Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mechanisms of antibody-dependent enhancement of infectious disease

Abstract

Antibody-dependent enhancement (ADE) of infectious disease is a phenomenon whereby host antibodies increase the severity of an infection. It is well established in viral infections but ADE also has an underappreciated role during bacterial, fungal and parasitic infections. ADE can occur during both primary infections and re-infections with the same or a related pathogen; therefore, understanding the underlying mechanisms of ADE is critical for understanding the pathogenesis and progression of many infectious diseases. Here, we review the four distinct mechanisms by which antibodies increase disease severity during an infection. We discuss the most established mechanistic explanation for ADE, where cross-reactive, disease-enhancing antibodies bound to pathogens interact with Fc receptors, thereby enhancing pathogen entry or replication, ultimately increasing the total pathogen load. Additionally, we explore how some pathogenic antibodies can shield bacteria from complement-dependent killing, thereby enhancing bacterial survival. We interrogate the molecular mechanisms by which antibodies can amplify inflammation to drive severe disease, even in the absence of increased pathogen replication. We also examine emerging roles for autoantibodies in enhancing the pathogenesis of infectious diseases. Finally, we discuss how we can leverage these insights to improve vaccine design and future treatments for infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of antibody-dependent enhancement of pathogen uptake and replication.
Fig. 2: Mechanisms of antibody-dependent serum resistance.
Fig. 3: Mechanisms of antibody-dependent enhancement of inflammation.
Fig. 4: Mechanism of anti-cytokine autoantibodies enhancing infection.

Similar content being viewed by others

References

  1. Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Halstead, S. B., Nimmannitya, S. & Cohen, S. N. Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J. Biol. Med. 42, 311–328 (1970).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sobotka, H. & Friedlander, M. The precipitin reaction of antipneumococcus sera. J. Exp. Med. 47, 57–92 (1928).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Felton, L. D. The units of protective antibody in anti-pneumococcus serum and antibody solution. J. Infect. Dis. 43, 531–542 (1928).

    Article  CAS  Google Scholar 

  5. Waisbren, B. A. & Brown, I. A factor in the serum of patients with persisting infection that inhibits the bactericidal activity of normal serum against the organism that is causing the infection. J. Immunol. 97, 431–437 (1966).

    Article  CAS  PubMed  Google Scholar 

  6. Plummer, F. A. et al. Antibody to Rmp (outer membrane protein 3) increases susceptibility to gonococcal infection. J. Clin. Investig. 91, 339–343 (1993). This work presents clinical evidence that a bacterial-specific antibody increases disease susceptibility.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tijani, M. K., Lugaajju, A. & Persson, K. E. M. Naturally acquired antibodies against Plasmodium falciparum: friend or foe? Pathogens 10, 832 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Taborda, C. P., Rivera, J., Zaragoza, O. & Casadevall, A. More is not necessarily better: prozone-like effects in passive immunization with IgG. J. Immunol. 170, 3621–3630 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Henrique, I. D. E. M. et al. Therapeutic antibodies against Shiga toxins: trends and perspectives. Front. Cell. Infect. Microbiol. 12, 825856 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Plotkin, S. A. Recent updates on correlates of vaccine-induced protection. Front. Immunol. 13, 1081107 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smani, Y., McConnell, M. J. & Pachón, J. Role of fibronectin in the adhesion of Acinetobacter baumannii to host cells. PLoS ONE 7, e33073 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang, T. T. & Ravetch, J. V. Functional diversification of IgGs through Fc glycosylation. J. Clin. Invest. 129, 3492–3498 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dunkelberger, J. R. & Song, W.-C. Complement and its role in innate and adaptive immune responses. Cell Res. 20, 34–50 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Lambris, J. D., Ricklin, D. & Geisbrecht, B. V. Complement evasion by human pathogens. Nat. Rev. Microbiol. 6, 132–142 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bournazos, S., Gupta, A. & Ravetch, J. V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 20, 633–643 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Halstead, S. B. & Katzelnick, L. COVID 19 vaccines: should we fear ADE? J. Infect. Dis. 222, jiaa518 (2020).

    Article  PubMed  Google Scholar 

  17. Wilder-Smith, A., Ooi, E.-E., Horstick, O. & Wills, B. Dengue. Lancet 393, 350–363 (2019).

    Article  PubMed  Google Scholar 

  18. Katzelnick, L. C. et al. Antibody-dependent enhancement of severe dengue disease in humans. Science 358, 929–932 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Salje, H. et al. Reconstruction of antibody dynamics and infection histories to evaluate dengue risk. Nature 557, 719–723 (2018). Together with Katzelnick et al. (2017), this work presents clinical evidence for increased dengue disease severity at specific antibody titres in large clinical cohorts.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kliks, S. C., Nisalak, A., Brandt, W. E., Wahl, L. & Burke, D. S. Antibody-dependent enhancement of Dengue virus growth in human monocytes as a risk factor for Dengue hemorrhagic fever. Am. J. Trop. Med. Hyg. 40, 444–451 (1989).

    Article  CAS  PubMed  Google Scholar 

  21. Waggoner, J. J. et al. Antibody-dependent enhancement of severe disease is mediated by serum viral load in pediatric Dengue virus infections. J. Infect. Dis. 221, 1846–1854 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodenhuis-Zybert, I. A. et al. Immature Dengue virus: a veiled pathogen? PLoS Pathog. 6, e1000718 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Junjhon, J. et al. Influence of pr-M cleavage on the heterogeneity of extracellular dengue virus particles. J. Virol. 84, 8353–8358 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Screaton, G., Mongkolsapaya, J., Yacoub, S. & Roberts, C. New insights into the immunopathology and control of dengue virus infection. Nat. Rev. Immunol. 15, 745–759 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Callaway, J. B. et al. Source and purity of dengue-viral preparations impact requirement for enhancing antibody to induce elevated IL-1β secretion: a primary human monocyte model. PLoS ONE 10, 1–26 (2015).

    Article  Google Scholar 

  26. Flipse, J. et al. Antibody-dependent enhancement of Dengue virus infection in primary human macrophages; balancing higher fusion against antiviral responses. Sci. Rep. 6, 29201 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, T. T. et al. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science 355, 395–398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bournazos, S. et al. Antibody fucosylation predicts disease severity in secondary dengue infection. Science 372, 1102–1105 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yamin, R. et al. Human FcγRIIIa activation on splenic macrophages drives dengue pathogenesis in mice. Nat. Microbiol. 8, 1468–1479 (2023). This study demonstrates that the specific antibody concentration, glycosylation and increased dengue virus load increases disease in an in vivo model.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tabata, H., Morita, H., Kaji, H., Tohyama, K. & Tohyama, Y. Syk facilitates phagosome–lysosome fusion by regulating actin-remodeling in complement-mediated phagocytosis. Sci. Rep. 10, 22086 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ong, E. Z. et al. Dengue virus compartmentalization during antibody-enhanced infection. Sci. Rep. 7, 40923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Halstead, S. B., Mahalingam, S., Marovich, M. A., Ubol, S. & Mosser, D. M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: disease regulation by immune complexes. Lancet Infect. Dis. 10, 712–722 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Torres, V. V. L., Coggon, C. F. & Wells, T. J. Antibody-dependent enhancement of bacterial disease: prevalence, mechanisms, and treatment. Infect. Immun. 89, e00054-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wells, T. J. et al. Increased severity of respiratory infections associated with elevated anti-LPS IgG2 which inhibits serum bactericidal killing. J. Exp. Med. 211, 1893–1904 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pham, A. et al. Anti-LPS IgA and IgG can inhibit serum killing of Pseudomonas aeruginosa in patients with cystic fibrosis. Infect. Immun. 89, e00412–e00421 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Divithotawela, C. et al. Inferior outcomes in lung transplant recipients with serum Pseudomonas aeruginosa specific cloaking antibodies. J. Hear. Lung Transplant. 40, 951–959 (2021). Together with Wells et al. (2014), this work presents clinical evidence for anti-LPS antibodies associated with worse clinical outcomes in P. aeruginosa lung infections.

    Article  Google Scholar 

  37. Thomassen, M. J. & Demko, C. A. Serum bactericidal effect on Pseudomonas aeruginosa isolates from cystic fibrosis patients. Infect. Immun. 33, 512–518 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hickson, S. M. et al. Antibody-mediated serum resistance protects Pseudomonas aeruginosa during bloodstream infections. J. Infect. Dis. https://doi.org/10.1093/infdis/jiad457 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Coggon, C. F. et al. A novel method of serum resistance by Escherichia coli that causes urosepsis. mBio 9, e00920-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  40. MacLennan, C. A. et al. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults. Science 328, 508–512 (2010). This work defines that antibody binding to the O-antigen portion of LPS is responsible for the antibody-mediated serum resistance, and also proposes the current mechanism of cAbs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jarvis, G. A. & Griffiss, J. M. Human IgA1 blockade of IgG-initiated lysis of Neisseria meningitidis is a function of antigen-binding fragment binding to the polysaccharide capsule. J. Immunol. 147, 1962–1967 (1991).

    Article  CAS  PubMed  Google Scholar 

  42. Siber, G. R., Schur, P. H., Aisenberg, A. C., Weitzman, S. A. & Schiffman, G. Correlation between serum IgG-2 concentrations and the antibody response to bacterial polysaccharide antigens. N. Engl. J. Med. 303, 178–182 (1980).

    Article  CAS  PubMed  Google Scholar 

  43. McKeand, S. A. et al. Inhibition of Neisseria gonorrhoeae complement-mediated killing during acute gonorrhoea is dependent upon the IgG2:IgG3 antibody ratio. Preprint at bioRxiv https://doi.org/10.1101/2023.09.26.558794 (2023).

  44. Apicella, M. A. et al. Bactericidal antibody response of normal human serum to the lipooligosaccharide of Neisseria gonorrhoeae. J. Infect. Dis. 153, 520–526 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Griffiss, J. M. Bactericidal activity of meningococcal antisera. Blocking by IgA of lytic antibody in human convalescent sera. J. Immunol. 114, 1779–1784 (1975).

    Article  CAS  PubMed  Google Scholar 

  46. Thomas, L. & Dingle, J. H. Investigations of meningococcal infection. III. The bactericidal action of normal and immune sera for the meningococcus 1. J. Clin. Investig. 22, 375–385 (1943).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ray, T. D., Lewis, L. A., Gulati, S., Rice, P. A. & Ram, S. Novel blocking human IgG directed against the pentapeptide repeat motifs of Neisseria meningitidis Lip/H.8 and Laz lipoproteins. J. Immunol. 186, 4881–4894 (2011).

    Article  PubMed  Google Scholar 

  48. Hamadeh, R. M., Estabrook, M. M., Zhou, P., Jarvis, G. A. & Griffiss, J. M. Anti-Gal binds to pili of Neisseria meningitidis: the immunoglobulin A isotype blocks complement-mediated killing. Infect. Immun. 63, 4900–4906 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rice, P. A., Vayo, H. E., Tam, M. R. & Blake, M. S. Immunoglobulin G antibodies directed against protein III block killing of serum-resistant Neisseria gonorrhoeae by immune serum. J. Exp. Med. 164, 1735–1748 (1986).

    Article  CAS  PubMed  Google Scholar 

  50. Virji, M. & Heckels, J. E. Nonbactericidal antibodies against Neisseria gonorrhoeae: evaluation of their blocking effect on bactericidal antibodies directed against outer membrane antigens. Microbiology 134, 2703–2711 (1988).

    Article  CAS  Google Scholar 

  51. Gulati, S. et al. Antibody to reduction modifiable protein increases the bacterial burden and the duration of gonococcal infection in a mouse model. J. Infect. Dis. 212, 311–315 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Joiner, K. A., Scales, R., Warren, K. A., Frank, M. M. & Rice, P. A. Mechanism of action of blocking immunoglobulin G for Neisseria gonorrhoeae. J. Clin. Investig. 76, 1765–1772 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rice, P. A. & Kasper, D. L. Characterization of serum resistance of Neisseria gonorrhoeae that disseminate. J. Clin. Investig. 70, 157–167 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cleary, S. J. et al. IgG hexamers initiate complement-dependent acute lung injury. J. Clin. Investig. https://doi.org/10.1172/jci178351 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hornick, D. B. & Fick, R. B. The immunoglobulin G subclass composition of immune complexes in cystic fibrosis. Implications for the pathogenesis of the Pseudomonas lung lesion. J. Clin. Investig. 86, 1285–1292 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee, W. S., Wheatley, A. K., Kent, S. J. & DeKosky, B. J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 5, 1185–1191 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Casadevall, A. & Pirofski, L. Antibody-mediated regulation of cellular immunity and the inflammatory response. Trends Immunol. 24, 474–478 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Larsen, M. D. et al. Afucosylated IgG characterizes enveloped viral responses and correlates with COVID-19 severity. Science 371, eabc8378 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hoepel, W. et al. High titers and low fucosylation of early human anti-SARS-CoV-2 IgG promote inflammation by alveolar macrophages. Sci. Transl. Med. 13, 1–17 (2021).

    Article  Google Scholar 

  61. Chakraborty, S. et al. Proinflammatory IgG Fc structures in patients with severe COVID-19. Nat. Immunol. 22, 67–73 (2021).

    Article  PubMed  Google Scholar 

  62. Chakraborty, S. et al. Early non-neutralizing, afucosylated antibody responses are associated with COVID-19 severity. Sci. Transl. Med. 14, eabm7853 (2022). Together with Hoepel et al. (2021), this work presents clinical evidence for afucosylated antibodies driving increased COVID-19 severity by enhancing inflammation.

    Article  CAS  PubMed  Google Scholar 

  63. Iannizzi, C. et al. Convalescent plasma for people with COVID‐19: a living systematic review. Cochrane Database Syst. Rev. 2023, CD013600 (2023).

    PubMed Central  Google Scholar 

  64. Murray, S. M. et al. The impact of pre-existing cross-reactive immunity on SARS-CoV-2 infection and vaccine responses. Nat. Rev. Immunol. 23, 304–316 (2023).

    Article  CAS  PubMed  Google Scholar 

  65. Yu, Y. et al. Antibody-dependent cellular cytotoxicity response to SARS-CoV-2 in COVID-19 patients. Signal. Transduct. Target. Ther. 6, 346 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Junqueira, C. et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nakayama, E. E. et al. Anti-nucleocapsid antibodies enhance the production of IL-6 induced by SARS-CoV-2 N protein. Sci. Rep. 12, 1–13 (2022).

    Article  Google Scholar 

  68. Vogelpoel, L. T. C., Baeten, D. L. P., de Jong, E. C. & den Dunnen, J. Control of cytokine production by human Fcγ receptors: implications for pathogen defense and autoimmunity. Front. Immunol. 6, 1–11 (2015).

    Article  CAS  Google Scholar 

  69. Emming, S. & Schroder, K. Tiered DNA sensors for escalating responses. Science 365, 1375–1376 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Bezbradica, J. S., Rosenstein, R. K., Demarco, R. A., Brodsky, I. & Medzhitov, R. A role for the ITAM signaling module in specifying cytokine-receptor functions. Nat. Immunol. 15, 333–342 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Vogelpoel, L. T. C. et al. Fcγ receptor–TLR cross-talk elicits pro-inflammatory cytokine production by human M2 macrophages. Nat. Commun. 5, 5444 (2014).

    Article  CAS  PubMed  Google Scholar 

  72. Miles, S. A., Conrad, S. M., Alves, R. G., Jeronimo, S. M. B. & Mosser, D. M. A role for IgG immune complexes during infection with the intracellular pathogen Leishmania. J. Exp. Med. 201, 747–754 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iwasaki, A. & Yang, Y. The potential danger of suboptimal antibody responses in COVID-19. Nat. Rev. Immunol. 20, 339–341 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Labzin, L. I. et al. Antibody and DNA sensing pathways converge to activate the inflammasome during primary human macrophage infection. EMBO J. 38, e101365 (2019). This study elucidates the molecular mechanisms underpinning antibody-dependent enhanced inflammatory responses from macrophages during adenovirus infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Labzin, L. I. et al. Macrophage ACE2 is necessary for SARS-CoV-2 replication and subsequent cytokine responses that restrict continued virion release. Sci. Signal. 16, eabq1366 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Polack, F. P. et al. A role for immune complexes in enhanced respiratory syncytial virus disease. J. Exp. Med. 196, 859–865 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Monsalvo, A. C. et al. Severe pandemic 2009 H1N1 influenza disease due to pathogenic immune complexes. Nat. Med. 17, 195–200 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Carvelli, J. et al. Association of COVID-19 inflammation with activation of the C5a–C5aR1 axis. Nature 588, 146–150 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Puel, A., Bastard, P., Bustamante, J. & Casanova, J.-L. Human autoantibodies underlying infectious diseases. J. Exp. Med. 219, e20211387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ku, C.-L., Chi, C.-Y., von Bernuth, H. & Doffinger, R. Autoantibodies against cytokines: phenocopies of primary immunodeficiencies? Hum. Genet. 139, 783–794 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rivera-Correa, J. & Rodriguez, A. Autoantibodies during infectious diseases: lessons from malaria applied to COVID-19 and other infections. Front. Immunol. 13, 938011 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vallbracht, A., Treuner, J., Flehmig, B., Joester, K.-E. & Niethammer, D. Interferon-neutralizing antibodies in a patient treated with human fibroblast interferon. Nature 289, 496–497 (1981).

    Article  CAS  PubMed  Google Scholar 

  83. Bastard, P. et al. Autoantibodies neutralizing type I IFNs are present in ~4% of uninfected individuals over 70 years old and account for ~20% of COVID-19 deaths. Sci. Immunol. 6, eabl4340 (2021). This work presents a comprehensive analysis of the prevalence of autoantibodies against type I interferons and how they contribute to COVID-19 severity.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gervais, A. et al. Autoantibodies neutralizing type I IFNs underlie West Nile virus encephalitis in 40% of patients. J. Exp. Med. 220, e20230661 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Q. et al. Autoantibodies against type I IFNs in patients with critical influenza pneumonia. J. Exp. Med. 219, e20220514 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shih, H.-P., Ding, J.-Y., Yeh, C.-F., Chi, C.-Y. & Ku, C.-L. Anti-interferon-γ autoantibody-associated immunodeficiency. Curr. Opin. Immunol. 72, 206–214 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Browne, S. K. et al. Adult-onset immunodeficiency in Thailand and Taiwan. N. Engl. J. Med. 367, 725–734 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Puel, A. et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J. Exp. Med. 207, 291–297 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kisand, K. et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to TH17-associated cytokines. J. Exp. Med. 207, 299–308 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Break, T. J. et al. Response to comments on “Aberrant type 1 immunity drives susceptibility to mucosal fungal infections.”. Science 373, eabi8835 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tangye, S. G. et al. The ever-increasing array of novel inborn errors of immunity: an interim update by the IUIS Committee. J. Clin. Immunol. 41, 666–679 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Piccoli, L. et al. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nat. Commun. 6, 7375 (2015).

    Article  PubMed  Google Scholar 

  93. Lin, C.-H. et al. Identification of a major epitope by anti-interferon-γ autoantibodies in patients with mycobacterial disease. Nat. Med. 22, 994–1001 (2016).

    Article  CAS  PubMed  Google Scholar 

  94. Voyer, T. L. et al. Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency. Nature 623, 803–813 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dans, A. L., Dans, L. F., Silvestre, M. A. A., Halstead, S. B. & Guyatt, G. H. Cause and consequence of loss in vaccine trust. Hum. Vaccines Immunother. 15, 628–629 (2019).

    Article  Google Scholar 

  96. Halstead, S. B. Three dengue vaccines — what now? N. Engl. J. Med. 390, 464–465 (2024).

    Article  PubMed  Google Scholar 

  97. Sridhar, S. et al. Effect of dengue serostatus on dengue vaccine safety and efficacy. N. Engl. J. Med. 379, 327–340 (2018).

    Article  PubMed  Google Scholar 

  98. World Health Organization. Meeting of the Strategic Advisory Group of Experts on Immunization, April 2018: conclusions and recommendations. Weekly Epidemiological Record 93, 329–343 (2018).

    Google Scholar 

  99. Tricou, V. et al. Long-term efficacy and safety of a tetravalent dengue vaccine (TAK-003): 4.5-year results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Glob. Heal. 12, e257–e270 (2024).

    Article  CAS  Google Scholar 

  100. Kallás, E. G. et al. Live, attenuated, tetravalent butantan–dengue vaccine in children and adults. N. Engl. J. Med. 390, 397–408 (2024).

    Article  PubMed  Google Scholar 

  101. Screaton, G. & Mongkolsapaya, J. Which dengue vaccine approach is the most promising, and should we be concerned about enhanced disease after vaccination?: the challenges of a dengue vaccine. Cold Spring Harb. Perspect. Biol. 10, a029520 (2017).

    Article  Google Scholar 

  102. Thomas, S. J. Is new dengue vaccine efficacy data a relief or cause for concern? NPJ Vaccines 8, 55 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Modhiran, N. et al. A broadly protective antibody that targets the flavivirus NS1 protein. Science 371, 190–194 (2021).

    Article  CAS  PubMed  Google Scholar 

  104. Gulati, S., Shaughnessy, J., Ram, S. & Rice, P. A. Targeting lipooligosaccharide (LOS) for a gonococcal vaccine. Front. Immunol. 10, 321 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pier, G. B. Promises and pitfalls of Pseudomonas aeruginosa lipopolysaccharide as a vaccine antigen. Carbohydr. Res. 338, 2549–2556 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Priebe, G. P. & Goldberg, J. B. Vaccines for Pseudomonas aeruginosa: a long and winding road. Expert. Rev. Vaccines 13, 507–519 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Moustafa, D. A. et al. Efficacy of a Pseudomonas aeruginosa serogroup O9 vaccine. Infect. Immun. 91, e0024723 (2023).

    Article  PubMed  Google Scholar 

  108. Döring, G. Prevention of Pseudomonas aeruginosa infection in cystic fibrosis patients. Int. J. Méd. Microbiol. 300, 573–577 (2010).

    Article  PubMed  Google Scholar 

  109. Langford, D. T. & Hiller, J. Prospective, controlled study of a polyvalent Pseudomonas vaccine in cystic fibrosis — three year results. Arch. Dis. Child. 59, 1131 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Siggins, M. K. et al. Absent bactericidal activity of mouse serum against invasive African nontyphoidal Salmonella results from impaired complement function but not a lack of antibody. J. Immunol. 186, 2365–2371 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Muschel, L. H. & Muto, T. Bactericidal reaction of mouse serum. Science 123, 62–64 (1956).

    Article  CAS  PubMed  Google Scholar 

  112. Labombarde, J. G. et al. Induction of broadly reactive influenza antibodies increases susceptibility to autoimmunity. Cell Rep. 38, 110482 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Graham, B. S., Gilman, M. S. A. & McLellan, J. S. Structure-based vaccine antigen design. Annu. Rev. Med. 70, 91–104 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Slon-Campos, J. L. et al. A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nat. Immunol. 20, 1291–1298 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lin, H.-H. et al. Dengue and Zika virus domain III–flagellin fusion and glycan-masking E antigen for prime-boost immunization. Theranostics 9, 4811–4826 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Munoz, F. M. et al. Vaccine-associated enhanced disease: case definition and guidelines for data collection, analysis, and presentation of immunization safety data. Vaccine 39, 3053–3066 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Papi, A. et al. Respiratory syncytial virus prefusion F protein vaccine in older adults. N. Engl. J. Med. 388, 595–608 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  119. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Voysey, M. et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 397, 99–111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Heath, P. T. et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N. Engl. J. Med. 385, 1172–1183 (2021).

    Article  CAS  PubMed  Google Scholar 

  122. Coillie, J. V. et al. Comparative analysis of spike-specific IgG Fc glycoprofiles elicited by adenoviral, mRNA, and protein-based SARS-CoV-2 vaccines. iScience 26, 107619 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Wang, T. T. et al. Anti-HA glycoforms drive B cell affinity selection and determine Influenza vaccine efficacy. Cell 162, 160–169 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Pollard, A. J. & Bijker, E. M. A guide to vaccinology: from basic principles to new developments. Nat. Rev. Immunol. 21, 83–100 (2021).

    Article  CAS  PubMed  Google Scholar 

  125. Wilkins, A. L. et al. AS03- and MF59-adjuvanted influenza vaccines in children. Front. Immunol. 8, 1760 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Pedersen, C. et al. Immunization of early adolescent females with human papillomavirus type 16 and 18 L1 virus-like particle vaccine containing AS04 adjuvant. J. Adolesc. Heal. 40, 564–571 (2007).

    Article  Google Scholar 

  127. Ikewaki, N., Kurosawa, G., Levy, G. A., Preethy, S. & Abraham, S. J. K. Antibody dependent disease enhancement (ADE) after COVID-19 vaccination and β glucans as a safer strategy in management. Vaccine 41, 2427–2429 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. World Health Organization. Guidelines on the quality, safety and efficacy of dengue tetravalent vaccines (live, attenuated), annex 2, TRS no 979 (2013); https://www.who.int/publications/m/item/TRS_979_annex-2-dengue.

  129. Vannice, K. S. et al. Clinical development and regulatory points for consideration for second-generation live attenuated dengue vaccines. Vaccine 36, 3411–3417 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Anderson, L. J. et al. Strategic priorities for respiratory syncytial virus (RSV) vaccine development. Vaccine 31, B209–B215 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Pierson, T. C. et al. The stoichiometry of antibody-mediated neutralization and enhancement of West Nile virus infection. Cell Host Microbe 1, 135–145 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bardina, S. V. et al. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356, 175–180 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Takada, A., Ebihara, H., Feldmann, H., Geisbert, T. W. & Kawaoka, Y. Epitopes required for antibody-dependent enhancement of Ebola virus infection. J. Infect. Dis. 196, S347–S356 (2007).

    Article  CAS  PubMed  Google Scholar 

  134. Willey, S. et al. Extensive complement-dependent enhancement of HIV-1 by autologous non-neutralising antibodies at early stages of infection. Retrovirology 8, 16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Elmastour, F. et al. Anti-coxsackievirus B4 (CV-B4) enhancing activity of serum associated with increased viral load and pathology in mice reinfected with CV-B4. Virulence 8, 908–923 (2017).

    Article  CAS  PubMed  Google Scholar 

  136. Linn, M. L., Aaskov, J. G. & Suhrbier, A. Antibody-dependent enhancement and persistence in macrophages of an arbovirus associated with arthritis. J. Gen. Virol. 77, 407–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  137. Chanas, A. C., Gould, E. A., Clegg, J. C. S. & Varma, M. G. R. Monoclonal antibodies to Sindbis virus glycoprotein E1 can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis. J. Gen. Virol. 58, 37–46 (1982).

    Article  CAS  PubMed  Google Scholar 

  138. Reincke, S. M. et al. Chimeric autoantibody receptor T cells deplete NMDA receptor-specific B cells. Cell 186, 5084–5097.e18 (2023).

    Article  CAS  PubMed  Google Scholar 

  139. KIM, H. W. et al. Respiratory syncytial virus disease in infants despite prior administration of antigenic inactivated vaccine 12. Am. J. Epidemiol. 89, 422–434 (1969).

    Article  CAS  PubMed  Google Scholar 

  140. Tamura, M., Webster, R. G. & Ennis, F. A. Antibodies to HA and NA augment uptake of influenza A viruses into cells via Fc receptor entry. Virology 182, 211–219 (1991).

    Article  CAS  PubMed  Google Scholar 

  141. Mackay, I. R., Rosen, F. S., Kazatchkine, M. D. & Kaveri, S. V. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N. Engl. J. Med. 345, 747–755 (2001).

    Article  Google Scholar 

  142. Wan, Y. et al. Molecular mechanism for antibody-dependent enhancement of coronavirus entry. J. Virol. 94, 1–15 (2019).

    Google Scholar 

  143. Liu, L. et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI insight 4, e123158 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Takano, T., Yamada, S., Doki, T. & Hohdatsu, T. Pathogenesis of oral type I feline infectious peritonitis virus (FIPV) infection: antibody-dependent enhancement infection of cats with type I FIPV via the oral route. J. Vet. Med. Sci. 81, 18-0702 (2019).

    Article  Google Scholar 

  145. Yoon, K.-J., Wu, L.-L., Zimmerman, J. J., Hill, H. T. & Platt, K. B. Antibody-dependent enhancement (ADE) of porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs. Viral Immunol. 9, 51–63 (1996).

    Article  CAS  PubMed  Google Scholar 

  146. Polack, F. P., Hoffman, S. J., Crujeiras, G. & Griffin, D. E. A role for nonprotective complement-fixing antibodies with low avidity for measles virus in atypical measles. Nat. Med. 9, 1209–1213 (2003).

    Article  CAS  PubMed  Google Scholar 

  147. Han, J.-F. et al. Antibody dependent enhancement infection of enterovirus 71 in vitro and in vivo. Virol. J. 8, 106 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Wang-Lin, S. X. et al. Antibody dependent enhancement of Acinetobacter baumannii infection in a mouse pneumonia model. J. Pharmacol. Exp. Ther. 368, jpet.118.253617 (2019).

    Article  Google Scholar 

  149. Ward, C. K. & Inzana, T. J. Resistance of Actinobacillus pleuropneumoniae to bactericidal antibody and complement is mediated by capsular polysaccharide and blocking antibody specific for lipopolysaccharide. J. Immunol. 153, 2110–2121 (1994).

    Article  CAS  PubMed  Google Scholar 

  150. Hoffmann, E. M. & Houle, J. J. Contradictory roles for antibody and complement in the interaction of Brucella abortus with its host. Crit. Rev. Microbiol. 21, 153–163 (1995).

    Article  CAS  PubMed  Google Scholar 

  151. Hall, W. H., Manion, R. E. & Zinneman, H. H. Blocking serum lysis of Brucella abortus by hyperimmune rabbit immunoglubulin A. J. Immunol. 107, 41–46 (1971).

    Article  CAS  PubMed  Google Scholar 

  152. Olivera-Ardid, S. et al. Removal of natural anti-αGal antibodies elicits protective immunity against Gram-negative bacterial infections. Front. Immunol. 14, 1232924 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Moitra, R., Beal, D. R., Belikoff, B. G. & Remick, D. G. Presence of preexisting antibodies mediates survival in sepsis. Shock 37, 56–62 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Gower, P. E., Taylor, P. W., Koutsaimanis, K. G. & Roberts, A. P. Serum bactericidal activity in patients with upper and lower urinary tract infections. Clin. Sci. 43, 13–22 (1972).

    Article  CAS  PubMed  Google Scholar 

  155. Dunnen, J. D. et al. IgG opsonization of bacteria promotes TH17 responses via synergy between TLRs and FcγRIIa in human dendritic cells. Blood 120, 112–121 (2012).

    Article  Google Scholar 

  156. Käyhty, H. Comparison of passive hemagglutination, bactericidal activity, and radioimmunological methods in measuring antibody responses to Neisseria meningitidis group A capsular polysaccharide vaccine. J. Clin. Microbiol. 12, 256–263 (1980).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Taylor, P. W. Isolation and characterization of a serum antibactericidal factor. Clin. Sci. 43, 705–708 (1972).

    Article  CAS  PubMed  Google Scholar 

  158. Trebicka, E., Jacob, S., Pirzai, W., Hurley, B. P. & Cherayil, B. J. Role of antilipopolysaccharide antibodies in serum bactericidal activity against Salmonella enterica serovar Typhimurium in healthy adults and children in the United States. Clin. Vaccin. Immunol. 20, 1491–1498 (2013).

    Article  CAS  Google Scholar 

  159. Hamadeh, R. M. et al. Human natural anti-Gal IgG regulates alternative complement pathway activation on bacterial surfaces. J. Clin. Investig. 89, 1223–1235 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Weiser, J. N. et al. Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl Acad. Sci. 100, 4215–4220 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lopes, L. C. L. et al. Monoclonal antibodies against peptidorhamnomannans of Scedosporium apiospermum enhance the pathogenicity of the fungus. PLoS Negl. Trop. Dis. 4, e853 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Biryukov, S. et al. Complement and antibody-mediated enhancement of red blood cell invasion and growth of malaria parasites. eBioMedicine 9, 207–216 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Zhou, J., Ludlow, L. E., Hasang, W., Rogerson, S. J. & Jaworowski, A. Opsonization of malaria-infected erythrocytes activates the inflammasome and enhances inflammatory cytokine secretion by human macrophages. Malar. J. 11, 343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kolk, M., de van der Vlas, S. J. & Sauerwein, R. W. Reduction and enhancement of Plasmodium falciparum transmission by endemic human sera. Int. J. Parasitol. 36, 1091–1095 (2006).

    Article  PubMed  Google Scholar 

  165. Casadevall, A. & Pirofski, L. Immunoglobulins in defense, pathogenesis, and therapy of fungal diseases. Cell Host Microbe 11, 447–456 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Stone, W., Bousema, T., Sauerwein, R. & Drakeley, C. Two-faced immunity? The evidence for antibody enhancement of malaria transmission. Trends Parasitol. 35, 140–153 (2019).

    Article  CAS  PubMed  Google Scholar 

  167. Wells, T. J. et al. The use of plasmapheresis in patients with bronchiectasis with Pseudomonas aeruginosa infection and inhibitory antibodies. Am. J. Respir. Crit. Care Med. 195, 955–958 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Divithotawela, C. et al. Treatment of life-threatening Pseudomonas aeruginosa infection by pheresis of inhibitory antibodies. J. Hear. Lung Transplant. 39, 87–89 (2020).

    Article  Google Scholar 

  169. Sibéril, S. et al. Intravenous immunoglobulin in autoimmune and inflammatory diseases: more than mere transfer of antibodies. Transfus. Apher. Sci. 37, 103–107 (2007).

    Article  PubMed  Google Scholar 

  170. Samuelsson, A., Towers, T. L. & Ravetch, J. V. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  171. Kumar, V., Gupta, K., Soneja, M. & Biswas, A. Intravenous immunoglobulin for severe thrombocytopenia in secondary dengue. BMJ Case Rep. 2018, bcr-2018-224542 (2018).

    Article  Google Scholar 

  172. Padmaprakash, K. V. et al. Rescue therapy with intravenous immunoglobulin in severe refractory dengue: a pilot study. Méd. J. Armed Forces India 78, 204–212 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Gupta, A. et al. Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody. Nat. Commun. 14, 2853 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Geyer, C. E. et al. Identification of new drugs to counteract anti-spike IgG-induced hyperinflammation in severe COVID-19. Life Sci. Alliance 6, e202302106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Mkaddem, S. B., Benhamou, M. & Monteiro, R. C. Understanding Fc receptor involvement in inflammatory diseases: from mechanisms to new therapeutic tools. Front. Immunol. 10, 811 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tsang-A-Sjoe, M. W. P. et al. Fcγ receptor polymorphisms differentially influence susceptibility to systemic lupus erythematosus and lupus nephritis. Rheumatology 55, 939–948 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Floto, R. A. et al. Loss of function of a lupus-associated FcγRIIb polymorphism through exclusion from lipid rafts. Nat. Med. 11, 1056–1058 (2005).

    Article  CAS  PubMed  Google Scholar 

  178. Clark, M. R., Stuart, S. G., Kimberly, R. P., Ory, P. A. & Goldstein, I. M. A single amino acid distinguishes the high‐responder from the low‐responder form of Fc receptor II on human monocytes. Eur. J. Immunol. 21, 1911–1916 (1991).

    Article  CAS  PubMed  Google Scholar 

  179. Bruhns, P. et al. Specificity and affinity of human Fcγ receptors and their polymorphic variants for human IgG subclasses. Blood 113, 3716–3725 (2009).

    Article  CAS  PubMed  Google Scholar 

  180. Saleem, M. et al. Association of FcγRIIa polymorphism with clinical outcome of dengue infection: first insight from Pakistan. Am. J. Trop. Med. Hyg. 93, 691–696 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. López-Martínez, R. et al. The FCGR2A rs1801274 polymorphism was associated with the risk of death among COVID-19 patients. Clin. Immunol. 236, 108954 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Maestri, A. et al. The His131Arg substitution in the FCGR2A gene (rs1801274) is not associated with the severity of influenza A(H1N1)pdm09 infection. BMC Res. Notes 9, 296 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Stamou, M., Grodzki, A. C., Oostrum, M., van, Wollscheid, B. & Lein, P. J. Fcγ receptors are expressed in the developing rat brain and activate downstream signaling molecules upon cross-linking with immune complex. J. Neuroinflammation 15, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Erbe, D. V., Collins, J. E., Shen, L., Graziano, R. F. & Fanger, M. W. The effect of cytokines on the expression and function of Fc receptors for IgG on human myeloid cells. Mol. Immunol. 27, 57–67 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

T.J.W., I.R.H. and L.I.L. conceptualized the Review; T.J.W., T.E. and L.I.L. drafted the Review and figures; all authors contributed to editing the manuscript.

Corresponding authors

Correspondence to Timothy J. Wells or Larisa I. Labzin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks G. Gromowski and D. Martinez for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Alternative NF-κB pathway

(Also known as the non-canonical NF-κB pathway). This pathway controls thymic expression of autoimmune regulator protein (AIRE) and development of mature thymic epithelial cells for effective central tolerance, preventing autoantibody formation.

Antibody-dependent cellular cytotoxicity

A mechanism in which immune cells, particularly natural killer cells, recognize antibodies bound to a membrane-bound antigen on a host cell and target it for destruction.

Antibody-dependent phagocytosis

A mechanism in which immune cells engulf and digest pathogens or target cells coated with specific antibodies.

Autoimmune regulator protein

(AIRE). A key regulator of central tolerance, facilitating the expression of tissue-specific antigens in the thymus to prevent the development of autoimmune diseases.

IgG hexamers

IgG is theorized to recruit the C1 complex and activate the complement cascade through interactions between the crystallizable fragment (Fc) domains of six IgG antibodies to form hexamers.

Opsonization

A process where pathogens or particles are marked for phagocytosis by immune cells through the binding of antibodies or complement, enhancing their recognition and elimination.

Pyroptosis

A form of programmed cell death characterized by inflammatory cell lysis, often triggered by infection or cellular damage.

Shwachman–Kulczycki score

A method that assesses and scoaseverity of cystic fibrosis using clinical and radiological evaluation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wells, T.J., Esposito, T., Henderson, I.R. et al. Mechanisms of antibody-dependent enhancement of infectious disease. Nat Rev Immunol 25, 6–21 (2025). https://doi.org/10.1038/s41577-024-01067-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-024-01067-9

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology