Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa

An Author Correction to this article was published on 27 February 2024

This article has been updated

Abstract

Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structures of artemisinin and three clinically important derivatives.
Fig. 2: Mechanisms of artemisinin action and partial resistance.
Fig. 3: Prevalence of mutations associated with artemisinin partial resistance in eastern Africa.
Fig. 4: K13 mutations that have emerged in eastern Africa.

Similar content being viewed by others

Change history

References

  1. World Health Organization. World Malaria Report (WHO, 2022).

  2. Haldar, K., Bhattacharjee, S. & Safeukui, I. Drug resistance in Plasmodium. Nat. Rev. Microbiol. 16, 156–170 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Plowe, C. V. Malaria chemoprevention and drug resistance: a review of the literature and policy implications. Malar. J. 21, 104 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ward, K. E., Fidock, D. A. & Bridgford, J. L. Plasmodium falciparum resistance to artemisinin-based combination therapies. Curr. Opin. Microbiol. 69, 102193 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. World Health Organization. WHO Guidelines for Malaria (WHO, 2022).

  6. Noedl, H., Se, Y., Schaecher, K., Smith, B. L., Socheat, D. & Fukuda, M. M. Evidence of artemisinin-resistant malaria in western Cambodia. N. Engl. J. Med. 359, 2619–2620 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Dondorp, A. M. et al. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 361, 455–467 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conrad, M. D. & Rosenthal, P. J. Antimalarial drug resistance in Africa: the calm before the storm? Lancet Infect. Dis. 19, e338–e351 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Tu, Y. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med. 17, 1217–1220 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Klayman, D. L. Qinghaosu (artemisinin): an antimalarial drug from China. Science 228, 1049–1055 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. White, N. J. Qinghaosu (artemisinin): the price of success. Science 320, 330–334 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, L. H. & Su, X. Artemisinin: discovery from the Chinese herbal garden. Cell 146, 855–858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma, N., Zhang, Z., Liao, F., Jiang, T. & Tu, Y. The birth of artemisinin. Pharmacol. Ther. 216, 107658 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, J. B., Li, G. Q., Guo, X. B., Kong, Y. C. & Arnold, K. Antimalarial activity of mefloquine and qinghaosu. Lancet 2, 285–288 (1982).

    Article  CAS  PubMed  Google Scholar 

  15. Li, G. Q., Arnold, K., Guo, X. B., Jian, H. X. & Fu, L. C. Randomised comparative study of mefloquine, qinghaosu, and pyrimethamine-sulfadoxine in patients with falciparum malaria. Lancet 2, 1360–1361 (1984).

    Article  CAS  PubMed  Google Scholar 

  16. Nosten, F. & White, N. J. Artemisinin-based combination treatment of falciparum malaria. Am. J. Trop. Med. Hyg. 77, 181–192 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Nosten, F. et al. Treatment of multidrug-resistant Plasmodium falciparum malaria with 3-day artesunate-mefloquine combination. J. Infect. Dis. 170, 971–977 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Nosten, F. et al. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 356, 297–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Price, R. N. et al. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. Lancet 364, 438–447 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vugt, M. V. et al. Efficacy of six doses of artemether-lumefantrine (benflumetol) in multidrug-resistant Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 60, 936–942 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. West African Network for Clinical Trials of Antimalarial Drugs (WANECAM). Pyronaridine-artesunate or dihydroartemisinin-piperaquine versus current first-line therapies for repeated treatment of uncomplicated malaria: a randomised, multicentre, open-label, longitudinal, controlled, phase 3b/4 trial. Lancet 391, 1378–1390 (2018).

    Article  Google Scholar 

  22. Dondorp, A., Nosten, F., Stepniewska, K., Day, N. & White, N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet 366, 717–725 (2005).

    Article  PubMed  Google Scholar 

  23. Dondorp, A. M. et al. Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial. Lancet 376, 1647–1657 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Meshnick, S. R. Artemisinin: mechanisms of action, resistance and toxicity. Int. J. Parasitol. 32, 1655–1660 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Rosenthal, P. J. & Meshnick, S. R. Hemoglobin catabolism and iron utilization by malaria parasites. Mol. Biochem. Parasitol. 83, 131–139 (1996).

    Article  PubMed  Google Scholar 

  26. Sigala, P. A. & Goldberg, D. E. The peculiarities and paradoxes of Plasmodium heme metabolism. Annu. Rev. Microbiol. 68, 259–278 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Heller, L. E. & Roepe, P. D. Artemisinin-based antimalarial drug therapy: molecular pharmacology and evolving resistance. Trop. Med. Infect. Dis. 4, 89 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Klonis, N. et al. Artemisinin activity against Plasmodium falciparum requires hemoglobin uptake and digestion. Proc. Natl Acad. Sci. USA 108, 11405–11410 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang, J. et al. Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum. Nat. Commun. 6, 10111 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Bridgford, J. L. et al. Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome. Nat. Commun. 9, 3801 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Dhorda, M., Amaratunga, C. & Dondorp, A. M. Artemisinin and multidrug-resistant Plasmodium falciparum — a threat for malaria control and elimination. Curr. Opin. Infect. Dis. 34, 432–439 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Witkowski, B. et al. Novel phenotypic assays for the detection of artemisinin-resistant Plasmodium falciparum malaria in Cambodia: in-vitro and ex-vivo drug-response studies. Lancet Infect. Dis. 13, 1043–1049 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ariey, F. et al. A molecular marker of artemisinin-resistant Plasmodium falciparum malaria. Nature 505, 50–55 (2014).

    Article  PubMed  Google Scholar 

  34. Straimer, J. et al. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates. Science 347, 428–431 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. WWARN K13 Genotype-Phenotype Study Group. Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments-a WWARN individual patient data meta-analysis. BMC Med. 17, 1 (2019).

    Article  Google Scholar 

  36. Miotto, O. et al. Genetic architecture of artemisinin-resistant Plasmodium falciparum. Nat. Genet. 47, 226–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Paloque, L. et al. Mutation in the Plasmodium falciparum BTB/POZ domain of K13 protein confers artemisinin resistance. Antimicrob. Agents Chemother. 66, e0132021 (2022).

    Article  PubMed  Google Scholar 

  38. Barrett, M. P., Kyle, D. E., Sibley, L. D., Radke, J. B. & Tarleton, R. L. Protozoan persister-like cells and drug treatment failure. Nat. Rev. Microbiol. 17, 607–620 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sutherland, C. J., Henrici, R. C. & Artavanis-Tsakonas, K. Artemisinin susceptibility in the malaria parasite Plasmodium falciparum: propellers, adaptor proteins and the need for cellular healing. FEMS Microbiol. Rev. 45, fuaa056 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Siddiqui, F. A., Liang, X. & Cui, L. Plasmodium falciparum resistance to ACTs: emergence, mechanisms, and outlook. Int. J. Parasitol. Drugs Drug Resist. 16, 102–118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mok, S. et al. Drug resistance. Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance. Science 347, 431–435 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Mok, S. et al. Artemisinin-resistant K13 mutations rewire Plasmodium falciparum’s intra-erythrocytic metabolic program to enhance survival. Nat. Commun. 12, 530 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhu, L. et al. Artemisinin resistance in the malaria parasite, Plasmodium falciparum, originates from its initial transcriptional response. Commun. Biol. 5, 274 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xiong, A. et al. K13-mediated reduced susceptibility to artemisinin in Plasmodium falciparum Is overlaid on a trait of enhanced DNA damage repair. Cell Rep. 32, 107996 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Connelly, S. V. et al. Restructured mitochondrial-nuclear interaction in Plasmodium falciparum dormancy and persister survival after artemisinin exposure. mBio 12, e0075321 (2021).

    Article  PubMed  Google Scholar 

  46. Mbengue, A. et al. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria. Nature 520, 683–687 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Birnbaum, J. et al. A Kelch13-defined endocytosis pathway mediates artemisinin resistance in malaria parasites. Science 367, 51–59 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Siddiqui, G., Srivastava, A., Russell, A. S. & Creek, D. J. Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin-resistant Plasmodium falciparum. J. Infect. Dis. 215, 1435–1444 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, T. et al. Decreased K13 abundance reduces hemoglobin catabolism and proteotoxic stress, underpinning artemisinin resistance. Cell Rep. 29, 2917–2928.e5 (2019).

    Article  CAS  PubMed  Google Scholar 

  50. Gnadig, N. F. et al. Insights into the intracellular localization, protein associations and artemisinin resistance properties of Plasmodium falciparum K13. PLoS Pathog. 16, e1008482 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Xie, S. C. et al. Haemoglobin degradation underpins the sensitivity of early ring stage Plasmodium falciparum to artemisinins. J. Cell Sci. 129, 406–416 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Stokes, B. H. et al. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 10, e66277 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Xie, S. C., Ralph, S. A. & Tilley, L. K13, the cytostome, and artemisinin resistance. Trends Parasitol. 36, 533–544 (2020).

    Article  CAS  PubMed  Google Scholar 

  54. Hunt, P. et al. Gene encoding a deubiquitinating enzyme is mutated in artesunate- and chloroquine-resistant rodent malaria parasites. Mol. Microbiol. 65, 27–40 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Simwela, N. V., Hughes, K. R., Roberts, A. B., Rennie, M. T., Barrett, M. P. & Waters, A. P. Experimentally engineered mutations in a ubiquitin hydrolase, UBP-1, modulate in vivo susceptibility to artemisinin and chloroquine in Plasmodium berghei. Antimicrob. Agents Chemother. 64, e02484-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Henrici, R. C., van Schalkwyk, D. A. & Sutherland, C. J. Modification of pfap2mu and pfubp1 markedly reduces ring-stage susceptibility of Plasmodium falciparum to artemisinin in vitro. Antimicrob. Agents Chemother. 64, e01542-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Henriques, G. et al. Directional selection at the pfmdr1, pfcrt, pfubp1, and pfap2mu loci of Plasmodium falciparum in Kenyan children treated with ACT. J. Infect. Dis. 210, 2001–2008 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tumwebaze, P. K. et al. Decreased susceptibility of Plasmodium falciparum to both dihydroartemisinin and lumefantrine in northern Uganda. Nat. Commun. 13, 6353 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Henriques, G. et al. The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine. Antimicrob. Agents Chemother. 59, 2540–2547 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Olshina, M. A. et al. Plasmodium falciparum coronin organizes arrays of parallel actin filaments potentially guiding directional motility in invasive malaria parasites. Malar. J. 14, 280 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Demas, A. R. et al. Mutations in Plasmodium falciparum actin-binding protein coronin confer reduced artemisinin susceptibility. Proc. Natl Acad. Sci. USA 115, 12799–12804 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rosenthal, P. J. Falcipain cysteine proteases of malaria parasites: an update. Biochim. Biophys. Acta Proteins Proteom. 1868, 140362 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Siddiqui, F. A. et al. Plasmodium falciparum falcipain-2a polymorphisms in Southeast Asia and their association with artemisinin resistance. J. Infect. Dis. 218, 434–442 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, J., Xu, C., Lun, Z. R. & Meshnick, S. R. Unpacking ‘artemisinin resistance’. Trends Pharmacol. Sci. 38, 506–511 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Ashley, E. A. et al. Spread of artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med. 371, 411–423 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Phyo, A. P. et al. Declining efficacy of artemisinin combination therapy against P. falciparum malaria on the Thai-Myanmar border (2003-2013): the role of parasite genetic factors. Clin. Infect. Dis. 63, 784–791 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Amaratunga, C. et al. Dihydroartemisinin-piperaquine resistance in Plasmodium falciparum malaria in Cambodia: a multisite prospective cohort study. Lancet Infect. Dis. 16, 357–365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mairet-Khedim, M. et al. Clinical and in vitro resistance of Plasmodium falciparum to artesunate-amodiaquine in Cambodia. Clin. Infect. Dis. 73, 406–413 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Kagoro, F. M. et al. Mapping genetic markers of artemisinin resistance in Plasmodium falciparum malaria in Asia: a systematic review and spatiotemporal analysis. Lancet Microbe 3, e184–e192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Takala-Harrison, S. et al. Independent emergence of artemisinin resistance mutations among Plasmodium falciparum in Southeast Asia. J. Infect. Dis. 211, 670–679 (2015).

    Article  CAS  PubMed  Google Scholar 

  71. Amato, R. et al. Origins of the current outbreak of multidrug-resistant malaria in southeast Asia: a retrospective genetic study. Lancet Infect. Dis. 18, 337–345 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Hamilton, W. L. et al. Evolution and expansion of multidrug-resistant malaria in southeast Asia: a genomic epidemiology study. Lancet Infect. Dis. 19, 943–951 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Imwong, M. et al. Molecular epidemiology of resistance to antimalarial drugs in the Greater Mekong subregion: an observational study. Lancet Infect. Dis. 20, 1470–1480 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wasakul, V. et al. Malaria outbreak in Laos driven by a selective sweep for Plasmodium falciparum kelch13 R539T mutants: a genetic epidemiology analysis. Lancet Infect. Dis. 23, 568–577 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chenet, S. M. et al. Independent emergence of the Plasmodium falciparum kelch Propeller domain mutant allele C580Y in Guyana. J. Infect. Dis. 213, 1472–1475 (2016).

    Article  CAS  PubMed  Google Scholar 

  76. Mathieu, L. C. et al. Local emergence in Amazonia of Plasmodium falciparum k13 C580Y mutants associated with in vitro artemisinin resistance. eLife 9, e51015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miotto, O. et al. Emergence of artemisinin-resistant Plasmodium falciparum with kelch13 C580Y mutations on the island of New Guinea. PLoS Pathog. 16, e1009133 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yoshida, N., Yamauchi, M., Morikawa, R., Hombhanje, F. & Mita, T. Increase in the proportion of Plasmodium falciparum with kelch13 C580Y mutation and decline in pfcrt and pfmdr1 mutant alleles in Papua New Guinea. Malar. J. 20, 410 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lautu-Gumal, D. et al. Surveillance of molecular markers of Plasmodium falciparum artemisinin resistance (kelch13 mutations) in Papua New Guinea between 2016 and 2018. Int. J. Parasitol. Drugs Drug Resist. 16, 188–193 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Das, S., Saha, B., Hati, A. K. & Roy, S. Evidence of artemisinin-resistant Plasmodium falciparum malaria in eastern India. N. Engl. J. Med. 379, 1962–1964 (2018).

    Article  PubMed  Google Scholar 

  81. Das, S., Manna, S., Saha, B., Hati, A. K. & Roy, S. Novel pfkelch13 gene polymorphism associates With artemisinin resistance in eastern India. Clin. Infect. Dis. 69, 1144–1152 (2019).

    Article  CAS  PubMed  Google Scholar 

  82. Rana, R. et al. Sequence analysis of the K13-propeller gene in artemisinin challenging Plasmodium falciparum isolates from malaria endemic areas of Odisha, India: a molecular surveillance study. Biomed. Res. Int. 2020, 8475246 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wedam, J. et al. Molecular evidence for Plasmodium falciparum resistance to sulfadoxine-pyrimethamine but absence of K13 mutations in Mangaluru, southwestern India. Am. J. Trop. Med. Hyg. 99, 1508–1510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Menard, D. et al. A worldwide map of Plasmodium falciparum K13-propeller polymorphisms. N. Engl. J. Med. 374, 2453–2464 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Taylor, S. M. et al. Absence of putative artemisinin resistance mutations among Plasmodium falciparum in sub-Saharan Africa: a molecular epidemiologic study. J. Infect. Dis. 211, 680–688 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Kamau, E. et al. K13-propeller polymorphisms in Plasmodium falciparum parasites from sub-Saharan Africa. J. Infect. Dis. 211, 1352–1355 (2015).

    CAS  PubMed  Google Scholar 

  87. Conrad, M. D. et al. Polymorphisms in K13 and falcipain-2 associated with artemisinin resistance are not prevalent in Plasmodium falciparum isolated from Ugandan children. PLoS ONE 9, e105690 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  88. Cooper, R. A. et al. Lack of artemisinin resistance in Plasmodium falciparum in Uganda based on parasitological and molecular assays. Antimicrob. Agents Chemother. 59, 5061–5064 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Ndwiga, L. et al. A review of the frequencies of Plasmodium falciparum Kelch 13 artemisinin resistance mutations in Africa. Int. J. Parasitol. Drugs Drug Resist. 16, 155–161 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tacoli, C. et al. Artemisinin resistance-associated K13 polymorphisms of Plasmodium falciparum in southern Rwanda, 2010-2015. Am. J. Trop. Med. Hyg. 95, 1090–1093 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kirby, R. et al. Examining the early distribution of the artemisinin-resistant Plasmodium falciparum kelch13 R561H mutation in areas of higher transmission in Rwanda. Open Forum Infect. Dis. 10, ofad149 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Uwimana, A. et al. Emergence and clonal expansion of in vitro artemisinin-resistant Plasmodium falciparum kelch13 R561H mutant parasites in Rwanda. Nat. Med. 26, 1602–1608 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Uwimana, A. et al. Association of Plasmodium falciparum kelch13 R561H genotypes with delayed parasite clearance in Rwanda: an open-label, single-arm, multicentre, therapeutic efficacy study. Lancet Infect. Dis. 21, 1120–1128 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Straimer, J., Gandhi, P., Renner, K. C. & Schmitt, E. K. High prevalence of Plasmodium falciparum K13 mutations in Rwanda is associated with slow parasite clearance after treatment with artemether-lumefantrine. J. Infect. Dis. 225, 1411–1414 (2022).

    Article  CAS  PubMed  Google Scholar 

  95. Bergmann, C. et al. Increase in Kelch 13 polymorphisms in Plasmodium falciparum, southern Rwanda. Emerg. Infect. Dis. 27, 294–296 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moser, K. A. et al. Describing the current status of Plasmodium falciparum population structure and drug resistance within mainland Tanzania using molecular inversion probes. Mol. Ecol. 30, 100–113 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Bwire, G. M., Ngasala, B., Mikomangwa, W. P., Kilonzi, M. & Kamuhabwa, A. A. R. Detection of mutations associated with artemisinin resistance at k13-propeller gene and a near complete return of chloroquine susceptible falciparum malaria in Southeast of Tanzania. Sci. Rep. 10, 3500 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Juliano, J. J. et al. Country wide surveillance reveals prevalent artemisinin partial resistance mutations with evidence for multiple origins and expansion of high level sulfadoxine-pyrimethamine resistance mutations in northwest Tanzania. Preprint at: medRxiv https://doi.org/10.1101/2023.11.07.23298207 (2023).

  99. Conrad, M. D. et al. Evolution of partial resistance to artemisinins in malaria parasites in Uganda. N. Engl. J. Med. 389, 722–732 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mihreteab, S. et al. Increasing prevalence of artemisinin-resistant HRP2-negative malaria in Eritrea. N. Engl. J. Med. 389, 1191–1202 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tumwebaze, P. et al. Changing antimalarial drug resistance patterns identified by surveillance at three sites in Uganda. J. Infect. Dis. 215, 631–635 (2017).

    CAS  PubMed  Google Scholar 

  102. Rasmussen, S. A. et al. Changing antimalarial drug sensitivities in Uganda. Antimicrob. Agents Chemother. 61, e01516-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Conrad, M. D., Nsobya, S. L. & Rosenthal, P. J. The diversity of the Plasmodium falciparum K13 propeller domain did not increase after implementation of artemisinin-based combination therapy in Uganda. Antimicrob. Agents Chemother. 63, e01234-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Ikeda, M. et al. Artemisinin-resistant Plasmodium falciparum with high survival rates, Uganda, 2014-2016. Emerg. Infect. Dis. 24, 718–726 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Asua, V. et al. Changing molecular markers of antimalarial drug sensitivity across Uganda. Antimicrob. Agents Chemother. 63, e01818-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Asua, V. et al. Changing prevalence of potential mediators of aminoquinoline, antifolate, and artemisinin resistance across Uganda. J. Infect. Dis. 223, 985–994 (2021).

    Article  CAS  PubMed  Google Scholar 

  107. Balikagala, B. et al. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 385, 1163–1171 (2021).

    Article  CAS  PubMed  Google Scholar 

  108. Pacheco, M. A. et al. Evolution and genetic diversity of the k13 gene associated with artemisinin delayed parasite clearance in Plasmodium falciparum. Antimicrob. Agents Chemother. 63, e02550-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Matrevi, S. A. et al. Plasmodium falciparum kelch propeller polymorphisms in clinical isolates from Ghana from 2007 to 2016. Antimicrob. Agents Chemother. 63, e00802-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mensah, B. A. et al. Antimalarial drug resistance profiling of Plasmodium falciparum infections in Ghana using molecular inversion probes and next-generation sequencing. Antimicrob. Agents Chemother. 64, e01423-19 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bayih, A. G., Getnet, G., Alemu, A., Getie, S., Mohon, A. N. & Pillai, D. R. A unique Plasmodium falciparum K13 gene mutation in northwest Ethiopia. Am. J. Trop. Med. Hyg. 94, 132–135 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Alemayehu, A. A. et al. Expansion of the Plasmodium falciparum Kelch 13 R622I mutation in Northwest Ethiopia. Preprint at: Res. Sq. https://doi.org/10.21203/rs.3.rs-171038/v1 (2021).

  113. Emiru, T. et al. Evidence for a role of Anopheles stephensi in the spread of drug and diagnosis-resistant malaria in Africa. Nat. Med. 29, 3203–3211 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fola, A. A. et al. Plasmodium falciparum resistant to artemisinin and diagnostics have emerged in Ethiopia. Nat. Microbiol. 8, 1911–1919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Owoloye, A., Olufemi, M., Idowu, E. T. & Oyebola, K. M. Prevalence of potential mediators of artemisinin resistance in African isolates of Plasmodium falciparum. Malar. J. 20, 451 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  116. van Loon, W. et al. In vitro confirmation of artemisinin resistance in Plasmodium falciparum from patient isolates, Southern Rwanda, 2019. Emerg. Infect. Dis. 28, 852–855 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Straimer, J., Gnadig, N. F., Stokes, B. H., Ehrenberger, M., Crane, A. A. & Fidock, D. A. Plasmodium falciparum K13 mutations differentially impact ozonide susceptibility and parasite fitness in vitro. mBio 8, e00172-17 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Nair, S. et al. Fitness costs and the rapid spread of kelch13-C580Y substitutions conferring artemisinin resistance. Antimicrob. Agents Chemother. 62, e00605-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Stokes, B. H., Ward, K. E. & Fidock, D. A. Evidence of artemisinin-resistant malaria in Africa. N. Engl. J. Med. 386, 1385–1386 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Wang, L. T. et al. Private sector drug shops frequently dispense parenteral anti-malarials in a rural region of Western Uganda. Malar. J. 17, 305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Blasco, B., Leroy, D. & Fidock, D. A. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat. Med. 23, 917–928 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sidhu, A. B., Uhlemann, A. C., Valderramos, S. G., Valderramos, J. C., Krishna, S. & Fidock, D. A. Decreasing pfmdr1 copy number in Plasmodium falciparum malaria heightens susceptibility to mefloquine, lumefantrine, halofantrine, quinine, and artemisinin. J. Infect. Dis. 194, 528–535 (2006).

    Article  PubMed  Google Scholar 

  123. Tumwebaze, P. K. et al. Drug susceptibility of Plasmodium falciparum in eastern Uganda: a longitudinal phenotypic and genotypic study. Lancet Microbe 2, e441–e449 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Phuc, B. Q. et al. Treatment failure of dihydroartemisinin/piperaquine for Plasmodium falciparum malaria, Vietnam. Emerg. Infect. Dis. 23, 715–717 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. van der Pluijm, R. W. et al. Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. Lancet Infect. Dis. 19, 952–961 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Wicht, K. J., Small-Saunders, J. L., Hagenah, L. M., Mok, S. & Fidock, D. A. Mutant PfCRT can mediate piperaquine resistance in African Plasmodium falciparum with reduced fitness and increased susceptibility to other antimalarials. J. Infect. Dis. 226, 2021–2029 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Florimond, C. et al. Impact of piperaquine resistance in Plasmodium falciparum on malaria treatment effectiveness in French Guiana: a descriptive epidemiological study.Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(23)00502-9 (2023).

    Article  PubMed  Google Scholar 

  128. Leang, R. et al. Efficacy and safety of pyronaridine-artesunate for treatment of uncomplicated Plasmodium falciparum malaria in western Cambodia. Antimicrob. Agents Chemother. 60, 3884–3890 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Leang, R. et al. Efficacy and safety of pyronaridine-artesunate plus single-dose primaquine for treatment of uncomplicated Plasmodium falciparum malaria in eastern Cambodia. Antimicrob. Agents Chemother. 63, e02242-18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Quang Bui, P. et al. Pyronaridine-artesunate efficacy and safety in uncomplicated Plasmodium falciparum malaria in areas of artemisinin-resistant falciparum in Viet Nam (2017-2018). Clin. Infect. Dis. 70, 2187–2195 (2020).

    Article  PubMed  Google Scholar 

  131. Leang, R. et al. Efficacy and safety of pyronaridine-artesunate plus single-dose primaquine for the treatment of malaria in western Cambodia. Antimicrob. Agents Chemother. 63, e01273-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Rahi, M., Chaturvedi, R., Goswami, R. & Sharma, A. India needs to consider planning a change to artemether-lumefantrine to treat Plasmodium falciparum malaria. Am. J. Trop. Med. Hyg. 106, 1305–1310 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Dimbu, P. R. et al. Continued low efficacy of artemether-lumefantrine in Angola in 2019. Antimicrob. Agents Chemother. 65, e01949-20 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Moriarty, L. F. et al. Therapeutic efficacy of artemisinin-based combination therapies in Democratic Republic of the Congo and investigation of molecular markers of antimalarial resistance. Am. J. Trop. Med. Hyg. 105, 1067–1075 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Gansane, A. et al. Anti-malarial efficacy and resistance monitoring of artemether-lumefantrine and dihydroartemisinin-piperaquine shows inadequate efficacy in children in Burkina Faso, 2017-2018. Malar. J. 20, 48 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ebong, C. et al. Efficacy and safety of artemether-lumefantrine and dihydroartemisinin-piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria and prevalence of molecular markers associated with artemisinin and partner drug resistance in Uganda. Malar. J. 20, 484 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rasmussen, C. & Ringwald, P. Continued low efficacy of artemether-lumefantrine in Angola? Antimicrob. Agents Chemother. 65, e00220-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Rasmussen, C. & Ringwald, P. Is there evidence of anti-malarial multidrug resistance in Burkina Faso? Malar. J. 20, 320 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Hastings, I. M. & Felger, I. WHO antimalarial trial guidelines: good science, bad news? Trends Parasitol. 38, 933–941 (2022).

    Article  PubMed  Google Scholar 

  140. Plucinski, M. M., Hastings, I. M., Moriarty, L. F., Venkatesan, M., Felger, I. & Halsey, E. S. Variation in calculating and reporting antimalarial efficacy against Plasmodium falciparum in sub-Saharan Africa: a systematic review of published reports. Am. J. Trop. Med. Hyg. 104, 1820–1829 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Wakoli, D. M. et al. Impact of parasite genomic dynamics on the sensitivity of Plasmodium falciparum isolates to piperaquine and other antimalarial drugs. BMC Med. 20, 448 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Ofori, M. F. et al. Ex vivo sensitivity Profile of Plasmodium falciparum clinical isolates to a panel of antimalarial drugs in Ghana 13 years after national policy change. Infect. Drug. Resist. 14, 267–276 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Traore, K. et al. Ex-vivo sensitivity of Plasmodium falciparum to common anti-malarial drugs: the case of Kenieroba, a malaria endemic village in Mali. Drugs R. D. 20, 249–255 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. van der Pluijm, R. W. et al. Triple artemisinin-based combination therapies versus artemisinin-based combination therapies for uncomplicated Plasmodium falciparum malaria: a multicentre, open-label, randomised clinical trial. Lancet 395, 1345–1360 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Work by the authors is supported by the National Institutes of Health (R01AI075045, R01AI117001, R01AI139179, U01AI141308, U19AI089674 to P.J.R.; R01AI173557 to M.D.C.); The Bill and Melinda Gates Foundation (INV-035751); and the Medicines for Malaria Venture. V.A. is the recipient of a PAMAfrica PhD fellowship, supported by the European & Developing Countries Clinical Trials Partnership. The authors thank David Fidock, Columbia University, for a critical review of this manuscript, and Faiza Siddiqui and Liwang Cui, University of South Florida, for generously providing Fig. 4.

Author information

Authors and Affiliations

Authors

Contributions

All authors reviewed the literature, synthesized available data, and contributed to the writing of this manuscript.

Corresponding author

Correspondence to Philip J. Rosenthal.

Ethics declarations

Competing interests

There are no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Didier Ménard, Lorenz Von Seidlein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Malaria: Artemisinin partial resistance: https://www.who.int/news-room/questions-and-answers/item/artemisinin-resistance

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenthal, P.J., Asua, V. & Conrad, M.D. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 22, 373–384 (2024). https://doi.org/10.1038/s41579-024-01008-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-024-01008-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research