of transcription activation by enhancers.
Fig. 3: Models of enhancer selectivity.
Fig. 4: Interpreting the results of conformation capture assays.
Fig. 5: Enhancer selectivity mediated by 3D genome organization as a function of interaction radius.
Fig. 6: Examples of enhancer–promoter pairs with different CTCF binding patterns.
Fig. 7: Interpreting imaging studies of enhancer–promoter interactions.

Similar content being viewed by others

References

  1. Bentovim, L., Harden, T. T. & DePace, A. H. Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development 144, 3855–3866 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ong, C.-T. & Corces, V. G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Field, A. & Adelman, K. Evaluating enhancer function and transcription. Annu. Rev. Biochem. 89, 213–234 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Zabidi, M. A. & Stark, A. Regulatory enhancer–core-promoter communication via transcription factors and cofactors. Trends Genet. 32, 801–814 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Spitz, F. & Furlong, E. E. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13, 613–626 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Banerji, J., Olson, L. & Schaffner, W. A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell 33, 729–740 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. Gillies, S. D., Morrison, S. L., Oi, V. T. & Tonegawa, S. A tissue-specific transcription enhancer element is located in the major intron of a rearranged immunoglobulin heavy chain gene. Cell 33, 717–728 (1983).

    Article  CAS  PubMed  Google Scholar 

  9. Mercola, M., Wang, X.-F., Olsen, J. & Calame, K. Transcriptional enhancer elements in the mouse immunoglobulin heavy chain locus. Science 221, 663–665 (1983).

    Article  CAS  PubMed  Google Scholar 

  10. Banerji, J., Rusconi, S. & Schaffner, W. Expression of a β-globin gene is enhanced by remote SV40 DNA sequences. Cell 27, 299–308 (1981).

    Article  CAS  PubMed  Google Scholar 

  11. Halfon, M. S. Studying transcriptional enhancers: the founder fallacy, validation creep, and other biases. Trends Genet. 35, 93–103 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Galouzis, C. C. & Furlong, E. E. Regulating specificity in enhancer–promoter communication. Curr. Opin. Cell Biol. 75, 102065 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. van Arensbergen, J., van Steensel, B. & Bussemaker, H. J. In search of the determinants of enhancer–promoter interaction specificity. Trends Cell Biol. 24, 695–702 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Furlong, E. E. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moreau, P. et al. The SV40 72 base repair repeat has a striking effect on gene expression both in SV40 and other chimeric recombinants. Nucleic Acids Res. 9, 6047–6068 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Travers, A. Chromatin modification by DNA tracking. Proc. Natl Acad. Sci. USA 96, 13634–13637 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hatzis, P. & Talianidis, I. Dynamics of enhancer–promoter communication during differentiation-induced gene activation. Mol. Cell 10, 1467–1477 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Bulger, M. & Groudine, M. Looping versus linking: toward a model for long-distance gene activation. Genes Dev. 13, 2465–2477 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Chen, Z. et al. Widespread increase in enhancer–promoter interactions during developmental enhancer activation in mammals. Preprint at bioRxiv https://doi.org/10.1101/2022.11.18.516017 (2022).

  20. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 377–390 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, G. et al. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148, 84–98 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goel, V. Y., Huseyin, M. K. & Hansen, A. S. Region capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat. Genet. 55, 1048–1056 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 604, 571–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brückner, D. B., Chen, H., Barinov, L., Zoller, B. & Gregor, T. Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome. Science 380, 1357–1362 (2023).

    Article  PubMed  Google Scholar 

  26. Mateo, L. J. et al. Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49–54 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen, H. et al. Dynamic interplay between enhancer–promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849–860 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hsieh, T.-H. S. et al. Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol. Cell 78, 539–553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsieh, T.-H. S. et al. Enhancer–promoter interactions and transcription are largely maintained upon acute loss of CTCF, cohesin, WAPL or YY1. Nat. Genet. 54, 1919–1932 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aljahani, A. et al. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Nat. Commun. 13, 2139 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Karr, J. P., Ferrie, J. J., Tjian, R. & Darzacq, X. The transcription factor activity gradient (TAG) model: contemplating a contact-independent mechanism for enhancer–promoter communication. Genes Dev. 36, 7–16 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8, e41769 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Benabdallah, N. S. et al. Decreased enhancer–promoter proximity accompanying enhancer activation. Mol. Cell 76, 473–484 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bialek, W., Gregor, T. & Tkačik, G. Action at a distance in transcriptional regulation. Preprint at https://arXiv.org/abs/1912.08579 (2019).

  38. Heist, T., Fukaya, T. & Levine, M. Large distances separate coregulated genes in living Drosophila embryos. Proc. Natl Acad. Sci. USA 116, 15062–15067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Richter, W. F., Nayak, S., Iwasa, J. & Taatjes, D. J. The mediator complex as a master regulator of transcription by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 23, 732–749 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Osman, S. & Cramer, P. Structural biology of RNA polymerase II transcription: 20 years on. Annu. Rev. Cell Dev. Biol. 36, 1–34 (2020).

    Article  CAS  PubMed  Google Scholar 

  41. Soutourina, J. Transcription regulation by the mediator complex. Nat. Rev. Mol. Cell Biol. 19, 262–274 (2018).

    Article  CAS  PubMed  Google Scholar 

  42. Allen, B. L. & Taatjes, D. J. The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16, 155–166 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abdella, R. et al. Structure of the human Mediator-bound transcription preinitiation complex. Science 372, 52–56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen, X. et al. Structures of the human Mediator and Mediator-bound preinitiation complex. Science 372, eabg0635 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Rengachari, S., Schilbach, S., Aibara, S., Dienemann, C. & Cramer, P. Structure of the human Mediator–RNA polymerase II pre-initiation complex. Nature 594, 129–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  46. Chen, X. et al. Structural insights into preinitiation complex assembly on core promoters. Science 372, eaba8490 (2021).

    Article  CAS  PubMed  Google Scholar 

  47. Panne, D., Maniatis, T. & Harrison, S. C. An atomic model of enhanceosome structure in the vicinity of DNA. Cell 129, 1111 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brandão, H. B., Gabriele, M. & Hansen, A. S. Tracking and interpreting long-range chromatin interactions with super-resolution live-cell imaging. Curr. Opin. Cell Biol. 70, 18–26 (2021).

    Article  PubMed  Google Scholar 

  49. Bellomy, G. R. & Record, M. T. Jr Stable DNA loops in vivo and in vitro: roles in gene regulation at a distance and in biophysical characterization of DNA. Prog. Nucl. Acids Res. Mol. Biol. 39, 81–128 (1990).

    Article  CAS  Google Scholar 

  50. Krämer, H., Amouyal, M., Nordheim, A. & Müller-Hill, B. DNA supercoiling changes the spacing requirement of two lac operators for DNA loop formation with lac repressor. EMBO J. 7, 547–556 (1988).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Knight, J. D., Li, R. & Botchan, M. The activation domain of the bovine papillomavirus E2 protein mediates association of DNA-bound dimers to form DNA loops. Proc. Natl Acad. Sci. USA 88, 3204–3208 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ptashne, M. & Gann, A. Transcriptional activation by recruitment. Nature 386, 569–577 (1997).

    Article  CAS  PubMed  Google Scholar 

  53. Kyrchanova, O. & Georgiev, P. Mechanisms of enhancer–promoter interactions in higher eukaryotes. Int. J. Mol. Sci. 22, 671 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vazquez, J., Muller, M., Pirrotta, V. & Sedat, J. W. The Mcp element mediates stable long-range chromosome–chromosome interactions in Drosophila. Mol. Biol. Cell 17, 2158–2165 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Merika, M., Williams, A. J., Chen, G., Collins, T. & Thanos, D. Recruitment of CBP/p300 by the IFNβ enhanceosome is required for synergistic activation of transcription. Mol. Cell 1, 277–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Petrenko, N., Jin, Y., Wong, K. H. & Struhl, K. Mediator undergoes a compositional change during transcriptional activation. Mol. Cell 64, 443–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. El Khattabi, L. et al. A pliable Mediator acts as a functional rather than an architectural bridge between promoters and enhancers. Cell 178, 1145–1158 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Du, M. et al. Direct observation of a condensate effect on super-enhancer controlled gene bursting. Cell 187, 1–14 (2024).

    Article  Google Scholar 

  59. Lambert, É., Puwakdandawa, K., Tao, Y. F. & Robert, F. From structure to molecular condensates: emerging mechanisms for mediator function. FEBS J. 90, 286–309 (2023).

    Article  Google Scholar 

  60. Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li, J. et al. Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells. Cell 178, 491–506 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855 (2018).

    Article  CAS  PubMed  Google Scholar 

  63. Lu, H. et al. Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558, 318–323 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cho, W.-K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hu, Z. & Tee, W.-W. Enhancers and chromatin structures: regulatory hubs in gene expression and diseases. Biosci. Rep. 37, BSR20160183 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wang, X., Cairns, M. J. & Yan, J. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res. 47, 11481–11496 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Monfils, K. & Barakat, T. S. Models behind the mystery of establishing enhancer–promoter interactions. Eur. J. Cell Biol. 100, 151170 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Kent, S. et al. Phase-separated transcriptional condensates accelerate target-search process revealed by live-cell single-molecule imaging. Cell Rep. 33, 108248 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gabriele, M. et al. Dynamics of CTCF- and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376, 496–501 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Mach, P. et al. Cohesin and CTCF control the dynamics of chromosome folding. Nat. Genet. 54, 1907–1918 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Horikoshi, M., Hai, T., Lin, Y.-S., Green, M. R. & Roeder, R. G. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54, 1033–1042 (1988).

    Article  CAS  PubMed  Google Scholar 

  75. Schaffner, W. A hit-and-run mechanism for transcriptional activation? Nature 336, 427–428 (1988).

    Article  CAS  PubMed  Google Scholar 

  76. Pownall, M. E. et al. Chromatin expansion microscopy reveals nanoscale organization of transcription and chromatin. Science 381, 92–100 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lammers, N. C., Kim, Y. J., Zhao, J. & Garcia, H. G. A matter of time: using dynamics and theory to uncover mechanisms of transcriptional bursting. Curr. Opin. Cell Biol. 67, 147–157 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Popp, A. P., Hettich, J. & Gebhardt, J. C. M. Altering transcription factor binding reveals comprehensive transcriptional kinetics of a basic gene. Nucleic Acids Res. 49, 6249–6266 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stavreva, D. A. et al. Transcriptional bursting and co-bursting regulation by steroid hormone release pattern and transcription factor mobility. Mol. Cell 75, 1161–1177 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Fritzsch, C. et al. Estrogen-dependent control and cell-to-cell variability of transcriptional bursting. Mol. Syst. Biol. 14, e7678 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Tantale, K. et al. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7, 12248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Teves, S. S. et al. A dynamic mode of mitotic bookmarking by transcription factors. eLife 5, e22280 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Larson, D. R. et al. Direct observation of frequency modulated transcription in single cells using light activation. eLife 2, e00750 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Mazza, D., Abernathy, A., Golob, N., Morisaki, T. & McNally, J. G. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40, e119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Suter, D. M. et al. Mammalian genes are transcribed with widely different bursting kinetics. Science 332, 472–474 (2011).

    Article  CAS  PubMed  Google Scholar 

  86. McNally, J. G., Muller, W. G., Walker, D., Wolford, R. & Hager, G. L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  PubMed  Google Scholar 

  87. Zhang, Q., Shi, H. & Zhang, Z. A dynamic kissing model for enhancer–promoter communication on the surface of transcriptional condensate. Preprint at bioRxiv https://doi.org/10.1101/2022.03.03.482814 (2022).

  88. Baek, I., Friedman, L. J., Gelles, J. & Buratowski, S. Single-molecule studies reveal branched pathways for activator-dependent assembly of RNA polymerase II pre-initiation complexes. Mol. Cell 81, 3576–3588 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Thomas, H. F. et al. Temporal dissection of an enhancer cluster reveals distinct temporal and functional contributions of individual elements. Mol. Cell 81, 969–982 (2021).

    Article  CAS  PubMed  Google Scholar 

  90. Hou, C., Zhao, H., Tanimoto, K. & Dean, A. CTCF-dependent enhancer-blocking by alternative chromatin loop formation. Proc. Natl Acad. Sci. USA 105, 20398–20403 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

    Article  CAS  PubMed  Google Scholar 

  92. Buckley, M. S. & Lis, J. T. Imaging RNA polymerase II transcription sites in living cells. Curr. Opin. Genet. Dev. 25, 126–130 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kubo, N. et al. Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat. Struct. Mol. Biol. 28, 152–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gibbons, M. D. et al. Enhancer-mediated formation of nuclear transcription initiation domains. Int. J. Mol. Sci. 23, 9290 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Reiter, F., Wienerroither, S. & Stark, A. Combinatorial function of transcription factors and cofactors. Curr. Opin. Genet. Dev. 43, 73–81 (2017).

    Article  CAS  PubMed  Google Scholar 

  96. Shlyueva, D., Stampfel, G. & Stark, A. Transcriptional enhancers: from properties to genome-wide predictions. Nat. Rev. Genet. 15, 272–286 (2014).

    Article  CAS  PubMed  Google Scholar 

  97. Narita, T. et al. Enhancers are activated by p300/CBP activity-dependent PIC assembly, RNAPII recruitment, and pause release. Mol. Cell 81, 2166–2182 (2021).

    Article  CAS  PubMed  Google Scholar 

  98. Hsu, E., Zemke, N. R. & Berk, A. J. Promoter-specific changes in initiation, elongation, and homeostasis of histone H3 acetylation during CBP/p300 inhibition. eLife 10, e63512 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Mir, M. et al. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife 7, e40497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hansen, A. S., Amitai, A., Cattoglio, C., Tjian, R. & Darzacq, X. Guided nuclear exploration increases CTCF target search efficiency. Nat. Chem. Biol. 16, 257–266 (2020).

    Article  CAS  PubMed  Google Scholar 

  103. Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82, 1878–1893 (2022).

    Article  CAS  PubMed  Google Scholar 

  104. Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82, 2084–2097 (2022).

    Article  CAS  PubMed  Google Scholar 

  105. Panigrahi, A. & O’Malley, B. W. Mechanisms of enhancer action: the known and the unknown. Genome Biol. 22, 1–30 (2021).

    Article  Google Scholar 

  106. Malik, S. & Roeder, R. G. Mediator: a drawbridge across the enhancer–promoter divide. Mol. Cell 64, 433–434 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kim, Y.-J., Björklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the c-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  PubMed  Google Scholar 

  108. Chen, Q. et al. Enhancer RNAs in transcriptional regulation: recent insights. Front. Cell Dev. Biol. 11, 1205540 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhao, Y. et al. Activation of P-TEFb by androgen receptor-regulated enhancer RNAs in castration-resistant prostate cancer. Cell Rep. 15, 599–610 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Xiao, J. Y., Hafner, A. & Boettiger, A. N. How subtle changes in 3D structure can create large changes in transcription. eLife 10, e64320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Tsujimura, T. et al. Controlling gene activation by enhancers through a drug-inducible topological insulator. eLife 9, e47980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wu, H., Zhang, J., Tan, L. & Xie, X. S. Extruding transcription elongation loops observed in high-resolution single-cell 3D genomes. Preprint at bioRxiv https://doi.org/10.1101/2023.02.18.529096 (2023).

  113. Danino, Y. M., Even, D., Ideses, D. & Juven-Gershon, T. The core promoter: at the heart of gene expression. Biochim. Biophys. Acta Gene Regul. Mech. 1849, 1116–1131 (2015).

    Article  CAS  Google Scholar 

  114. Wang, Z. et al. Prediction of histone post-translational modification patterns based on nascent transcription data. Nat. Genet. 54, 295–305 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zheng, Y., Thomas, P. M. & Kelleher, N. L. Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites. Nat. Commun. 4, 2203 (2013).

    Article  PubMed  Google Scholar 

  116. Claringbould, A. & Zaugg, J. B. Enhancers in disease: molecular basis and emerging treatment strategies. Trends Mol. Med. 27, 1060–1073 (2021).

    Article  CAS  PubMed  Google Scholar 

  117. Jia, Q., Chen, S., Tan, Y., Li, Y. & Tang, F. Oncogenic super-enhancer formation in tumorigenesis and its molecular mechanisms. Exp. Mol. Med. 52, 713–723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Beroukhim, R., Zhang, X. & Meyerson, M. Copy number alterations unmasked as enhancer hijackers. Nat. Genet. 49, 5–6 (2017).

    Article  CAS  Google Scholar 

  119. Herz, H.-M. Enhancer deregulation in cancer and other diseases. BioEssays 38, 1003–1015 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Northcott, P. A. et al. Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma. Nature 511, 428–434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Flavahan, W. A. et al. Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529, 110–114 (2016).

    Article  CAS  PubMed  Google Scholar 

  122. Flavahan, W. A. et al. Altered chromosomal topology drives oncogenic programs in SDH-deficient GISTs. Nature 575, 229–233 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  124. Bell, O., Tiwari, V. K., Thomä, N. H. & Schübeler, D. Determinants and dynamics of genome accessibility. Nat. Rev. Genet. 12, 554–564 (2011).

    Article  CAS  PubMed  Google Scholar 

  125. Starks, R. R., Biswas, A., Jain, A. & Tuteja, G. Combined analysis of dissimilar promoter accessibility and gene expression profiles identifies tissue-specific genes and actively repressed networks. Epigenetics Chromatin 12, 1–16 (2019).

    Article  Google Scholar 

  126. Szyf, M., Weaver, I. & Meaney, M. Maternal care, the epigenome and phenotypic differences in behavior. Reprod. Toxicol. 24, 9–19 (2007).

    Article  CAS  PubMed  Google Scholar 

  127. Esteller, M. Epigenetic gene silencing in cancer: the DNA hypermethylome. Hum. Mol. Genet. 16, R50–R59 (2007).

    Article  CAS  PubMed  Google Scholar 

  128. Issa, J.-P. CpG island methylator phenotype in cancer. Nat. Rev. Cancer 4, 988–993 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Tycko, B. et al. Epigenetic gene silencing in cancer. J. Clin. Invest. 105, 401–407 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Lee, K. et al. Integrated analysis of tissue-specific promoter methylation and gene expression profile in complex diseases. Int. J. Mol. Sci. 21, 5056 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Schilling, E. & Rehli, M. Global, comparative analysis of tissue-specific promoter CpG methylation. Genomics 90, 314–323 (2007).

    Article  CAS  PubMed  Google Scholar 

  132. Perissi, V., Jepsen, K., Glass, C. K. & Rosenfeld, M. G. Deconstructing repression: evolving models of co-repressor action. Nat. Rev. Genet. 11, 109–123 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Payankaulam, S., Li, L. M. & Arnosti, D. N. Transcriptional repression: conserved and evolved features. Curr. Biol. 20, R764–R771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Blackledge, N. P. & Klose, R. J. The molecular principles of gene regulation by Polycomb repressive complexes. Nat. Rev. Mol. Cell Biol. 22, 815–833 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Cheutin, T. & Cavalli, G. Polycomb silencing: from linear chromatin domains to 3D chromosome folding. Curr. Opin. Genet. Dev. 25, 30–37 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Zhang, Y., See, Y. X., Tergaonkar, V. & Fullwood, M. J. Long-distance repression by human silencers: chromatin interactions and phase separation in silencers. Cells 11, 1560 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Cornejo-Páramo, P., Roper, K., Degnan, S. M., Degnan, B. M. & Wong, E. S. Distal regulation, silencers, and a shared combinatorial syntax are hallmarks of animal embryogenesis. Genome Res. 32, 474–487 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Courey, A. J. & Jia, S. Transcriptional repression: the long and the short of it. Genes Dev. 15, 2786–2796 (2001).

    Article  CAS  PubMed  Google Scholar 

  139. Burke, L. J. & Baniahmad, A. Co-repressors 2000. FASEB J. 14, 1876–1888 (2000).

    Article  CAS  PubMed  Google Scholar 

  140. Altincicek, B. et al. Interaction of the corepressor alien with DAX-1 is abrogated by mutations of DAX-1 involved in adrenal hypoplasia congenita. J. Biol. Chem. 275, 7662–7667 (2000).

    Article  CAS  PubMed  Google Scholar 

  141. Amir, R. E. et al. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  142. Muscatelli, F. et al. Mutations in the DAX-1 gene give rise to both X-linked adrenal hypoplasia congenita and hypogonadotropic hypogonadism. Nature 372, 672–676 (1994).

    Article  CAS  PubMed  Google Scholar 

  143. Jacobs, J., Pagani, M., Wenzl, C. & Stark, A. Widespread regulatory specificities between transcriptional co-repressors and enhancers in Drosophila. Science 381, 198–204 (2023).

    Article  CAS  PubMed  Google Scholar 

  144. Bozek, M. & Gompel, N. Developmental transcriptional enhancers: a subtle interplay between accessibility and activity: considering quantitative accessibility changes between different regulatory states of an enhancer deconvolutes the complex relationship between accessibility and activity. BioEssays 42, 1900188 (2020).

    Article  Google Scholar 

  145. Li, X. & Noll, M. Compatibility between enhancers and promoters determines the transcriptional specificity of gooseberry and gooseberry neuro in the Drosophila embryo. EMBO J. 13, 400–406 (1994).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Juven-Gershon, T., Hsu, J.-Y. & Kadonaga, J. T. Caudal, a key developmental regulator, is a DPE-specific transcriptional factor. Genes Dev. 22, 2823–2830 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Butler, J. E. & Kadonaga, J. T. Enhancer–promoter specificity mediated by DEP or TATA core promoter motifs. Genes Dev. 15, 2515–2519 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Ohtsuki, S., Levine, M. & Cai, H. N. Different core promoters possess distinct regulatory activities in the Drosophila embryo. Genes Dev. 12, 547–556 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Kwon, D. et al. Enhancer–promoter communication at the Drosophila engrailed locus. Development 136, 3067–3075 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Akbari, O. S. et al. A novel promoter-tethering element regulates enhancer-driven gene expression at the bithorax complex in the Drosophila embryo. Development 135, 123–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Shir-Shapira, H. et al. Identification of evolutionarily conserved downstream core promoter elements required for the transcriptional regulation of Fushi tarazu target genes. PLoS ONE 14, e0215695 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Juven-Gershon, T. & Kadonaga, J. T. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 339, 225–229 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Natsume-Kitatani, Y. & Mamitsuka, H. Classification of promoters based on the combination of core promoter elements exhibits different histone modification patterns. PLoS ONE 11, e0151917 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Cermakova, K. & Hodges, H. C. Interaction modules that impart specificity to disordered protein. Trends Biochem. Sci. 48, 477–490 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Chong, S. & Mir, M. Towards decoding the sequence-based grammar governing the functions of intrinsically disordered protein regions. J. Mol. Biol. 433, 166724 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Brodsky, S. et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 79, 459–471 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Bergman, D. T. et al. Compatibility rules of human enhancer and promoter sequences. Nature 607, 176–184 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Martinez-Ara, M., Comoglio, F., van Arensbergen, J. & van Steensel, B. Systematic analysis of intrinsic enhancer–promoter compatibility in the mouse genome. Mol. Cell 82, 2519–2531 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang, H.-L. V. & Corces, V. G. The cupid shuffle: do enhancers prefer specific promoters? Mol. Cell 82, 2357–2359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Sahu, B. et al. Sequence determinants of human gene regulatory elements. Nat. Genet. 54, 283–294 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485, 381–385 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376–380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Sexton, T. et al. Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 148, 458–472 (2012).

    Article  CAS  PubMed  Google Scholar 

  164. Hou, C., Li, L., Qin, Z. S. & Corces, V. G. Gene density, transcription, and insulators contribute to the partition of the Drosophila genome into physical domains. Mol. Cell 48, 471–484 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Golfier, S., Quail, T., Kimura, H. & Brugués, J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner. eLife 9, e53885 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science 366, 1338–1345 (2019).

    Article  CAS  PubMed  Google Scholar 

  168. Kim, Y., Shi, Z., Zhang, H., Finkelstein, I. J. & Yu, H. Human cohesin compacts DNA by loop extrusion. Science 366, 1345–1349 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science 360, 102–105 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Fudenberg, G. et al. Formation of chromosomal domains by loop extrusion. Cell Rep. 15, 2038–2049 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Rao, S. S. et al. Cohesin loss eliminates all loop domains. Cell 171, 305–320 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Nora, E. P. et al. Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169, 930–944 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Gassler, J. et al. A mechanism of cohesin-dependent loop extrusion organizes zygotic genome architecture. EMBO J. 36, 3600–3618 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wutz, G. et al. Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 36, 3573–3599 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. de Wit, E. et al. CTCF binding polarity determines chromatin looping. Mol. Cell 60, 676–684 (2015).

    Article  PubMed  Google Scholar 

  178. Bell, A. C., West, A. G. & Felsenfeld, G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98, 387–396 (1999).

    Article  CAS  PubMed  Google Scholar 

  179. Symmons, O. et al. Functional and topological characteristics of mammalian regulatory domains. Genome Res. 24, 390–400 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Arrastia, M. V. et al. Single-cell measurement of higher-order 3D genome organization with scSPRITE. Nat. Biotechnol. 40, 64–73 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Wutz, G. et al. ESCO1 and CTCF enable formation of long chromatin loops by protecting cohesinSTAG1 from WAPL. eLife 9, e52091 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vian, L. et al. The energetics and physiological impact of cohesin extrusion. Cell 173, 1165–1178 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Dekker, J. & Mirny, L. The 3D genome as moderator of chromosomal communication. Cell 164, 1110–1121 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Doyle, B., Fudenberg, G., Imakaev, M. & Mirny, L. A. Chromatin loops as allosteric modulators of enhancer–promoter interactions. PLoS Comput. Biol. 10, e1003867 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Oh, S. et al. Enhancer release and retargeting activates disease-susceptibility genes. Nature 595, 735–740 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ealo, T. et al. Synergistic insulation of regulatory domains by developmental genes and clusters of CTCF sites. Preprint at bioRxiv https://doi.org/10.1101/2023.12.15.571760 (2023).

  187. Lupiez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic rewiring of gene–enhancer interactions. Cell 161, 1012–1025 (2015).

    Article  Google Scholar 

  188. Paliou, C. et al. Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc. Natl Acad. Sci. USA 116, 12390–12399 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Schuijers, J. et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep. 23, 349–360 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Geyer, P. K. & Corces, V. G. DNA position-specific repression of transcription by a Drosophila zinc finger protein. Genes Dev. 6, 1865–1873 (1992).

    Article  CAS  PubMed  Google Scholar 

  191. Kellum, R. & Schedl, P. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64, 941–950 (1991).

    Article  CAS  PubMed  Google Scholar 

  192. Udvardy, A., Maine, E. & Schedl, P. The 87A7 chromomere: identification of novel chromatin structures flanking the heat shock locus that may define the boundaries of higher order domains. J. Mol. Biol. 185, 341–358 (1985).

    Article  CAS  PubMed  Google Scholar 

  193. Kyrchanova, O., Sokolov, V. & Georgiev, P. Mechanisms of interaction between enhancers and promoters in three Drosophila model systems. Int. J. Mol. Sci. 24, 2855 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Batut, P. J. et al. Genome organization controls transcriptional dynamics during development. Science 375, 566–570 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Deng, H., Jin, G. & Lim, B. Unveiling dynamic enhancer–promoter interactions in Drosophila melanogaster. Biochem. Soc. Trans. 50, 1633–1642 (2022).

    Article  CAS  PubMed  Google Scholar 

  196. Kyrchanova, O. & Georgiev, P. Chromatin insulators and long-distance interactions in Drosophila. FEBS Lett. 588, 8–14 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. da Costa-Nunes, J. A. & Noordermeer, D. Tads: dynamic structures to create stable regulatory functions. Curr. Opin. Struct. Biol. 81, 102622 (2023).

    Article  PubMed  Google Scholar 

  198. Akgol Oksuz, B. et al. Systematic evaluation of chromosome conformation capture assays. Nat. Methods 18, 1046–1055 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Fudenberg, G. & Imakaev, M. FISH-ing for captured contacts: towards reconciling FISH and 3C. Nat. Methods 14, 673–678 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Krietenstein, N. et al. Ultrastructural details of mammalian chromosome architecture. Mol. Cell 78, 554–565 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. McCord, R. P., Kaplan, N. & Giorgetti, L. Chromosome conformation capture and beyond: toward an integrative view of chromosome structure and function. Mol. Cell 77, 688–708 (2020).

    Article  CAS  PubMed  Google Scholar 

  202. Robles-Rebollo, I. et al. Cohesin couples transcriptional bursting probabilities of inducible enhancers and promoters. Nat. Commun. 13, 4342 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Cuartero, S. et al. Control of inducible gene expression links cohesin to hematopoietic progenitor self-renewal and differentiation. Nat. Immunol. 19, 932–941 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Kane, L. et al. Cohesin is required for long-range enhancer action at the Shh locus. Nat. Struct. Mol. Biol. 29, 891–897 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Calderon, L. et al. Cohesin-dependence of neuronal gene expression relates to chromatin loop length. eLife 11, e76539 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Rinzema, N. J. et al. Building regulatory landscapes reveals that an enhancer can recruit cohesin to create contact domains, engage CTCF sites and activate distant genes. Nat. Struct. Mol. Biol. 29, 563–574 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Marshall, W. et al. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7, 930–939 (1997).

    Article  CAS  PubMed  Google Scholar 

  208. Keizer, V. I. et al. Live-cell micromanipulation of a genomic locus reveals interphase chromatin mechanics. Science 377, 489–495 (2022).

    Article  CAS  PubMed  Google Scholar 

  209. Bénichou, O., Guérin, T. & Voituriez, R. Mean first-passage times in confined media: from Markovian to non-Markovian processes. J. Phys. A Math. Theor. 48, 163001 (2015).

    Article  Google Scholar 

  210. Yang, J. H., Brandão, H. B. & Hansen, A. S. DNA double-strand break end synapsis by DNA loop extrusion. Nat. Commun. 14, 1913 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Cattoglio, C. et al. Determining cellular CTCF and cohesin abundances to constrain 3D genome models. eLife 8, e40164 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Holzmann, J. et al. Absolute quantification of cohesin, CTCF and their regulators in human cells. eLife 8, e46269 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Hamamoto, K. & Fukaya, T. Molecular architecture of enhancer–promoter interaction. Curr. Opin. Cell Biol. 74, 62–70 (2022).

    Article  CAS  PubMed  Google Scholar 

  214. Greenwald, W. W. et al. Subtle changes in chromatin loop contact propensity are associated with differential gene regulation and expression. Nat. Commun. 10, 1054 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Whalen, S., Truty, R. M. & Pollard, K. S. Enhancer–promoter interactions are encoded by complex genomic signatures on looping chromatin. Nat. Genet. 48, 488–496 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Hyle, J. et al. Acute depletion of CTCF directly affects MYC regulation through loss of enhancer–promoter looping. Nucleic Acids Res. 47, 6699–6713 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Cerda-Smith, C. et al. Integrative PTEN enhancer discovery reveals a new model of enhancer organization. Preprint at bioRxiv https://doi.org/10.1101/2023.09.20.558459 (2023).

  218. Zhang, X. et al. Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat. Genet. 48, 176–182 (2016).

    Article  CAS  PubMed  Google Scholar 

  219. Korch, C. et al. DNA profiling analysis of endometrial and ovarian cell lines reveals misidentification, redundancy and contamination. Gynecol. Oncol. 127, 241–248 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. He, B., Chen, C., Teng, L. & Tan, K. Global view of enhancer–promoter interactome in human cells. Proc. Natl Acad. Sci. USA 111, E2191–E2199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Grosse-Holz, S., Coulon, A. & Mirny, L. Scale-free models of chromosome structure, dynamics, and mechanics. Preprint at bioRxiv https://doi.org/10.1101/2023.04.14.536939 (2023).

  222. Giorgetti, L. & Heard, E. Closing the loop: 3C versus DNA FISH. Genome Biol. 17, 1–9 (2016).

    Article  Google Scholar 

  223. Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2020).

    Article  CAS  PubMed  Google Scholar 

  224. Cremer, T. & Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2, 292–301 (2001).

    Article  CAS  PubMed  Google Scholar 

  225. Bridger, J. M. & Volpi, E. V. Fluorescence in situ Hybridization (FISH): Protocols and Applications (Humana Press, 2010).

  226. Speicher, M. R., Ballard, S. G. & Ward, D. C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 12, 368–375 (1996).

    Article  CAS  PubMed  Google Scholar 

  227. Gall, J. G. & Pardue, M. L. Formation and detection of RNA–DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA 63, 378–383 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Liu, M. et al. Multiplexed imaging of nucleome architectures in single cells of mammalian tissue. Nat. Commun. 11, 2907 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Sawh, A. N. et al. Lamina-dependent stretching and unconventional chromosome compartments in early C. elegans embryos. Mol. Cell 78, 96–111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Gizzi, A. M. C. et al. Microscopy-based chromosome conformation capture enables simultaneous visualization of genome organization and transcription in intact organisms. Mol. Cell 74, 212–222 (2019).

    Article  Google Scholar 

  231. Bintu, B. et al. Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  232. Nir, G. et al. Walking along chromosomes with super-resolution imaging, contact maps, and integrative modeling. PLoS Genet. 14, e1007872 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Wang, S. et al. Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598–602 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Beliveau, B. J. et al. Versatile design and synthesis platform for visualizing genomes with Oligopaint FISH probes. Proc. Natl Acad. Sci. USA 109, 21301–21306 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Irgen-Gioro, S., Yoshida, S., Walling, V. & Chong, S. Fixation can change the appearance of phase separation in living cells. eLife 11, e79903 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Beckwith, K. et al. Nanoscale 3D DNA tracing in single human cells visualizes loop extrusion directly in situ. Preprint at bioRxiv https://doi.org/10.1101/2021.04.12.439407 (2021).

  237. Brown, J. M., De Ornellas, S., Parisi, E., Schermelleh, L. & Buckle, V. J. RASER-FISH: non-denaturing fluorescence in situ hybridization for preservation of three-dimensional interphase chromatin structure. Nat. Protoc. 17, 1306–1331 (2022).

    Article  CAS  PubMed  Google Scholar 

  238. Lakadamyali, M. & Cosma, M. P. Visualizing the genome in high resolution challenges our textbook understanding. Nat. Methods 17, 371–379 (2020).

    Article  CAS  PubMed  Google Scholar 

  239. Khanna, N., Zhang, Y., Lucas, J. S., Dudko, O. K. & Murre, C. Chromosome dynamics near the sol–gel phase transition dictate the timing of remote genomic interactions. Nat. Commun. 10, 2771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  240. Germier, T. et al. Real-time imaging of a single gene reveals transcription-initiated local confinement. Biophys. J. 113, 1383–1394 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Robinett, C. C. et al. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135, 1685–1700 (1996).

    Article  CAS  PubMed  Google Scholar 

  242. Platania, A. et al. Competition between transcription and loop extrusion modulates promoter and enhancer dynamics. Preprint at bioRxiv https://doi.org/10.1101/2023.04.25.538222 (2023).

  243. Bohrer, C. H. & Larson, D. R. Synthetic analysis of chromatin tracing and live-cell imaging indicates pervasive spatial coupling between genes. eLife 12, e81861 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Acuña, L. I. G., Flyamer, I., Boyle, S., Friman, E. & Bickmore, W. A. Transcription decouples estrogen-dependent changes in enhancer–promoter contact frequencies and spatial proximity. Preprint at bioRxiv https://doi.org/10.1101/2023.03.29.534720 (2023).

  245. Barinov, L., Ryabichko, S., Bialek, W. & Gregor, T. Transcription-dependent spatial organization of a gene locus. Preprint at https://arXiv.org/abs/2012.15819 (2020).

  246. Thompson, R. E., Larson, D. R. & Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 82, 2775–2783 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat. Methods 9, 999–1003 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank L. Mirny, S. Grosse-Holz, H. Pinholt, M. Mir, C. Hong, M. Gabriele, M. Mazzocca and the rest of the Hansen laboratory for insightful discussions and comments on the manuscript. J.H.Y. was supported by the MathWorks Engineering Fellowship and a graduate fellowship from the Ludwig Center at MIT’s Koch Institute for Integrative Cancer Research. This work was supported by the National Institutes of Health (grant numbers R00GM130896, DP2GM140938, R33CA257878, UM1HG011536), the National Science Foundation (grant 2036037) and a Pew-Stewart Cancer Research Scholar grant.

Author information

Authors and Affiliations

Authors

Contributions

J.H.Y. researched data for the article. Both authors contributed substantially to discussion of the content, wrote the article and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Anders S. Hansen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Thomas Milne, Marieke Oudelaar with Abrar Aljahani, and Ranjith Padinhateeri for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Architectural proteins

Proteins that regulate 3D chromatin structure by forming chromatin loops and domains, which can regulate interactions between enhancers and promoters.

Biochemical compatibility

The intrinsic ability for an enhancer to activate transcription at some promoters but not others, which may be determined by the binding profile of transcription factors and co-activators.

Chromatic aberrations

Owing to the refractive index varying with the wavelength of light, a perfectly colocalizing E–P pair (true distance of 0 nm) may be measured as being far apart. Very accurate correction of chromatic aberrations is required for precise measurements of E–P distances.

Clustering

A cluster corresponds to higher-than-expected local density of molecules. The term cluster is agnostic to the mechanism of cluster formation and clusters are often defined using spatial statistics.

Condensates

Refers to formation of membraneless compartments of high local concentration of factors through liquid–liquid phase separation.

Co-repressors

Enzymatic complexes recruited to DNA directly or indirectly by transcription factors to establish and maintain repression of transcription.

Enhanceosome

A protein complex that assembles on an enhancer to regulate the transcription of the cognate promoter.

Enhancer RNAs

Non-coding RNAs transcribed from enhancers, which may have gene regulatory functions.

E–P interaction radius

The maximum 3D distance between an enhancer and a promoter that enables them to functionally interact.

Facilitator

Refers to DNA–protein complexes such as DNA-bound CTCF, which can increase the interaction probability between promoters and regulatory elements such as enhancers and silencers.

First-passage time

The time taken for a stochastic process to reach a specific state for the first time, for example, the time taken for an enhancer to find and interact with a promoter.

Hub

Discrete nuclear domains of high transcription protein concentration, which serve as a focal point of activity; ‘hub formation’ is often used to indicate a formation mechanism that is distinct from phase separation.

Insulators

DNA elements bound by specific protein complexes, which may reduce gene expression when placed between an enhancer and a promoter, presumably by reducing the probability of their interaction.

Intrinsically disordered regions

Protein segments lacking well-defined 3D structure in physiological conditions, which form dynamic ensembles of conformations and may engage in multivalent interactions.

Mean squared displacement

The average of the squared displacement of a particle or locus with respect to a reference position, usually calculated over a range of time intervals.

Rouse dynamics

The movement and behaviour of polymers in a bead–spring model, in which monomers are connected by Hookean springs and a monomer only interacts with its nearest neighbours.

Silencers

Regulatory DNA elements that reduce transcription at cognate promoters, including from far away in the genome.

Super-enhancers

Genomic regions consisting of multiple enhancers that can drive high level of transcription at cognate promoters; originally defined based on Mediator enrichment.

Transcription memory

The phenomenon in which the influence of a stimulus persists beyond the initial exposure to the stimulus, including promoter memory of past E–P interactions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J.H., Hansen, A.S. Enhancer selectivity in space and time: from enhancer–promoter interactions to promoter activation. Nat Rev Mol Cell Biol 25, 574–591 (2024). https://doi.org/10.1038/s41580-024-00710-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-024-00710-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research