Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The therapeutic age of the neonatal Fc receptor

Abstract

IgGs are essential soluble components of the adaptive immune response that evolved to protect the body from infection. Compared with other immunoglobulins, the role of IgGs is distinguished and enhanced by their high circulating levels, long half-life and ability to transfer from mother to offspring, properties that are conferred by interactions with neonatal Fc receptor (FcRn). FcRn binds to the Fc portion of IgGs in a pH-dependent manner and protects them from intracellular degradation. It also allows their transport across polarized cells that separate tissue compartments, such as the endothelium and epithelium. Further, it is becoming apparent that FcRn functions to potentiate cellular immune responses when IgGs, bound to their antigens, form IgG immune complexes. Besides the protective role of IgG, IgG autoantibodies are associated with numerous pathological conditions. As such, FcRn blockade is a novel and effective strategy to reduce circulating levels of pathogenic IgG autoantibodies and curtail IgG-mediated diseases, with several FcRn-blocking strategies on the path to therapeutic use. Here, we describe the current state of knowledge of FcRn–IgG immunobiology, with an emphasis on the functional and pathological aspects, and an overview of FcRn-targeted therapy development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of FcRn and its ligands.
Fig. 2: FcRn-mediated recycling provides a long half-life to monomeric IgG or small IgG immune complexes whereas multimeric IgG immune complexes are degraded.
Fig. 3: FcRn-mediated transplacental transfer of maternal IgG to the offspring.
Fig. 4: Active immune functions of FcRn in innate immune cells.

Similar content being viewed by others

References

  1. Akula, S., Mohammadamin, S. & Hellman, L. Fc receptors for immunoglobulins and their appearance during vertebrate evolution. PLoS ONE 9, e96903 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Delidakis, G., Kim, J. E., George, K. & Georgiou, G. Improving antibody therapeutics by manipulating the Fc domain: immunological and structural considerations. Annu. Rev. Biomed. Eng. 24, 249–274 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ward, E. S. et al. Clinical significance of serum albumin and implications of FcRn inhibitor treatment in IgG-mediated autoimmune disorders. Front. Immunol. 13, 892534 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bern, M., Sand, K. M., Nilsen, J., Sandlie, I. & Andersen, J. T. The role of albumin receptors in regulation of albumin homeostasis: implications for drug delivery. J. Control. Rel. 211, 144–162 (2015).

    Article  CAS  Google Scholar 

  5. Kandil, E. et al. The human gene encoding the heavy chain of the major histocompatibility complex class I-like Fc receptor (FCGRT) maps to 19q13.3. Cytogenetics Cell Genet. 73, 97–98 (1996).

    Article  CAS  Google Scholar 

  6. Mikulska, J. E., Pablo, L., Canel, J. & Simister, N. E. Cloning and analysis of the gene encoding the human neonatal Fc receptor. Eur. J. Immunogenetics 27, 231–240 (2000).

    Article  CAS  Google Scholar 

  7. Catunda Lemos, A. P. et al. Characterization of the rabbit neonatal Fc receptor (FcRn) and analyzing the immunophenotype of the transgenic rabbits that overexpresses FcRn. PLoS ONE 7, e28869 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Simister, N. E. & Mostov, K. E. An Fc receptor structurally related to MHC class I antigens. Nature 337, 184–187 (1989). This study reports the first purification and cloning of the rat FcRn heterodimer (β2m light chain and the MHC class I-related heavy chain).

    Article  CAS  PubMed  Google Scholar 

  9. Simister, N. E. & Rees, A. R. Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur. J. Immunol. 15, 733–738 (1985).

    Article  CAS  PubMed  Google Scholar 

  10. Burmeister, W., Gastinel, L., Simister, N., Blum, M. & Bjorkman, P. Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature 372, 336–343 (1994). This paper reports the first crystal structure of FcRn and an IgG Fc–FcRn complex.

    Article  CAS  PubMed  Google Scholar 

  11. Burmeister, W., Huber, A. & Bjorkman, P. Crystal structure of the complex of rat neonatal Fc receptor with Fc. Nature 372, 379–383 (1994).

    Article  CAS  PubMed  Google Scholar 

  12. Sachs, U. J. et al. A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor α-chain promoter. Immunology 119, 83–89 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Raghavan, M., Gastinel, L. N. & Bjorkman, P. J. The class I major histocompatibility complex related Fc receptor shows pH-dependent stability differences correlating with immunoglobulin binding and release. Biochemistry 32, 8654–8660 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Ye, L. et al. The MHC class II-associated invariant chain interacts with the neonatal Fcγ receptor and modulates its trafficking to endosomal/lysosomal compartments. J. Immunol. 181, 2572–2585 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Zhu, X. et al. The heavy chain of neonatal Fc receptor for IgG is sequestered in endoplasmic reticulum by forming oligomers in the absence of β2-microglobulin association. Biochem. J. 367, 703–714 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Israel, E. J. et al. Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92, 69–74 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akilesh, S., Christianson, G. J., Roopenian, D. C. & Shaw, A. S. Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J. Immunol. 179, 4580–4588 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  19. Latvala, S., Jacobsen, B., Otteneder, M. B., Herrmann, A. & Kronenberg, S. Distribution of FcRn across species and tissues. J. Histochem. Cytochem. 65, 321–333 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Blumberg, L. J. et al. Blocking FcRn in humans reduces circulating IgG levels and inhibits IgG immune complex–mediated immune responses. Sci. Adv. 5, eaax9586 (2019). This study provides evidence that therapeutic blockade of FcRn in humans reduces serum IgGs and IgG-ICs, whereas it also inhibits innate and adaptive immune responses to IgG-ICs in human cells in vitro.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Karlsson, M. et al. A single-cell type transcriptomics map of human tissues. Sci. Adv. 7, eabh2169 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiskova, T. et al. Expression of the neonatal Fc-receptor in placental-fetal endothelium and in cells of the placental immune system. Placenta 78, 36–43 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Zhu, X. et al. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J. Immunol. 166, 3266–3276 (2001). This article shows for the first time that FcRn is expressed in myeloid cells, including monocytes, macrophages and dendritic cells.

    Article  CAS  PubMed  Google Scholar 

  24. Vidarsson, G. et al. FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis. Blood 108, 3573–3579 (2006). These experiments provide evidence that FcRn plays a role in phagocytosis of IgG-ICs by neutrophils.

    Article  CAS  PubMed  Google Scholar 

  25. Liu, X. et al. NF-κB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences. J. Immunol. 179, 2999–3011 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Qian, S. et al. Activation of the JNK/MAPK signaling pathway by TGF-β1 enhances neonatal Fc receptor expression and IgG transcytosis. Microorganisms 9, 879 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo, J. et al. TGEV infection up-regulates FcRn expression via activation of NF-κB signaling. Sci. Rep. 6, 32154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rathore, A. P. S., Saron, W. A. A., Lim, T., Jahan, N. & St John, A. L. Maternal immunity and antibodies to dengue virus promote infection and Zika virus-induced microcephaly in fetuses. Sci. Adv. 5, eaav3208 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, X. et al. Activation of the JAK/STAT-1 signaling pathway by IFN-γ can down-regulate functional expression of the MHC class I-related neonatal Fc receptor for IgG. J. Immunol. 181, 449–463 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Schmidt, M. M. et al. Crystal structure of an HSA/FcRn complex reveals recycling by competitive mimicry of HSA ligands at a pH-dependent hydrophobic interface. Structure 21, 1966–1978 (2013). This study shows the structural mechanism by which FcRn is able to recycle albumin and the development of high-affinity albumin mutants that can be used for the development of therapeutics with increased half-life.

    Article  CAS  PubMed  Google Scholar 

  31. West, A. P. Jr & Bjorkman, P. J. Crystal structure and immunoglobulin G binding properties of the human major histocompatibility complex-related Fc receptor. Biochemistry 39, 9698–9708 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Martin, W. L., West, A. P., Gan, L. & Bjorkman, P. J. Crystal structure at 2.8 Å of an FcRn/heterodimeric Fc complex: mechanism of pH-dependent binding. Mol. Cell 7, 867–877 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Oganesyan, V. et al. Structural insights into neonatal Fc receptor-based recycling mechanisms. J. Biol. Chem. 289, 7812–7824 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Raghavan, M., Bonagura, V. R., Morrison, S. L. & Bjorkman, P. J. Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry 34, 14649–14657 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Kim, J. K. et al. Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur. J. Immunol. 29, 2819–2825 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Ober, R. J., Radu, C. G., Ghetie, V. & Ward, E. S. Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies. Int. Immunol. 13, 1551–1559 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Andersen, J. T., Daba, M. B., Berntzen, G., Michaelsen, T. E. & Sandlie, I. Cross-species binding analyses of mouse and human neonatal Fc receptor show dramatic differences in immunoglobulin G and albumin binding. J. Biol. Chem. 285, 4826–4836 (2010).

    Article  PubMed  Google Scholar 

  38. Neuber, T. et al. Characterization and screening of IgG binding to the neonatal Fc receptor. mAbs 6, 928–942 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stapleton, N. M. et al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat. Commun. 2, 599 (2011).

    Article  PubMed  Google Scholar 

  40. Keeble, A. H., Khan, Z., Forster, A. & James, L. C. TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Proc. Natl Acad. Sci. USA. 105, 6045–6050 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tao, M. H. & Morrison, S. L. Studies of aglycosylated chimeric mouse-human IgG. Role of carbohydrate in the structure and effector functions mediated by the human IgG constant region. J. Immunol. 143, 2595–2601 (1989).

    Article  CAS  PubMed  Google Scholar 

  42. Wines, B. D., Powell, M. S., Parren, P. W., Barnes, N. & Hogarth, P. M. The IgG Fc contains distinct Fc receptor (FcR) binding sites: the leukocyte receptors FcγRI and FcγRIIa bind to a region in the Fc distinct from that recognized by neonatal FcR and protein A. J. Immunol. 164, 5313–5318 (2000).

    Article  CAS  PubMed  Google Scholar 

  43. Hubbard, J. J. et al. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex-driven autoimmunity. J. Exp. Med. 217, e20200359 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ko, S., Jo, M. & Jung, S. T. Recent achievements and challenges in prolonging the serum half-lives of therapeutic IgG antibodies through Fc engineering. BioDrugs 35, 147–157 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vaccaro, C., Zhou, J., Ober, R. J. & Ward, E. S. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat. Biotechnol. 23, 1283–1288 (2005). This is the first report of an FcRn-blocking therapeutic that lowers IgG levels in vivo.

    Article  CAS  PubMed  Google Scholar 

  46. Martin, W. L. & Bjorkman, P. J. Characterization of the 2:1 complex between the class I MHC-related Fc receptor and its Fc ligand in solution. Biochemistry 38, 12639–12647 (1999).

    Article  CAS  PubMed  Google Scholar 

  47. Popov, S. et al. The stoichiometry and affinity of the interaction of murine Fc fragments with the MHC class I-related receptor, FcRn. Mol. Immunol. 33, 521–530 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Tesar, D. B., Tiangco, N. E. & Bjorkman, P. J. Ligand valency affects transcytosis, recycling and intracellular trafficking mediated by the neonatal Fc receptor. Traffic 7, 1127–1142 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abdiche, Y. N. et al. The neonatal Fc receptor (FcRn) binds independently to both sites of the IgG homodimer with identical affinity. mAbs 7, 331–343 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun, Y., Estevez, A., Schlothauer, T. & Wecksler, A. T. Antigen physiochemical properties allosterically effect the IgG Fc-region and Fc neonatal receptor affinity. mAbs 12, 1802135 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wang, W. et al. Monoclonal antibodies with identical Fc sequences can bind to FcRn differentially with pharmacokinetic consequences. Drug Metab. Dispos. 39, 1469–1477 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Schlothauer, T. et al. Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies. mAbs 5, 576–586 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Piche-Nicholas, N. M. et al. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. mAbs 10, 81–94 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. Jensen, P. F. et al. Investigating the interaction between the neonatal Fc receptor and monoclonal antibody variants by hydrogen/deuterium exchange mass spectrometry. Mol. Cell Proteom. 14, 148–161 (2015).

    Article  CAS  Google Scholar 

  55. Rossini, S. et al. V region of IgG controls the molecular properties of the binding site for neonatal Fc receptor. J. Immunol. 205, 2850–2860 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Grevys, A. et al. Antibody variable sequences have a pronounced effect on cellular transport and plasma half-life. iScience 25, 103746 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schoch, A. et al. Charge-mediated influence of the antibody variable domain on FcRn-dependent pharmacokinetics. Proc. Natl Acad. Sci. USA 112, 5997–6002 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chaudhury, C. et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J. Exp. Med. 197, 315–322 (2003). This study shows for the first time that albumin is a ligand for FcRn.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Morosky, S. et al. The neonatal Fc receptor is a pan-echovirus receptor. Proc. Natl Acad. Sci. USA 116, 3758–3763 (2019). This article illustrates that FcRn is a pan-echovirus receptor.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao, X. et al. Human neonatal Fc receptor is the cellular uncoating receptor for Enterovirus B. Cell 177, 1553–1565 (2019). This study shows that FcRn is a receptor for Enterovirus B, which allows for its uncoating within cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, K. et al. Structures of echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nat. Commun. 11, 4421 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Christianson, G. J. et al. β2-microglobulin-deficient mice are protected from hypergammaglobulinemia and have defective antibody responses because of increased IgG catabolism. J. Immunol. 159, 4781–4792 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Israel, E. J., Wilsker, D. F., Hayes, K. C., Schoenfeld, D. & Simister, N. E. Increased clearance of IgG in mice that lack β2-microglobulin: possible protective role of FcRn. Immunology 89, 573–578 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ghetie, V. et al. Abnormally short serum half-lives of IgG in β2-microglobulin-deficient mice. Eur. J. Immunol. 26, 690–696 (1996).

    Article  CAS  PubMed  Google Scholar 

  65. Roopenian, D. C. et al. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J. Immunol. 170, 3528–3533 (2003). This is the first report of Fcgrt−/− mice, which were critical to uncover FcRn as a receptor that controls homeostasis and perinatal transport of IgGs, along with controlling the fate of IgG Fc drugs.

    Article  CAS  PubMed  Google Scholar 

  66. Morell, A., Terry, W. D. & Waldmann, T. A. Metabolic properties of IgG subclasses in man. J. Clin. Invest. 49, 673–680 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wani, M. A. et al. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant β2-microglobulin gene. Proc. Natl Acad. Sci. USA 103, 5084–5089 (2006). This report provides evidence in humans that FcRn maintains serum persistence of IgGs and albumin, through the report of a human mutation in the β2m light chain of FcRn.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Montoyo, H. P. et al. Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc. Natl Acad. Sci. Usa. 106, 2788–2793 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Challa, D. K. et al. Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis. mAbs 11, 848–860 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Junghans, R. P. & Anderson, C. L. The protection receptor for IgG catabolism is the β2-microglobulin-containing neonatal intestinal transport receptor. Proc. Natl Acad. Sci. USA 93, 5512–5516 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ward, E. S., Zhou, J., Ghetie, V. & Ober, R. J. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int. Immunol. 15, 187–195 (2003).

    Article  CAS  PubMed  Google Scholar 

  72. Ober, R. J., Martinez, C., Lai, X., Zhou, J. & Ward, E. S. Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc. Natl Acad. Sci. USA. 101, 11076–11081 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Prabhat, P. et al. Elucidation of intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using multifocal plane microscopy. Proc. Natl Acad. Sci. USA 104, 5889–5894 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Weflen, A. W. et al. Multivalent immune complexes divert FcRn to lysosomes by exclusion from recycling sorting tubules. Mol. Biol. Cell 24, 2398–2405 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tzaban, S. et al. The recycling and transcytotic pathways for IgG transport by FcRn are distinct and display an inherent polarity. J. Cell Biol. 185, 673–684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Toh, W. H. et al. FcRn mediates fast recycling of endocytosed albumin and IgG from early macropinosomes in primary macrophages. J. Cell Sci. 133, jcs235416 (2019).

    Article  PubMed  Google Scholar 

  77. Qiao, S. W. et al. Dependence of antibody-mediated presentation of antigen on FcRn. Proc. Natl Acad. Sci. USA 105, 9337–9342 (2008). This paper outlines the discovery of the role of FcRn in the presentation of antigens, which are complexed with IgGs, by dendritic cells to CD4+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Baker, K. et al. Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8CD11b+ dendritic cells. Proc. Natl Acad. Sci. Usa. 108, 9927–9932 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Werth, V. P. et al. Safety, tolerability, and activity of ALXN1830 targeting the neonatal Fc receptor in chronic pemphigus. J. Investig. Dermatol. 141, 2858–2865 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Maho-Vaillant, M. et al. FcRn antagonism leads to a decrease of desmoglein-specific B cells: secondary analysis of a phase 2 study of efgartigimod in pemphigus vulgaris and pemphigus foliaceus. Front. Immunol. 13, 863095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jones, E. A. & Waldmann, T. A. The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J. Clin. Invest. 51, 2916–2927 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Rodewald, R. Selective antibody transport in the proximal small intestine of the neonatal rat. J. Cell Biol. 45, 635–640 (1970). This report describes the discovery that IgGs are transported into the proximal small intestine of neonatal rats.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dickinson, B. L. et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J. Clin. Invest. 104, 903–911 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoshida, M. et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–783 (2004).

    Article  CAS  PubMed  Google Scholar 

  85. Yoshida, M. et al. Neonatal Fc receptor for IgG regulates mucosal immune responses to luminal bacteria. J. Clin. Invest. 116, 2142–2151 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Qi, T. & Cao, Y. In translation: FcRn across the therapeutic spectrum. Int. J. Mol. Sci. 22, 3048 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kobayashi, N. et al. FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. Am. J. Physiol. Ren. Physiol. 282, 65 (2002).

    Article  Google Scholar 

  88. Sarav, M. et al. Renal FcRn reclaims albumin but facilitates elimination of IgG. J. Am. Soc. Nephrol. 20, 1941–1952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cooper, P. R. et al. Efflux of monoclonal antibodies from rat brain by neonatal Fc receptor, FcRn. Brain Res. 1534, 13–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Deane, R. et al. IgG-assisted age-dependent clearance of Alzheimer’s amyloid β peptide by the blood–brain barrier neonatal Fc receptor. J. Neurosci. 25, 11495–11503 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Abuqayyas, L. & Balthasar, J. P. Investigation of the role of FcγR and FcRn in mAb distribution to the brain. Mol. Pharm. 10, 1505–1513 (2013).

    Article  CAS  PubMed  Google Scholar 

  92. Ruano-Salguero, J. S. & Lee, K. H. Antibody transcytosis across brain endothelial-like cells occurs nonspecifically and independent of FcRn. Sci. Rep. 10, 3685 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhang, Y. & Pardridge, W. M. Mediated efflux of IgG molecules from brain to blood across the blood-brain barrier. J. Neuroimmunol. 114, 168–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  94. Ye, L., Zeng, R., Bai, Y., Roopenian, D. C. & Zhu, X. Efficient mucosal vaccination mediated by the neonatal Fc receptor. Nat. Biotechnol. 29, 158–163 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lu, L. et al. A neonatal Fc receptor-targeted mucosal vaccine strategy effectively induces HIV-1 antigen-specific immunity to genital infection. J. Virol. 85, 10542–10553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. West, A. P. Jr, Herr, A. B. & Bjorkman, P. J. The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog. Immunity 20, 601–610 (2004).

    Article  CAS  PubMed  Google Scholar 

  97. Malek, A., Sager, R. & Schneider, H. Maternal-fetal transport of immunoglobulin G and its subclasses during the third trimester of human pregnancy. Am. J. Reprod. Immunol. 32, 8–14 (1994).

    Article  CAS  PubMed  Google Scholar 

  98. Jauniaux, E. et al. Materno-fetal immunoglobulin transfer and passive immunity during the first trimester of human pregnancy. Hum. Reprod. 10, 3297–3300 (1995).

    Article  CAS  PubMed  Google Scholar 

  99. Einarsdottir, H. K. et al. Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G. Glycoconj. J. 30, 147–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  100. Clements, T. et al. Update on transplacental transfer of IgG subclasses: impact of maternal and fetal factors. Front. Immunol. 11, 1920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. DeSesso, J. M., Williams, A. L., Ahuja, A., Bowman, C. J. & Hurtt, M. E. The placenta, transfer of immunoglobulins, and safety assessment of biopharmaceuticals in pregnancy. Crit. Rev. Toxicol. 42, 185–210 (2012).

    Article  CAS  PubMed  Google Scholar 

  102. Leach, J. L. et al. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: implications for maternal-fetal antibody transport. J. Immunol. 157, 3317–3322 (1996).

    Article  CAS  PubMed  Google Scholar 

  103. Simister, N. E., Story, C. M., Chen, H. L. & Hunt, J. S. An IgG‐transporting Fc receptor expressed in the syncytiotrophoblast of human placenta. Eur. J. Immunol. 26, 1527–1531 (1996).

    Article  CAS  PubMed  Google Scholar 

  104. Kristoffersen, E. K. & Matre, R. Co-localization of the neonatal Fcγ receptor and IgG in human placental term syncytiotrophoblasts. Eur. J. Immunol. 26, 1668–1671 (1996).

    Article  CAS  PubMed  Google Scholar 

  105. Cianga, P., Cianga, C., Cozma, L., Ward, E. S. & Carasevici, E. The MHC class I related Fc receptor, FcRn, is expressed in the epithelial cells of the human mammary gland. Hum. Immunol. 64, 1152–1159 (2003).

    Article  CAS  PubMed  Google Scholar 

  106. Szlauer, R. et al. Functional expression of the human neonatal Fc-receptor, hFcRn, in isolated cultured human syncytiotrophoblasts. Placenta 30, 507–515 (2009).

    Article  CAS  PubMed  Google Scholar 

  107. Ellinger, I., Schwab, M., Stefanescu, A., Hunziker, W. & Fuchs, R. IgG transport across trophoblast-derived BeWo cells: a model system to study IgG transport in the placenta. Eur. J. Immunol. 29, 733–744 (1999).

    Article  CAS  PubMed  Google Scholar 

  108. Firan, M. et al. The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of γ-globulin in humans. Int. Immunol. 13, 993–1002 (2001). This study uncovered the role of FcRn in the transfer of IgGs from mother to offspring, using an ex vivo human placental model.

    Article  CAS  PubMed  Google Scholar 

  109. Antohe, F., Radulescu, L., Gafencu, A., Ghetie, V. & Simionescu, M. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum. Immunol. 62, 93–105 (2001).

    Article  CAS  PubMed  Google Scholar 

  110. Radulescu, L., Antohe, F., Jinga, V., Ghetie, V. & Simionescu, M. Neonatal Fc receptors discriminates and monitors the pathway of native and modified immunoglobulin G in placental endothelial cells. Hum. Immunol. 65, 578–585 (2004).

    Article  CAS  PubMed  Google Scholar 

  111. Israel, E. J., Patel, V. K., Taylor, S. F., Marshak-Rothstein, A. & Simister, N. E. Requirement for a β 2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J. Immunol. 154, 6246–6251 (1995).

    Article  CAS  PubMed  Google Scholar 

  112. Kim, J. et al. FcRn in the yolk sac endoderm of mouse is required for IgG transport to fetus. J. Immunol. 182, 2583–2589 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Stapleton, N. M. et al. Human IgG lacking effector functions demonstrate lower FcRn-binding and reduced transplacental transport. Mol. Immunol. 95, 1–9 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Vaccaro, C., Bawdon, R., Wanjie, S., Ober, R. J. & Ward, E. S. Divergent activities of an engineered antibody in murine and human systems have implications for therapeutic antibodies. Proc. Natl Acad. Sci. USA 103, 18709–18714 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Roy, S. et al. M281, an anti-FcRn antibody, inhibits IgG transfer in a human ex vivo placental perfusion model. Am. J. Obstet. Gynecol. 220, 498.e1–498.e9 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Baker, K. et al. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer. Immunity 39, 1095–1107 (2013). This study discovered the role of FcRn in dendritic cell-mediated antitumour responses, through enhanced cross-presentation of antigen, which is complexed to IgGs, to CD8+ T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Greinacher, A. Clinical practice. Heparin-induced thrombocytopenia. N. Engl. J. Med. 373, 252–261 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Chaturvedi, S. & McCrae, K. R. Diagnosis and management of the antiphospholipid syndrome. Blood Rev. 31, 406–417 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Ruggeri, M. & Rodeghiero, F. Thrombotic risk in patients with immune haemolytic anaemia. Br. J. Haematol. 172, 144–146 (2016).

    Article  PubMed  Google Scholar 

  120. Cines, D. B. et al. FcRn augments induction of tissue factor activity by IgG-containing immune complexes. Blood 135, 2085–2093 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Smith, B. et al. Generation of two high affinity anti-mouse FcRn antibodies: Inhibition of IgG recycling in wild type mice and effect in a mouse model of immune thrombocytopenia. Int. Immunopharmacol. 66, 362–365 (2019).

    Article  CAS  PubMed  Google Scholar 

  122. Liu, X. et al. The neonatal FcR-mediated presentation of immune-complexed antigen is associated with endosomal and phagosomal pH and antigen stability in macrophages and dendritic cells. J. Immunol. 186, 4674–4686 (2011).

    Article  CAS  PubMed  Google Scholar 

  123. Embgenbroich, M. & Burgdorf, S. Current concepts of antigen cross-presentation. Front. Immunol. 9, 1643 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Bhinder, G. et al. The Citrobacter rodentium mouse model: studying pathogen and host contributions to infectious colitis. J. Vis. Exp. 19, e50222 (2013).

    Google Scholar 

  125. Amadou Amani, S., Lang, G. A., Ballard, J. D. & Lang, M. L. The murine neonatal Fc receptor is required for transport of immunization-induced C. difficile-specific IgG to the gut and protection against disease but does not affect disease susceptibility. Infect. Immun. 89, e0027421 (2021).

    Article  PubMed  Google Scholar 

  126. Ben Suleiman, Y. et al. Neonatal Fc receptor for IgG (FcRn) expressed in the gastric epithelium regulates bacterial infection in mice. Mucosal Immunol. 5, 87–98 (2012).

    Article  PubMed  Google Scholar 

  127. Crowley, H., Alroy, J., Sproule, T. J., Roopenian, D. & Huber, B. T. The MHC class I-related FcRn ameliorates murine Lyme arthritis. Int. Immunol. 18, 409–414 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Kumamoto, Y. & Iwasaki, A. Unique features of antiviral immune system of the vaginal mucosa. Curr. Opin. Immunol. 24, 411–416 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Li, Z. et al. Transfer of IgG in the female genital tract by MHC class I-related neonatal Fc receptor (FcRn) confers protective immunity to vaginal infection. Proc. Natl Acad. Sci. Usa. 108, 4388–4393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Scott, J. M. et al. Cellular and humoral immunity protect against vaginal Zika virus infection in mice. J. Virol. 92, e00038-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Bai, Y. et al. Intracellular neutralization of viral infection in polarized epithelial cells by neonatal Fc receptor (FcRn)-mediated IgG transport. Proc. Natl Acad. Sci. USA 108, 18406–18411 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ochsner, S. P. et al. FcRn-targeted mucosal vaccination against influenza virus infection. J. Immunol. 207, 1310–1321 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Armitage, C. W. et al. Divergent outcomes following transcytosis of IgG targeting intracellular and extracellular chlamydial antigens. Immunol. Cell Biol. 92, 417–426 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Larsen, M. T. et al. FcRn overexpression in human cancer drives albumin recycling and cell growth; a mechanistic basis for exploitation in targeted albumin-drug designs. J. Control. Rel. 322, 53–63 (2020).

    Article  CAS  Google Scholar 

  135. Uhlen, M. et al. A pathology atlas of the human cancer transcriptome. Science 357, eaan2507 (2017).

    Article  PubMed  Google Scholar 

  136. Castaneda, D. C. et al. Lack of FcRn impairs natural killer cell development and functions in the tumor microenvironment. Front. Immunol. 9, 2259 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Pasero, C. et al. Highly effective NK cells are associated with good prognosis in patients with metastatic prostate cancer. Oncotarget 6, 14360–14373 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Dalloneau, E. et al. Downregulation of the neonatal Fc receptor expression in non-small cell lung cancer tissue is associated with a poor prognosis. Oncotarget 7, 54415–54429 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  139. Swiercz, R. et al. Loss of expression of the recycling receptor, FcRn, promotes tumor cell growth by increasing albumin consumption. Oncotarget 8, 3528–3541 (2017).

    Article  PubMed  Google Scholar 

  140. Liu, H. et al. KRAS-enhanced macropinocytosis and reduced FcRn-mediated recycling sensitize pancreatic cancer to albumin-conjugated drugs. J. Control. Rel. 296, 40–53 (2019).

    Article  CAS  Google Scholar 

  141. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Jaggi, J. S. et al. Improved tumor imaging and therapy via i.v. IgG-mediated time-sequential modulation of neonatal Fc receptor. J. Clin. Invest. 117, 2422–2430 (2007).

    Article  CAS  PubMed  Google Scholar 

  143. Vilhelmsson Timmermand, O. et al. A conjugation strategy to modulate antigen binding and FcRn interaction leads to improved tumor targeting and radioimmunotherapy efficacy with an antibody targeting prostate-specific antigen. Cancers 13, 3469 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Devanaboyina, S. C., Khare, P., Challa, D. K., Ober, R. J. & Ward, E. S. Engineered clearing agents for the selective depletion of antigen-specific antibodies. Nat. Commun. 8, 15314 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Khare, P. et al. Selective depletion of radiolabeled HER2-specific antibody for contrast improvement during PET. mAbs 13, 1976705 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ludwig, R. J. et al. Mechanisms of autoantibody-induced pathology. Front. Immunol. 8, 603 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Riedhammer, C. & Weissert, R. Antigen presentation, autoantigens, and immune regulation in multiple sclerosis and other autoimmune diseases. Front. Immunol. 6, 322 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Mitsuyama, K. et al. Antibody markers in the diagnosis of inflammatory bowel disease. World J. Gastroenterol. 22, 1304–1310 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Christianson, G. J. et al. β2-microglobulin dependence of the lupus-like autoimmune syndrome of MRL-lpr mice. J. Immunol. 156, 4932–4939 (1996).

    Article  CAS  PubMed  Google Scholar 

  150. Liu, Z. et al. β2-microglobulin-deficient mice are resistant to bullous pemphigoid. J. Exp. Med. 186, 777–783 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Li, N. et al. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J. Clin. Invest. 115, 3440–3450 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Akilesh, S. et al. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J. Clin. Invest. 113, 1328–1333 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Kobayashi, K. et al. An FcRn-dependent role for anti-flagellin immunoglobulin G in pathogenesis of colitis in mice. Gastroenterology 137, 1746–1756.e1 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Sesarman, A., Sitaru, A. G., Olaru, F., Zillikens, D. & Sitaru, C. Neonatal Fc receptor deficiency protects from tissue injury in experimental epidermolysis bullosa acquisita. J. Mol. Med. 86, 951–959 (2008).

    Article  CAS  PubMed  Google Scholar 

  155. Kasprick, A. et al. Treatment with anti-neonatal Fc receptor (FcRn) antibody ameliorates experimental epidermolysis bullosa acquisita in mice. Br. J. Pharmacol. 177, 2381–2392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Zhang, G., Lin, J., Ghauri, S. & Sheikh, K. A. Modulation of IgG–FcRn interactions to overcome antibody-mediated inhibition of nerve regeneration. Acta Neuropathol. 134, 321–324 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Challa, D. K. et al. Autoantibody depletion ameliorates disease in murine experimental autoimmune encephalomyelitis. mAbs 5, 655–659 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Sun, W. et al. Selective depletion of antigen-specific antibodies for the treatment of demyelinating disease. Mol. Ther. 29, 1312–1323 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Remlinger, J. et al. Antineonatal Fc receptor antibody treatment ameliorates MOG-IgG-associated experimental autoimmune encephalomyelitis. Neurol. Neuroimmunol. Neuroinflamm. 9, e1134 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Huijbers, M. G. et al. Efgartigimod improves muscle weakness in a mouse model for muscle-specific kinase myasthenia gravis. Exp. Neurol. 317, 133–143 (2019).

    Article  CAS  PubMed  Google Scholar 

  161. Liu, L. et al. Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J. Immunol. 178, 5390–5398 (2007).

    Article  CAS  PubMed  Google Scholar 

  162. Monnet, C. et al. The dual targeting of FcRn and FcγRs via monomeric Fc fragments results in strong inhibition of IgG-dependent autoimmune pathologies. Front. Immunol. 12, 728322 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Patel, D. A. et al. Neonatal Fc receptor blockade by Fc engineering ameliorates arthritis in a murine model. J. Immunol. 187, 1015–1022 (2011).

    Article  CAS  PubMed  Google Scholar 

  164. Olaru, F. et al. Neonatal Fc receptor promotes immune complex-mediated glomerular disease. J. Am. Soc. Nephrol. 25, 918–925 (2014).

    Article  CAS  PubMed  Google Scholar 

  165. Dylewski, J. F., Tonsawan, P., Garcia, G., Lewis, L. & Blaine, J. Podocyte-specific knockout of the neonatal Fc receptor (FcRn) results in differential protection depending on the model of glomerulonephritis. PLoS ONE 15, e0230401 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Bhargava, R. et al. N-glycosylated IgG in patients with kidney transplants increases calcium/calmodulin kinase IV in podocytes and causes injury. Am. J. Transpl. 21, 148–160 (2021).

    Article  CAS  Google Scholar 

  167. Ichinose, K. et al. Lupus nephritis IgG induction of calcium/calmodulin-dependent protein kinase IV expression in podocytes and alteration of their function. Arthritis Rheumatol. 68, 944–952 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Maeda, K. et al. CaMK4 compromises podocyte function in autoimmune and nonautoimmune kidney disease. J. Clin. Invest. 128, 3445–3459 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Castro-Dopico, T. & Clatworthy, M. R. Mucosal IgG in inflammatory bowel disease — a question of (sub)class? Gut Microbes 12, 1–9 (2020).

    Article  PubMed  Google Scholar 

  170. Dabritz, J. et al. Granulocyte macrophage colony-stimulating factor auto-antibodies and disease relapse in inflammatory bowel disease. Am. J. Gastroenterol. 108, 1901–1910 (2013).

    Article  PubMed  Google Scholar 

  171. Zakrzewicz, A. et al. Stabilization of keratinocyte monolayer integrity in the presence of anti-desmoglein-3 antibodies through FcRn blockade with efgartigimod: novel treatment paradigm for pemphigus? Cells 11, 942 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hartmann, J. & Klein, H. G. Supply and demand for plasma-derived medicinal products - A critical reassessment amid the COVID-19 pandemic. Transfusion 60, 2748–2752 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ulrichts, P. et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J. Clin. Invest. 128, 4372–4386 (2018). This study shows that blockade of FcRn with efgartigimod is safe and reduces serum IgGs in healthy humans.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Kiessling, P. et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: a randomized phase 1 study. Sci. Transl. Med. 9, eaan1208 (2017). This paper reports that rozanolixizumab, an FcRn-blocking antibody, is safe and reduces serum IgGs in healthy humans.

    Article  PubMed  Google Scholar 

  175. Ling, L. et al. M281, an anti-FcRn antibody: pharmacodynamics, pharmacokinetics, and safety across the full range of IgG reduction in a first-in-human study. Clin. Pharmacol. Ther. 105, 1031–1039 (2018). This is a report that M281 (nipocalimab), an FcRn-blocking antibody, is safe in healthy humans and reduces total serum IgGs.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Yap, D. Y. H. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of HBM9161, a novel FcRn inhibitor, in a phase I study for healthy Chinese volunteers. Clin. Transl. Sci. 14, 1769–1779 (2021). This article shows that HBM9161 (batoclimab) is a safe FcRn-blocking antibody that reduces serum IgGs in healthy humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Bril, V. et al. Efficacy and safety of rozanolixizumab in moderate to severe generalized myasthenia gravis: a phase 2 randomized control trial. Neurology 96, e853–e865 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Howard, J. F. Jr et al. Randomized phase 2 study of FcRn antagonist efgartigimod in generalized myasthenia gravis. Neurology 92, e2661–e2673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Howard, J. F. Jr et al. Safety, efficacy, and tolerability of efgartigimod in patients with generalised myasthenia gravis (ADAPT): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet Neurol. 20, 526–536 (2021). This is a report of the largest study to date of an FcRn-blocking therapeutic, which has led to the approval of efgartigimod for the treatment of MG.

    Article  CAS  PubMed  Google Scholar 

  180. Robak, T. et al. Phase 2 multiple-dose study of an FcRn inhibitor, rozanolixizumab, in patients with primary immune thrombocytopenia. Blood Adv. 4, 4136–4146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Newland, A. C. et al. Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia. Am. J. Hematol. 95, 178–187 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Goebeler, M. et al. Treatment of pemphigus vulgaris and foliaceus with efgartigimod, a neonatal Fc receptor inhibitor: a phase II multicentre, open-label feasibility trial. Br. J. Dermatol. 186, 429–439 (2021).

    Article  PubMed  Google Scholar 

  183. Yan, C. et al. Therapeutic effects of batoclimab in Chinese patients with generalized myasthenia gravis: a double-blinded, randomized, placebo-controlled phase II study. Neurol. Ther. 11, 815–834 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Gilhus, N. E. et al. Myasthenia gravis. Nat. Rev. Dis. Prim. 5, 30 (2019).

    Article  PubMed  Google Scholar 

  185. Schmidt, E., Kasperkiewicz, M. & Joly, P. Pemphigus. Lancet 394, 882–894 (2019).

    Article  CAS  PubMed  Google Scholar 

  186. Cooper, N. & Ghanima, W. Immune thrombocytopenia. N. Engl. J. Med. 381, 945–955 (2019).

    Article  PubMed  Google Scholar 

  187. Ishii-Watabe, A. et al. Genetic polymorphisms of FCGRT encoding FcRn in a Japanese population and their functional analysis. Drug. Metab. Pharmacokinet. 25, 578–587 (2010).

    Article  CAS  PubMed  Google Scholar 

  188. Passot, C. et al. Influence of FCGRT gene polymorphisms on pharmacokinetics of therapeutic antibodies. mAbs 5, 614–619 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  189. O’Shannessy, D. J. et al. Correlation of FCGRT genomic structure with serum immunoglobulin, albumin and farletuzumab pharmacokinetics in patients with first relapsed ovarian cancer. Genomics 109, 251–257 (2017).

    Article  PubMed  Google Scholar 

  190. Ferguson, D. C. & Blanco, J. G. Regulation of the human Fc-neonatal receptor alpha-chain gene FCGRT by microRNA-3181. Pharm. Res. 35, 15 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Cejas, R. B., Ferguson, D. C., Quiñones-Lombraña, A., Bard, J. E. & Blanco, J. G. Contribution of DNA methylation to the expression of FCGRT in human liver and myocardium. Sci. Rep. 9, 8674 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Yeung, Y. A. et al. Engineering human IgG1 affinity to human neonatal Fc receptor: impact of affinity improvement on pharmacokinetics in primates. J. Immunol. 182, 7663–7671 (2009).

    Article  CAS  PubMed  Google Scholar 

  193. Deng, R. et al. Pharmacokinetics of humanized monoclonal anti-tumor necrosis factor-α antibody and its neonatal Fc receptor variants in mice and cynomolgus monkeys. Drug Metab. Dispos. 38, 600–605 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Ghetie, V. et al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat. Biotechnol. 15, 637–640 (1997). This is the first discovery of mutations to the Fc region of an IgG fragment that can confer an enhanced serum half-life.

    Article  CAS  PubMed  Google Scholar 

  195. Dall’Acqua, W. F., Kiener, P. A. & Wu, H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 281, 23514–23524 (2006).

    Article  PubMed  Google Scholar 

  196. Zalevsky, J. et al. Enhanced antibody half-life improves in vivo activity. Nat. Biotechnol. 28, 157–159 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Lee, C.-H. et al. An engineered human Fc domain that behaves like a pH-toggle switch for ultra-long circulation persistence. Nat. Commun. 10, 5031 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Robbie, G. J. et al. A novel investigational Fc-modified humanized monoclonal antibody, motavizumab-YTE, has an extended half-life in healthy adults. Antimicrob. Agents Chemother. 57, 6147–6153 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Griffin, M. P. et al. Safety, tolerability, and pharmacokinetics of MEDI8897, the respiratory syncytial virus prefusion F-targeting monoclonal antibody with an extended half-life, in healthy adults. Antimicrob. Agents Chemother. 61, e01714–16 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Griffin, M. P. et al. Single-dose nirsevimab for prevention of RSV in preterm infants. N. Engl. J. Med. 383, 415–425 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Moreland, L. W. et al. Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)–Fc fusion protein. N. Engl. J. Med. 337, 141–147 (1997).

    Article  CAS  PubMed  Google Scholar 

  202. Chaudhury, C., Brooks, C. L., Carter, D. C., Robinson, J. M. & Anderson, C. L. Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry 45, 4983–4990 (2006).

    Article  CAS  PubMed  Google Scholar 

  203. Andersen, J. T., Dee Qian, J. & Sandlie, I. The conserved histidine 166 residue of the human neonatal Fc receptor heavy chain is critical for the pH-dependent binding to albumin. Eur. J. Immunol. 36, 3044–3051 (2006).

    Article  CAS  PubMed  Google Scholar 

  204. Sand, K. M. et al. Dissection of the neonatal Fc receptor (FcRn)-albumin interface using mutagenesis and anti-FcRn albumin-blocking antibodies. J. Biol. Chem. 289, 17228–17239 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Andersen, J. T. et al. Structure-based mutagenesis reveals the albumin-binding site of the neonatal Fc receptor. Nat. Commun. 3, 610 (2012). This report shows the albumin binding site of FcRn, through mutagenesis experiments.

    Article  PubMed  Google Scholar 

  206. Nilsen, J. et al. Human and mouse albumin bind their respective neonatal Fc receptors differently. Sci. Rep. 8, 14648 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  207. Tenten, V. et al. Albumin is recycled from the primary urine by tubular transcytosis. J. Am. Soc. Nephrol. 24, 1966–1980 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Pyzik, M. et al. Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury. Proc. Natl Acad. Sci. USA 114, E2862–E2871 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Eshbach, M. L. & Weisz, O. A. Receptor-mediated endocytosis in the proximal tubule. Annu. Rev. Physiol. 79, 425–448 (2017).

    Article  CAS  PubMed  Google Scholar 

  210. Richter, W. F. et al. Hematopoietic cells as site of first-pass catabolism after subcutaneous dosing and contributors to systemic clearance of a monoclonal antibody in mice. mAbs 10, 803–813 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Escobar, M. et al. IDELVION: a comprehensive review of clinical trial and real-world data. J. Clin. Med. https://doi.org/10.3390/jcm11041071 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. van der Wal, F. J., Kikkert, M. & Wiertz, E. The HCMV gene products US2 and US11 target MHC class I molecules for degradation in the cytosol. Curr. Top. Microbiol. Immunol. 269, 37–55 (2002).

    PubMed  Google Scholar 

  213. Liu, X. et al. Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor. Nat. Commun. 10, 3020 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  214. Gupta, S. et al. The neonatal Fc receptor (FcRn) enhances human immunodeficiency virus type 1 (HIV-1) transcytosis across epithelial cells. PLoS Pathog. 9, e1003776 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Chen, X., Schneewind, O. & Missiakas, D. Engineered human antibodies for the opsonization and killing of Staphylococcus aureus. Proc. Natl Acad. Sci. USA 119, e2114478119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Kim, J. K., Tsen, M. F., Ghetie, V. & Ward, E. S. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur. J. Immunol. 24, 542–548 (1994).

    Article  CAS  PubMed  Google Scholar 

  217. Sauer-Eriksson, A. E., Kleywegt, G. J., Uhlen, M. & Jones, T. A. Crystal structure of the C2 fragment of streptococcal protein G in complex with the Fc domain of human IgG. Structure 3, 265–278 (1995).

    Article  CAS  PubMed  Google Scholar 

  218. Martinez, D. R. et al. Fc characteristics mediate selective placental transfer of IgG in HIV-infected women. Cell 178, 190–201.e11 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Jennewein, M. F. et al. Fc glycan-mediated regulation of placental antibody transfer. Cell 178, 202–215.e14 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Mathiesen, L. et al. Maternofetal transplacental transport of recombinant IgG antibodies lacking effector functions. Blood 122, 1174–1181 (2013).

    Article  CAS  PubMed  Google Scholar 

  221. Borghi, S. et al. FcRn, but not FcγRs, drives maternal-fetal transplacental transport of human IgG antibodies. Proc. Natl Acad. Sci. USA 117, 12943–12951 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Tsao, N. W., Lynd, L. D., Sadatsafavi, M., Hanley, G. & De Vera, M. A. Patterns of biologics utilization and discontinuation before and during pregnancy in women with autoimmune diseases: a population-based cohort study. Arthritis Care Res. 70, 979–986 (2018).

    Article  Google Scholar 

  223. De Felice, K. M. & Kane, S. Safety of anti-TNF agents in pregnancy. J. Allergy Clin. Immunol. 148, 661–667 (2021).

    Article  PubMed  Google Scholar 

  224. Verhasselt, V. et al. Breast milk-mediated transfer of an antigen induces tolerance and protection from allergic asthma. Nat. Med. 14, 170–175 (2008).

    Article  CAS  PubMed  Google Scholar 

  225. Mosconi, E. et al. Breast milk immune complexes are potent inducers of oral tolerance in neonates and prevent asthma development. Mucosal Immunol. 3, 461–474 (2010).

    Article  CAS  PubMed  Google Scholar 

  226. Culina, S. et al. Materno-fetal transfer of preproinsulin through the neonatal Fc receptor prevents autoimmune diabetes. Diabetes 64, 3532–3542 (2015).

    Article  CAS  PubMed  Google Scholar 

  227. Gupta, N. et al. Regulation of immune responses to protein therapeutics by transplacental induction of T cell tolerance. Sci. Transl. Med. 7, 275ra221 (2015).

    Article  Google Scholar 

  228. Ohsaki, A. et al. Maternal IgG immune complexes induce food allergen-specific tolerance in offspring. J. Exp. Med. 215, 91–113 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Marchand, G. et al. Systematic review and meta-analysis of COVID-19 maternal and neonatal clinical features and pregnancy outcomes up to June 3, 2021. AJOG Glob. Rep. 2, 100049 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Male, V. SARS-CoV-2 infection and COVID-19 vaccination in pregnancy. Nat. Rev. Immunol. 22, 277–282 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. de Moraes-Pinto, M. I. et al. Placental transfer and maternally acquired neonatal IgG immunity in human immunodeficiency virus infection. J. Infect. Dis. 173, 1077–1084 (1996).

    Article  PubMed  Google Scholar 

  232. Dechavanne, C. et al. Associations between an IgG3 polymorphism in the binding domain for FcRn, transplacental transfer of malaria-specific IgG3, and protection against Plasmodium falciparum malaria during infancy: a birth cohort study in Benin. PLoS Med. 14, e1002403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  233. de Moraes-Pinto, M. I. et al. Placental antibody transfer: influence of maternal HIV infection and placental malaria. Arch. Dis. Child. Fetal Neonatal Ed. 79, F202–F205 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Jones, C. E. et al. Maternal HIV infection and antibody responses against vaccine-preventable diseases in uninfected infants. JAMA 305, 576–584 (2011).

    Article  CAS  PubMed  Google Scholar 

  235. Singh, T. et al. Efficient transplacental IgG transfer in women infected with Zika virus during pregnancy. PLoS Negl. Trop. Dis. 13, e0007648 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Chen, P. et al. Animal model of fetal and neonatal immune thrombocytopenia: role of neonatal Fc receptor in the pathogenesis and therapy. Blood 116, 3660–3668 (2010).

    Article  CAS  PubMed  Google Scholar 

  237. Li, C. et al. The maternal immune response to fetal platelet GPIbα causes frequent miscarriage in mice that can be prevented by intravenous IgG and anti-FcRn therapies. J. Clin. Invest. 121, 4537–4547 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Garcia-Serra, A. et al. Blocking placental class G immunoglobulin transfer prevents NMDA receptor antibody effects in newborn mice. Neurol. Neuroimmunol. Neuroinflamm. 8, e1061 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Coutinho, E. et al. Inhibition of maternal-to-fetal transfer of IgG antibodies by FcRn blockade in a mouse model of arthrogryposis multiplex congenita. Neurol. Neuroimmunol. Neuroinflamm. 8, e1011 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Hanley for assistance with revisions of the manuscript and D. Humphries for critical discussions. This work was funded by National Institutes of Health (NIH) National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) grant DK053056, Harvard Digestive Diseases Center (HDDC) grant DK034854 and a Canadian Institutes of Health Research (CIHR) fellowship grant (L.K.K). Finally, we apologize to all colleagues whose work has not been included in this review owing to space limitations.

Author information

Authors and Affiliations

Authors

Contributions

M.P., L.K.K. and A.G. researched data for the article and together with R.S.B. wrote the manuscript.

Corresponding authors

Correspondence to Michal Pyzik or Richard S. Blumberg.

Ethics declarations

Competing interests

R.S.B. had equity interests in Syntimmune Inc., a company developing therapeutic agents to target FcRn. Syntimmune Inc. was a wholly owned subsidiary of Alexion Pharmaceuticals Inc., which was acquired by AstraZeneca. M.P., L.K.K. and A.G. declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks D. Roopenian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The Human Protein Atlas: https://www.proteinatlas.org/ENSG00000104870-FCGRT/single+cell+type

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyzik, M., Kozicky, L.K., Gandhi, A.K. et al. The therapeutic age of the neonatal Fc receptor. Nat Rev Immunol 23, 415–432 (2023). https://doi.org/10.1038/s41577-022-00821-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-022-00821-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing