Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Mediator complex as a master regulator of transcription by RNA polymerase II

Abstract

The Mediator complex, which in humans is 1.4 MDa in size and includes 26 subunits, controls many aspects of RNA polymerase II (Pol II) function. Apart from its size, a defining feature of Mediator is its intrinsic disorder and conformational flexibility, which contributes to its ability to undergo phase separation and to interact with a myriad of regulatory factors. In this Review, we discuss Mediator structure and function, with emphasis on recent cryogenic electron microscopy data of the 4.0-MDa transcription preinitiation complex. We further discuss how Mediator and sequence-specific DNA-binding transcription factors enable enhancer-dependent regulation of Pol II function at distal gene promoters, through the formation of molecular condensates (or transcription hubs) and chromatin loops. Mediator regulation of Pol II reinitiation is also discussed, in the context of transcription bursting. We propose a working model for Mediator function that combines experimental results and theoretical considerations related to enhancer–promoter interactions, which reconciles contradictory data regarding whether enhancer–promoter communication is direct or indirect. We conclude with a discussion of Mediator’s potential as a therapeutic target and of future research directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of human Mediator and Mediator–PIC.
Fig. 2: Models for Mediator function at enhancers.
Fig. 3: A working model for Mediator function.
Fig. 4: Mediator as a therapeutic target.

Similar content being viewed by others

References

  1. Schier, A. C. & Taatjes, D. J. Structure and mechanism of the RNA polymerase II transcription machinery. Genes Dev. 34, 465–488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, F. X., Smith, E. R. & Shilatifard, A. Born to run: control of transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 19, 464–478 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Furlong, E. E. M. & Levine, M. Developmental enhancers and chromosome topology. Science 361, 1341–1345 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hnisz, D., Shrinivas, K., Young, R. A., Chakraborty, A. K. & Sharp, P. A. A phase separation model for transcriptional control. Cell 169, 13–23 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buendia-Monreal, M. & Gillmor, C. S. Mediator: a key regulator of plant development. Dev. Biol. 419, 7–18 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Dolan, W. L. & Chapple, C. Conservation and divergence of mediator structure and function: insights from plants. Plant Cell Physiol. 58, 4–21 (2017).

    CAS  PubMed  Google Scholar 

  8. Malik, N., Agarwal, P. & Tyagi, A. Emerging functions of multi-protein complex mediator with special emphasis on plants. Crit. Rev. Biochem. Mol. Biol. 52, 475–502 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Imasaki, T. et al. Architecture of the mediator head module. Nature 475, 240–243 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lariviere, L. et al. Structure of the mediator head module. Nature 492, 448–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Nozawa, K., Schneider, T. R. & Cramer, P. Core mediator structure at 3.4 a extends model of transcription initiation complex. Nature 545, 248–251 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Robinson, P. J. et al. Molecular architecture of the yeast mediator complex. eLife 4, e08719 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tsai, K. L. et al. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell 157, 1430–1444 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anandhakumar, J., Moustafa, Y. W., Chowdhary, S., Kainth, A. S. & Gross, D. S. Evidence for multiple mediator complexes in yeast independently recruited by activated heat shock factor. Mol. Cell Biol. 36, 1943–1960 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Knoll, E. R., Zhu, Z. I., Sarkar, D., Landsman, D. & Morse, R. H. Role of the pre-initiation complex in mediator recruitment and dynamics. eLife 7, e39633 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Saleh, M. M., Jeronimo, C., Robert, F. & Zentner, G. E. Connection of core and tail mediator modules restrains transcription from TFIID-dependent promoters. PLoS Genet. 17, e1009529 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abdella, R. et al. Structure of the human mediator-bound transcription preinitiation complex. Science 372, 52–56 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen, X. et al. Structures of the human mediator and mediator-bound preinitiation complex. Science 372, eabg0635 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Rengachari, S., Schilbach, S., Aibara, S., Dienemann, C. & Cramer, P. Structure of human mediator-RNA polymerase II pre-initiation complex. Nature 594, 129–133 (2021).

    Article  CAS  PubMed  Google Scholar 

  20. Zhao, H. et al. Structure of mammalian mediator complex reveals tail module architecture and interaction with a conserved core. Nat. Commun. 12, 1355 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. El Khattabi, L. et al. A pliable mediator acts as a functional rather than an architectural bridge between promoters and enhancers. Cell 178, 1145–1158.e20 (2019).

    Article  CAS  PubMed  Google Scholar 

  22. Robinson, P. J. et al. Structure of a complete mediator-RNA polymerase II pre-initiation complex. Cell 166, 1411–1422 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knuesel, M. T., Meyer, K. D., Donner, A. J., Espinosa, J. M. & Taatjes, D. J. The human CDK8 subcomplex is a histone kinase that requires Med12 for activity and can function independently of mediator. Mol. Cell Biol. 29, 650–661 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Jeronimo, C. et al. Tail and kinase modules differently regulate core mediator recruitment and function in vivo. Mol. Cell 64, 455–466 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Petrenko, N., Jin, Y., Wong, K. H. & Struhl, K. Mediator undergoes a compositional change during transcriptional activation. Mol. Cell 64, 443–454 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li, Y. C. et al. Structure and noncanonical Cdk8 activation mechanism within an Argonaute-containing mediator kinase module. Sci. Adv. 7, eabd4484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Elmlund, H. et al. The cyclin-dependent kinase 8 module sterically blocks mediator interactions with RNA polymerase II. Proc. Natl Acad. Sci. USA 103, 15788–15793 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Knuesel, M. T., Meyer, K. D., Bernecky, C. & Taatjes, D. J. The human CDK8 subcomplex is a molecular switch that controls Mediator co-activator function. Genes Dev. 23, 439–451 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsai, K. L. et al. A conserved Mediator-CDK8 kinase module association regulates Mediator-RNA polymerase II interaction. Nat. Struct. Mol. Biol. 20, 611–619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ebmeier, C. C. & Taatjes, D. J. Activator-mediator binding regulates mediator-cofactor interactions. Proc. Natl Acad. Sci. USA 107, 11283–11288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paoletti, A. C. et al. Quantitative proteomic analysis of distinct mammalian mediator complexes using normalized spectral abundance factors. Proc. Natl Acad. Sci. USA 103, 18928–18933 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Taatjes, D. J., Naar, A. M., Andel, F., Nogales, E. & Tjian, R. Structure, function, and activator-induced conformations of the CRSP coactivator. Science 295, 1058–1062 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Soto, L. F. et al. Compendium of human transcription factor effector domains. Mol. Cell 82, 514–526 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Toth-Petroczy, A. et al. Malleable machines in transcription regulation: the mediator complex. PLoS Comput. Biol. 4, e1000243 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Boija, A. et al. Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842–1855.e16 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Biddle, J. W., Martinez-Corral, R., Wong, F. & Gunawardena, J. Allosteric conformational ensembles have unlimited capacity for integrating information. eLife 10, e65498 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Berlow, R. B., Dyson, H. J. & Wright, P. E. Expanding the paradigm: intrinsically disordered proteins and allosteric regulation. J. Mol. Biol. 430, 2309–2320 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sato, S. et al. Role for the MED21-MED7 hinge in assembly of the mediator-RNA polymerase II holoenzyme. J. Biol. Chem. 291, 26886–26898 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tsai, K. L. et al. Mediator structure and rearrangements required for holoenzyme formation. Nature 544, 196–201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Meyer, K. D., Lin, S., Bernecky, C., Gao, Y. & Taatjes, D. J. p53 activates transcription by directing structural shifts in mediator. Nat. Struct. Mol. Biol. 17, 753–760 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang, H. et al. Mediator structure and conformation change. Mol. Cell 81, 1781–1788.e4 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Sanborn, A. L. et al. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to mediator. eLife 10, e68068 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huttlin, E. L. et al. Dual proteome-scale networks reveal cell-specific remodeling of the human interactome. Cell 184, 3022–3040.e28 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Plaschka, C. et al. Architecture of the RNA polymerase II-mediator core initiation complex. Nature 518, 376–380 (2015).

    Article  CAS  PubMed  Google Scholar 

  46. Schilbach, S. et al. Structures of transcription pre-initiation complex with TFIIH and mediator. Nature 551, 204–209 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen, X. et al. Structural insights into preinitiation complex assembly on core promoters. Science 372, eaba8490 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Patel, A. B. et al. Structure of human TFIID and mechanism of TBP loading onto promoter DNA. Science 362, eaau8872 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vo Ngoc, L., Wang, Y. L., Kassavetis, G. A. & Kadonaga, J. T. The punctilious RNA polymerase II core promoter. Genes Dev. 31, 1289–1301 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Grunberg, S., Henikoff, S., Hahn, S. & Zentner, G. E. Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters. EMBO J. 35, 2435–2446 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Guermah, M., Malik, S. & Roeder, R. G. Involvement of TFIID and USA components in transcriptional activation of the human immunodeficiency virus promoter by NF-kappaB and Sp1. Mol. Cell. Biol. 18, 3234–3244 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Johnson, K. M., Wang, J., Smallwood, A., Arayata, C. & Carey, M. TFIID and human mediator coactivator complexes assemble cooperatively on promoter DNA. Genes Dev. 16, 1852–1863 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu, C. & Fuller, M. T. Recruitment of mediator complex by cell type and stage-specific factors required for tissue-specific TAF dependent gene activation in an adult stem cell lineage. PLoS Genet. 11, e1005701 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Marr, M. T., Isogai, Y., Wright, K. J. & Tjian, R. Coactivator cross-talk specifies transcriptional output. Genes Dev. 20, 1458–1469 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jiang, Y. W. et al. Mammalian mediator of transcriptional regulation and its possible role as an end-point of signal transduction pathways. Proc. Natl Acad. Sci. USA 95, 8538–8543 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kim, Y., Bjorklund, S., Li, Y., Sayre, M. H. & Kornberg, R. D. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77, 599–608 (1994).

    Article  CAS  PubMed  Google Scholar 

  57. Nguyen, V. Q. et al. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol. Cell 81, 3560–3575.e6 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Takahashi, H. et al. MED26 regulates the transcription of snRNA genes through the recruitment of little elongation complex. Nat. Commun. 6, 5941 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Lens, Z. et al. Solution structure of the N-terminal domain of mediator subunit MED26 and molecular characterization of its interaction with EAF1 and TAF7. J. Mol. Biol. 429, 3043–3055 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Cianfrocco, M. A. et al. Human TFIID binds to core promoter DNA in a reorganized structural state. Cell 152, 120–131 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Greber, B. J., Toso, D. B., Fang, J. & Nogales, E. The complete structure of the human TFIIH core complex. eLife 8, e44771 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Galburt, E. A. et al. Backtracking determines the force sensitivity of RNAP II in a factor-dependent manner. Nature 446, 820–823 (2007).

    Article  CAS  PubMed  Google Scholar 

  63. Cheung, A. C. & Cramer, P. A movie of RNA polymerase II transcription. Cell 149, 1431–1437 (2012).

    Article  CAS  PubMed  Google Scholar 

  64. Fishburn, J., Tomko, E., Galburt, E. & Hahn, S. Double-stranded DNA translocase activity of transcription factor TFIIH and the mechanism of RNA polymerase II open complex formation. Proc. Natl Acad. Sci. USA 112, 3961–3966 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Aibara, S., Schilbach, S. & Cramer, P. Structures of mammalian RNA polymerase II pre-initiation complexes. Nature 594, 124–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  66. Sogaard, T. M. & Svejstrup, J. Q. Hyperphosphorylation of the C-terminal repeat domain of RNA polymerase II facilitates dissociation of its complex with mediator. J. Biol. Chem. 282, 14113–14120 (2007).

    Article  CAS  PubMed  Google Scholar 

  67. Core, L. & Adelman, K. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33, 960–982 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16, 167–177 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vos, S. M., Farnung, L., Urlaub, H. & Cramer, P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560, 601–606 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Steinparzer, I. et al. Transcriptional responses to IFN-gamma require mediator kinase-dependent pause release and mechanistically distinct CDK8 and CDK19 functions. Mol. Cell 76, 485–499 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Galbraith, M. D. et al. HIF1A employs CDK8-mediator to stimulate RNAPII elongation in response to hypoxia. Cell 153, 1327–1339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Donner, A. J., Ebmeier, C. C., Taatjes, D. J. & Espinosa, J. M. CDK8 is a positive regulator of transcriptional elongation within the serum response network. Nat. Struct. Mol. Biol. 17, 194–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Poss, Z. C. et al. Identification of mediator kinase substrates in human cells using cortistatin A and quantitative phosphoproteomics. Cell Rep. 15, 436–450 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen, M. et al. CDK8/19 mediator kinases potentiate induction of transcription by NFkappaB. Proc. Natl Acad. Sci. USA 114, 10208–10213 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bhagwat, A. S. et al. BET bromodomain inhibition releases the mediator complex from select cis-regulatory elements. Cell Rep. 15, 519–530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jaeger, M. G. et al. Selective mediator dependence of cell-type-specifying transcription. Nat. Genet. 52, 719–727 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Takahashi, H. et al. Human Mediator subunit MED26 functions as a docking site for transcription elongation factors. Cell 146, 92–104 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alerasool, N., Leng, H., Lin, Z. Y., Gingras, A. C. & Taipale, M. Identification and functional characterization of transcriptional activators in human cells. Mol. Cell 82, 677–695.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  79. Palacio, M. & Taatjes, D. J. Merging established mechanisms with new insights: condensates, hubs, and the regulation of RNA polymerase II transcription. J. Mol. Biol. 434, 167216 (2022).

    Article  CAS  PubMed  Google Scholar 

  80. Markert, J. & Luger, K. Nucleosomes meet their remodeler match. Trends Biochem. Sci. 46, 41–50 (2021).

    Article  CAS  PubMed  Google Scholar 

  81. Lambert, S. A. et al. The human transcription factors. Cell 172, 650–665 (2018).

    Article  CAS  PubMed  Google Scholar 

  82. Ito, M., Yuan, C. X., Okano, H. J., Darnell, R. B. & Roeder, R. G. Involvement of the TRAP220 component of the TRAP/SMCC coactivator complex in embryonic development and thyroid hormone action. Mol. Cell 5, 683–693 (2000).

    Article  CAS  PubMed  Google Scholar 

  83. Stevens, J. L. et al. Transcription control by E1A and MAP kinase pathway via Sur2 mediator subunit. Science 296, 755–758 (2002).

    Article  CAS  PubMed  Google Scholar 

  84. Wang, W. et al. Mediator MED23 links insulin signaling to the adipogenesis transcription cascade. Dev. Cell 16, 764–771 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tuttle, L. M. et al. Mediator subunit Med15 dictates the conserved “fuzzy” binding mechanism of yeast transcription activators Gal4 and Gcn4. Nat. Commun. 12, 2220 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Borgia, A. et al. Extreme disorder in an ultrahigh-affinity protein complex. Nature 555, 61–66 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Currie, S. L. et al. ETV4 and AP1 transcription factors form multivalent interactions with three sites on the MED25 activator-interacting domain. J. Mol. Biol. 429, 2975–2995 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Milbradt, A. G. et al. Structure of the VP16 transactivator target in the mediator. Nat. Struct. Mol. Biol. 18, 410–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Vojnic, E. et al. Structure and VP16 binding of the mediator Med25 activator interaction domain. Nat. Struct. Mol. Biol. 18, 404–409 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Yang, F. et al. An ARC/Mediator subunit required for SREBP control of cholesterol and lipid homeostasis. Nature 442, 700–704 (2006).

    Article  CAS  PubMed  Google Scholar 

  91. Cantin, G. T., Stevens, J. L. & Berk, A. J. Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc. Natl Acad. Sci. USA 100, 12003–12008 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ranish, J. A., Yudkovsky, N. & Hahn, S. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13, 49–63 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wu, S. Y., Zhou, T. & Chiang, C. M. Human mediator enhances activator-facilitated recruitment of RNA polymerase II and promoter recognition by TATA-binding protein (TBP) independently of TBP-associated factors. Mol. Cell Biol. 23, 6229–6242 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yudkovsky, N., Ranish, J. A. & Hahn, S. A transcription reinitiation intermediate that is stabilized by activator. Nature 408, 225–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  95. Fondell, J. D., Ge, H. & Roeder, R. G. Ligand induction of a transcriptionally active thyroid hormone receptor coactivator complex. Proc. Natl Acad. Sci. USA 93, 8329–8333 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Naar, A. M. et al. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398, 828–832 (1999).

    Article  CAS  PubMed  Google Scholar 

  97. Wang, G. et al. Mediator requirement for both recruitment and postrecruitment steps in transcription initiation. Mol. Cell 17, 683–694 (2005).

    Article  CAS  PubMed  Google Scholar 

  98. Henley, M. J. et al. Unexpected specificity within dynamic transcriptional protein-protein complexes. Proc. Natl Acad. Sci. USA 117, 27346–27353 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Belorusova, A. Y. et al. Molecular determinants of MED1 interaction with the DNA bound VDR-RXR heterodimer. Nucleic Acids Res. 48, 11199–11213 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Erbas, A. & Marko, J. F. How do DNA-bound proteins leave their binding sites? The role of facilitated dissociation. Curr. Opin. Chem. Biol. 53, 118–124 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sottini, A. et al. Polyelectrolyte interactions enable rapid association and dissociation in high-affinity disordered protein complexes. Nat. Commun. 11, 5736 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Chi, Y. et al. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 15, 1078–1092 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hirst, M., Kobor, M. S., Kuriakose, N., Greenblatt, J. & Sadowski, I. GAL4 is regulated by the RNA polymerase II holoenzyme-associated cyclin-dependent protein kinase SRB10/CDK8. Mol. Cell 3, 673–678 (1999).

    Article  CAS  PubMed  Google Scholar 

  104. Zhao, X. et al. Regulation of lipogenesis by cyclin-dependent kinase 8-mediated control of SREBP-1. J. Clin. Invest. 122, 2417–2427 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-b pathways. Cell 139, 757–769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fryer, C. J., White, J. B. & Jones, K. A. Mastermind recruits CycC:Cdk8 to phosphorylate the notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  107. Heinz, S., Romanoski, C. E., Benner, C. & Glass, C. K. The selection and function of cell type-specific enhancers. Nat. Rev. Mol. Cell Biol. 16, 144–154 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Schoenfelder, S. & Fraser, P. Long-range enhancer-promoter contacts in gene expression control. Nat. Rev. Genet. 20, 437–455 (2019).

    Article  CAS  PubMed  Google Scholar 

  109. Gu, B. et al. Transcription-coupled changes in nuclear mobility of mammalian cis-regulatory elements. Science 359, 1050–1055 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cardiello, J. F., Sanchez, G. J., Allen, M. A. & Dowell, R. D. Lessons from eRNAs: understanding transcriptional regulation through the lens of nascent RNAs. Transcription 11, 3–18 (2020).

    Article  PubMed  Google Scholar 

  111. Hsieh, C. L. et al. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc. Natl Acad. Sci. USA 111, 7319–7324 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lai, F. et al. Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494, 497–501 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Aranda-Orgilles, B. et al. MED12 regulates HSC-specific enhancers independently of mediator kinase activity to control hematopoiesis. Cell Stem Cell 19, 784–799 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Moyo, M. B., Parker, J. B. & Chakravarti, D. Altered chromatin landscape and enhancer engagement underlie transcriptional dysregulation in MED12 mutant uterine leiomyomas. Nat. Commun. 11, 1019 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Murakami, S., Nagari, A. & Kraus, W. L. Dynamic assembly and activation of estrogen receptor alpha enhancers through coregulator switching. Genes Dev. 31, 1535–1548 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Pelish, H. E. et al. Mediator kinase inhibition further activates super-enhancer-associated genes in AML. Nature 526, 273–276 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lynch, C. J. et al. Global hyperactivation of enhancers stabilizes human and mouse naive pluripotency through inhibition of CDK8/19 Mediator kinases. Nat. Cell Biol. 22, 1223–1238 (2020).

    Article  CAS  PubMed  Google Scholar 

  118. Quevedo, M. et al. Mediator complex interaction partners organize the transcriptional network that defines neural stem cells. Nat. Commun. 10, 2669 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Whyte, W. A. et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307–319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Cho, W. K. et al. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361, 412–415 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sabari, B. R. et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eear3958 (2018).

    Article  Google Scholar 

  122. Bhat, P., Honson, D. & Guttman, M. Nuclear compartmentalization as a mechanism of quantitative control of gene expression. Nat. Rev. Mol. Cell Biol. 22, 653–670 (2021).

    Article  CAS  PubMed  Google Scholar 

  123. Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888 (2006).

    Article  CAS  PubMed  Google Scholar 

  124. Zamudio, A. V. et al. Mediator condensates localize signaling factors to key cell identity genes. Mol. Cell 76, 753–766.e6 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shrinivas, K. et al. Enhancer features that drive formation of transcriptional condensates. Mol. Cell 75, 549–561.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Morin, J. A. et al. Sequence-dependent surface condensation of a pioneer transcription factor on DNA. Nat. Phys. 18, 271–276 (2022).

    Article  CAS  Google Scholar 

  127. Chong, S. et al. Imaging dynamic and selective low-complexity domain interactions that control gene transcription. Science 361, eaar2555 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82, 2084–2097.e5 (2022).

    Article  CAS  PubMed  Google Scholar 

  129. Trojanowski, J. et al. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82, 1878–1893.e10 (2022).

    Article  CAS  PubMed  Google Scholar 

  130. Boehning, M. et al. RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat. Struct. Mol. Biol. 25, 833–840 (2018).

    Article  CAS  PubMed  Google Scholar 

  131. Kwon, I. et al. Phosphorylation-regulated binding of RNA polymerase II to fibrous polymers of low-complexity domains. Cell 155, 1049–1060 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543–548 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Brodsky, S. et al. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 79, 459–471.e4 (2020).

    Article  CAS  PubMed  Google Scholar 

  134. Shammas, S. L., Travis, A. J. & Clarke, J. Remarkably fast coupled folding and binding of the intrinsically disordered transactivation domain of cMyb to CBP KIX. J. Phys. Chem. B 117, 13346–13356 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nagulapalli, M., Maji, S., Dwivedi, N., Dahiya, P. & Thakur, J. K. Evolution of disorder in mediator complex and its functional relevance. Nucleic Acids Res. 44, 1591–1612 (2016).

    Article  PubMed  Google Scholar 

  136. Blobel, G. A., Higgs, D. R., Mitchell, J. A., Notani, D. & Young, R. A. Testing the super-enhancer concept. Nat. Rev. Genet. 22, 749–755 (2021).

    Article  CAS  PubMed  Google Scholar 

  137. Chipumuro, E. et al. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 159, 1126–1139 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Loven, J. et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320–334 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sabari, B. R., Dall’Agnese, A. & Young, R. A. Biomolecular condensates in the nucleus. Trends Biochem. Sci. 45, 961–977 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Shin, Y. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491.e13 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    Article  CAS  PubMed  Google Scholar 

  143. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stavreva, D. A. et al. Transcriptional bursting and co-bursting regulation by steroid hormone release pattern and transcription factor mobility. Mol. Cell 75, 1161–1177.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Tantale, K. et al. A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat. Commun. 7, 12248 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184, 2878–2895.e20 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Rodriguez, J. et al. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176, 213–226.e18 (2019).

    Article  CAS  PubMed  Google Scholar 

  148. Chen, H. et al. Dynamic interplay between enhancer-promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Donovan, B. T. et al. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J. 38, e100809 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Bartman, C. R. et al. Transcriptional burst initiation and polymerase pause release are key control points of transcriptional regulation. Mol. Cell 73, 519–532.e4 (2019).

    Article  CAS  PubMed  Google Scholar 

  151. Levine, M., Cattoglio, C. & Tjian, R. Looping back to leap forward: transcription enters a new era. Cell 157, 13–25 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Bartman, C. R., Hsu, S. C., Hsiung, C. C., Raj, A. & Blobel, G. A. Enhancer regulation of transcriptional bursting parameters revealed by forced chromatin looping. Mol. Cell 62, 237–247 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hawley, D. K. & Roeder, R. G. Functional steps in transcription initiation and reinitiation from the major late promoter in a HeLa nuclear extract. J. Biol. Chem. 262, 3452–3461 (1987).

    Article  CAS  PubMed  Google Scholar 

  154. Joo, Y. J. et al. Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes Dev. 31, 2162–2174 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Larsson, A. J. M. et al. Genomic encoding of transcriptional burst kinetics. Nature 565, 251–254 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Pimmett, V. L. et al. Quantitative imaging of transcription in living Drosophila embryos reveals the impact of core promoter motifs on promoter state dynamics. Nat. Commun. 12, 4504 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yakovchuk, P., Gilman, B., Goodrich, J. A. & Kugel, J. F. RNA polymerase II and TAFs undergo a slow isomerization after the polymerase is recruited to promoter-bound TFIID. J. Mol. Biol. 397, 57–68 (2010).

    Article  CAS  PubMed  Google Scholar 

  158. Zhang, Z. et al. Chemical perturbation of an intrinsically disordered region of TFIID distinguishes two modes of transcription initiation. eLife 4, e07777 (2015).

    Article  PubMed Central  Google Scholar 

  159. Li, J. et al. Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol. Cell 50, 711–722 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Pavelitz, T., Bailey, A. D., Elco, C. P. & Weiner, A. M. Human U2 snRNA genes exhibit a persistently open transcriptional state and promoter disassembly at metaphase. Mol. Cell Biol. 28, 3573–3588 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Szabo, Q., Bantignies, F. & Cavalli, G. Principles of genome folding into topologically associating domains. Sci. Adv. 5, eaaw1668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Finn, E. H. & Misteli, T. Molecular basis and biological function of variability in spatial genome organization. Science 365, eaaw9498 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Misteli, T. The self-organizing genome: principles of genome architecture and function. Cell 183, 28–45 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Deng, W. et al. Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell 149, 1233–1244 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849–860 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Hua, P. et al. Defining genome architecture at base-pair resolution. Nature 595, 125–129 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Fullwood, M. J. et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 462, 58–64 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Sanyal, A., Lajoie, B. R., Jain, G. & Dekker, J. The long-range interaction landscape of gene promoters. Nature 489, 109–113 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell 159, 374–387 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kagey, M. et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467, 430–435 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Siersbaek, R. et al. Dynamic rewiring of promoter-anchored chromatin loops during adipocyte differentiation. Mol. Cell 66, 420–435.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  174. Jeronimo, C. & Robert, F. Kin28 regulates the transient association of mediator with core promoters. Nat. Struct. Mol. Biol. 21, 449–455 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wong, K. H., Jin, Y. & Struhl, K. TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol. Cell 54, 601–612 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Sun, F. et al. The Pol II preinitiation complex (PIC) influences mediator binding but not promoter-enhancer looping. Genes Dev. 35, 1175–1189 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Rao, S. S. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Alexander, J. M. et al. Live-cell imaging reveals enhancer-dependent Sox2 transcription in the absence of enhancer proximity. eLife 8, e41769 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Heist, T., Fukaya, T. & Levine, M. Large distances separate coregulated genes in living Drosophila embryos. Proc. Natl Acad. Sci. USA 116, 15062–15067 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Li, J. et al. Single-molecule nanoscopy elucidates RNA polymerase II transcription at single genes in live cells. Cell 178, 491–506.e28 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Li, J. et al. Single-gene imaging links genome topology, promoter-enhancer communication and transcription control. Nat. Struct. Mol. Biol. 27, 1032–1040 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Valli, J. et al. Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique. J. Biol. Chem. 297, 100791 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Patange, S., Ball, D. A., Karpova, T. & Larson, D. R. Towards a ‘spot on’ understanding of transcription in the nucleus. J. Mol. Biol. 433, 167016 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Rodriguez, J. & Larson, D. R. Transcription in living cells: molecular mechanisms of bursting. Annu. Rev. Biochem. 89, 189–212 (2020).

    Article  CAS  PubMed  Google Scholar 

  185. Batut, P. J. et al. Genome organization controls transcriptional dynamics during development. Science 375, 566–570 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Pachano, T. et al. Orphan CpG islands amplify poised enhancer regulatory activity and determine target gene responsiveness. Nat. Genet. 53, 1036–1049 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Levo, M. et al. Transcriptional coupling of distant regulatory genes in living embryos. Nature 605, 754–760 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Sawicka, A. et al. Transcription activation depends on the length of the RNA polymerase II C-terminal domain. EMBO J. 40, e107015 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160 (2018).

    Article  CAS  PubMed  Google Scholar 

  190. Xiao, J. Y., Hafner, A. & Boettiger, A. N. How subtle changes in 3D structure can create large changes in transcription. eLife 10, e64320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Paramanathan, T., Reeves, D., Friedman, L. J., Kondev, J. & Gelles, J. A general mechanism for competitor-induced dissociation of molecular complexes. Nat. Commun. 5, 5207 (2014).

    Article  CAS  PubMed  Google Scholar 

  192. Grah, R., Zoller, B. & Tkacik, G. Nonequilibrium models of optimal enhancer function. Proc. Natl Acad. Sci. USA 117, 31614–31622 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Compe, E. & Egly, J. M. The long road to understanding RNAPII transcription initiation and related syndromes. Annu. Rev. Biochem. 90, 193–219 (2021).

    Article  CAS  PubMed  Google Scholar 

  194. Ruiz, A. et al. Characterization of the influence of mediator complex in HIV-1 transcription. J. Biol. Chem. 289, 27665–27676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Schneider, W. M. et al. Genome-scale identification of SARS-CoV-2 and Pan-coronavirus host factor networks. Cell 184, 120–132.e14 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Calpena, E. et al. De novo missense substitutions in the gene encoding CDK8, a regulator of the mediator complex, cause a syndromic developmental disorder. Am. J. Hum. Genet. 104, 709–720 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Roninson, I. B. et al. Identifying cancers impacted by CDK8/19. Cells 8, 821 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  198. Bragelmann, J. et al. Pan-cancer analysis of the mediator complex transcriptome identifies CDK19 and CDK8 as therapeutic targets in advanced prostate cancer. Clin. Cancer Res. 23, 1829–1840 (2017).

    Article  CAS  PubMed  Google Scholar 

  199. Syring, I. et al. Comprehensive analysis of the transcriptional profile of the mediator complex across human cancer types. Oncotarget 7, 23043–23055 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Risso-Ballester, J. et al. A condensate-hardening drug blocks RSV replication in vivo. Nature 595, 596–599 (2021).

    Article  CAS  PubMed  Google Scholar 

  202. Sanders, D. W. et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181, 306–324.e28 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Lee, T. I. & Young, R. A. Transcriptional regulation and its misregulation in disease. Cell 152, 1237–1251 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Ito, M., Okano, H. J., Darnell, R. B. & Roeder, R. G. The TRAP100 component of the TRAP/Mediator complex is essential in broad transcriptional events and development. EMBO J. 21, 3464–3475 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Lee, Y. L. et al. Mediator subunit MED1 is required for E2A-PBX1-mediated oncogenic transcription and leukemic cell growth. Proc. Natl Acad. Sci. USA 118, e1922864118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Yang, X. et al. Selective requirement for Mediator MED23 in Ras-active lung cancer. Proc. Natl Acad. Sci. USA 109, E2813–E2822 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Allen, B. L. et al. Suppression of p53 response by targeting p53-Mediator binding with a stapled peptide. Cell Rep. 39, 110630 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Garlick, J. M. et al. Norstictic acid is a selective allosteric transcriptional regulator. J. Am. Chem. Soc. 143, 9297–9302 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Nishikawa, J. L. et al. Inhibiting fungal multidrug resistance by disrupting an activator-mediator interaction. Nature 530, 485–489 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Burslem, G. M. & Crews, C. M. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell 181, 102–114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Schneider, M. et al. The PROTACtable genome. Nat. Rev. Drug Discov. 20, 789–797 (2021).

    Article  CAS  PubMed  Google Scholar 

  212. Davidovich, C., Zheng, L., Goodrich, K. J. & Cech, T. R. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20, 1250–1257 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Dimitrova, E. et al. FBXL19 recruits CDK-mediator to CpG islands of developmental genes priming them for activation during lineage commitment. eLife 7, e37084 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Immarigeon, C. et al. Drosophila mediator subunit Med1 is required for GATA-dependent developmental processes: divergent binding interfaces for conserved coactivator functions. Mol. Cell Biol. 39, e00477-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Huang, Y. et al. Mediator complex regulates alternative mRNA processing via the MED23 subunit. Mol. Cell 45, 459–469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Mukundan, B. & Ansari, A. Srb5/Med18-mediated termination of transcription is dependent on gene looping. J. Biol. Chem. 288, 11384–11394 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Takahashi, H. et al. The role of mediator and little elongation complex in transcription termination. Nat. Commun. 11, 1063 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Schneider, M. et al. The nuclear pore-associated TREX-2 complex employs mediator to regulate gene expression. Cell 162, 1016–1028 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Vernon, R. M. et al. Pi-pi contacts are an overlooked protein feature relevant to phase separation. eLife 7, e31486 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Zhu, Y., Qi, C., Jain, S., Rao, M. S. & Reddy, J. K. Isolation and characterization of PBP, a protein that interacts with peroxisome proliferator-activated receptor. J. Biol. Chem. 272, 25500–25506 (1997).

    Article  CAS  PubMed  Google Scholar 

  221. Yuan, C., Ito, M., Fondell, J. D., Fu, Z. & Roeder, R. G. The TRAP220 component of a thyroid hormone receptor-associated protein (TRAP) coactivator complex interacts directly with nuclear receptors in a ligand-dependent fashion. Proc. Natl Acad. Sci. USA 95, 7939–7944 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Wang, Q., Sharma, D., Ren, Y. & Fondell, J. D. A coregulatory role for the TRAP-mediator complex in androgen receptor-mediated gene expression. J. Biol. Chem. 277, 42852–42858 (2002).

    Article  CAS  PubMed  Google Scholar 

  223. Hittelman, A. B., Burakov, D., Iniguez-Lluhi, J. A., Freedman, L. P. & Garabedian, M. J. Differential regulation of glucocorticoid receptor transcriptional activation via AF-1 associated proteins. EMBO J. 18, 5380–5388 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Malik, S., Wallberg, A. E., Kang, Y. K. & Roeder, R. G. TRAP/SMCC/mediator-dependent transcriptional activation from DNA and chromatin templates by orphan nuclear receptor hepatocyte nuclear factor 4. Mol. Cell Biol. 22, 5626–5637 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Wallberg, A. E., Yamamura, S., Malik, S., Spiegelman, B. M. & Roeder, R. G. Coordination of p300-mediated chromatin remodeling and TRAP/mediator function through coactivator PGC-1alpha. Mol. Cell 12, 1137–1149 (2003).

    Article  CAS  PubMed  Google Scholar 

  226. Chu, C. S. et al. Unique immune cell coactivators specify locus control region function and cell stage. Mol. Cell 80, 845–861.e10 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Grontved, L., Madsen, M. S., Boergesen, M., Roeder, R. G. & Mandrup, S. MED14 tethers mediator to the N-terminal domain of peroxisome proliferator-activated receptor gamma and is required for full transcriptional activity and adipogenesis. Mol. Cell Biol. 30, 2155–2169 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  228. Kato, Y., Habas, R., Katsuyama, Y., Naar, A. & He, X. A component of the ARC/mediator complex required for TGF beta/nodal signalling. Nature 418, 641–646 (2002).

    Article  CAS  PubMed  Google Scholar 

  229. Ito, M. et al. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3, 361–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  230. Ding, N. et al. MED19 and MED26 are synergistic functional targets of the RE1 silencing transcription factor in epigenetic silencing of neuronal gene expression. J. Biol. Chem. 284, 2648–2656 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Boyer, T. G., Martin, M. E. D., Lees, E., Riccardi, R. P. & Berk, A. J. Mammalian Srb/mediator complex is targeted by adenovirus E1a protein. Nature 399, 276–279 (1999).

    Article  CAS  PubMed  Google Scholar 

  232. Liu, Z. et al. Mediator MED23 cooperates with RUNX2 to drive osteoblast differentiation and bone development. Nat. Commun. 7, 11149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Verger, A. et al. The mediator complex subunit MED25 is targeted by the N-terminal transactivation domain of the PEA3 group members. Nucleic Acids Res. 41, 4847–4859 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Sela, D. et al. Role for human mediator subunit MED25 in recruitment of mediator to promoters by endoplasmic reticulum stress-responsive transcription factor ATF6alpha. J. Biol. Chem. 288, 26179–26187 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Eberhardy, S. R. & Farnham, P. J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem. 277, 40156–40162 (2002).

    Article  CAS  PubMed  Google Scholar 

  236. Ding, N. et al. Mediator links epigenetic silencing of neuronal gene expression with X-linked mental retardation. Mol. Cell 31, 347–359 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhou, H., Kim, S., Ishii, S. & Boyer, T. G. Mediator modulates Gli3-dependent Sonic hedgehog signaling. Mol. Cell Biol. 26, 8667–8682 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Kim, S., Xu, X., Hecht, A. & Boyer, T. G. Mediator is a transducer of Wnt/beta-catenin signaling. J. Biol. Chem. 281, 14066–14075 (2006).

    Article  CAS  PubMed  Google Scholar 

  239. Henninger, J. E. et al. RNA-mediated feedback control of transcriptional condensates. Cell 184, 207–225.e24 (2021).

    Article  CAS  PubMed  Google Scholar 

  240. Rossi, M. J. et al. A high-resolution protein architecture of the budding yeast genome. Nature 592, 309–314 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Cevher, M. A. et al. Reconstitution of active human core mediator complex reveals a critical role of the MED14 subunit. Nat. Struct. Mol. Biol. 21, 1028–1034 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Pherson, M., Misulovin, Z., Gause, M. & Dorsett, D. Cohesin occupancy and composition at enhancers and promoters are linked to DNA replication origin proximity in Drosophila. Genome Res. 29, 602–612 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Rocha, P. P., Scholze, M., Bleiss, W. & Schrewe, H. Med12 is essential for early mouse development and for canonical Wnt and Wnt/PCP signaling. Development 137, 2723–2731 (2010).

    Article  CAS  PubMed  Google Scholar 

  244. Westerling, T., Kuuluvainen, E. & Makela, T. P. Cdk8 is essential for preimplantation mouse development. Mol. Cell Biol. 27, 6177–6182 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  245. D’Urso, A. et al. Set1/COMPASS and mediator are repurposed to promote epigenetic transcriptional memory. eLife 5, e16691 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Sooraj, D. et al. MED12 and BRD4 cooperate to sustain cancer growth upon loss of mediator kinase. Mol. Cell 82, 123–139.e7 (2022).

    Article  CAS  PubMed  Google Scholar 

  247. Park, M. J. et al. Oncogenic exon 2 mutations in mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J. Biol. Chem. 293, 4870–4882 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Due to space and citation limitations, the authors regret that they were unable to cite all relevant articles or to discuss all aspects of Mediator function in biology. The Taatjes laboratory is funded in part by the NIH (R35 GM139550 to D.J.T.) and the NSF (MCB-1818147 to D.J.T.); the Iwasa laboratory is funded in part by the NSF (MCB-190330 to J.I.).

Author information

Authors and Affiliations

Authors

Contributions

D.J.T. and W.F.R. wrote the article; W.F.R., S.N. and J.I. helped research data for the article.

Corresponding author

Correspondence to Dylan J. Taatjes.

Ethics declarations

Competing interests

D.J.T. is a member of the scientific advisory board of Dewpoint Therapeutics. All the other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Molecular Cell Biology thanks Gang Wang, Yanhui Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Mediator complex

In humans, a 26-subunit complex that lacks the Mediator kinase module.

Mediator kinase module

(MKM). A four-subunit complex that includes cyclin-dependent kinase 8 (CDK8), cyclin C, MED12 and MED13; vertebrates express also the paralogues CDK19, MED12L and MED13L.

Cyclin-dependent kinase (CDK)–Mediator complex

Mediator bound to the Mediator kinase module (MKM), which may contain CDK8 or CDK19; because MED26 is mutually exclusive with MKM, CDK–Mediator consists of 29 subunits.

Carboxy-terminal domain

(CTD). The disordered carboxyl terminus of the RNA polymerase II (Pol II) subunit RPB1, composed of heptad repeats of the general sequence YSPTSPS, which are differentially phosphorylated during Pol II transcription initiation, pausing, elongation and termination.

Pol II jaw

RNA polymerase II domain composed of subunits RBP1 and RBP5 that contacts DNA downstream of the transcription start site.

Hook domain

A region within the Mediator middle module, at the opposite end of the tail, which is formed by MED10, MED19 and the amino-terminal portion of MED14.

Stalk

Composed of the RNA polymerase II subunits RPB4 and RPB7, the stalk serves as an interaction hub within the preinitiation complex.

Bridge helix

An α-helix that spans the RNA polymerase II (Pol II) active site and undergoes structural changes in coordination with the trigger loop during nucleotide incorporation and Pol II translocation.

Trigger loop

A domain near the RNA polymerase II active site that transitions between an open state and a closed state with each nucleoside triphosphate added to the nascent RNA; helps to detect base pair mismatches.

TF activation domains

Regions of transcription factors (TFs) that interact with other proteins, such as chromatin remodellers or Mediator; activation domains are typically disordered with low-complexity sequences and may phase separate at physiological concentrations.

Hysteresis

In the context of Mediator and transcription, hysteresis could involve a structural isomerization to achieve a more active state, triggered by transcription factor–Mediator binding and/or Mediator–preinitiation complex association. These interaction-induced structural changes may persist, rendering Mediator activity dependent on prior protein–protein interactions.

Proteolysis-targeting chimaeras

Bivalent small molecules that bind a protein of interest and target it to an E3 ubiquitin ligase, thereby promoting its ubiquitylation and degradation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richter, W.F., Nayak, S., Iwasa, J. et al. The Mediator complex as a master regulator of transcription by RNA polymerase II. Nat Rev Mol Cell Biol 23, 732–749 (2022). https://doi.org/10.1038/s41580-022-00498-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41580-022-00498-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing