Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Constitutive immune mechanisms: mediators of host defence and immune regulation

Abstract

The immune system enables organisms to combat infections and to eliminate endogenous challenges. Immune responses can be evoked through diverse inducible pathways. However, various constitutive mechanisms are also required for immunocompetence. The inducible responses of pattern recognition receptors of the innate immune system and antigen-specific receptors of the adaptive immune system are highly effective, but they also have the potential to cause extensive immunopathology and tissue damage, as seen in many infectious and autoinflammatory diseases. By contrast, constitutive innate immune mechanisms, including restriction factors, basal autophagy and proteasomal degradation, tend to limit immune responses, with loss-of-function mutations in these pathways leading to inflammation. Although they function through a broad and heterogeneous set of mechanisms, the constitutive immune responses all function as early barriers to infection and aim to minimize any disruption of homeostasis. Supported by recent human and mouse data, in this Review we compare and contrast the inducible and constitutive mechanisms of immunosurveillance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Constitutive innate immune responses versus inducible immune responses.
Fig. 2: Constitutive innate immune responses negatively regulate inducible immune responses.
Fig. 3: Overview of the regulation of microbial replication by constitutive innate immune mechanisms.
Fig. 4: Constitutive control of microbial replication by restriction factors and autophagy.

Similar content being viewed by others

References

  1. Medzhitov, R. Origin and physiological roles of inflammation. Nature 454, 428–435 (2008).

    CAS  PubMed  Google Scholar 

  2. van der Poll, T., van de Veerdonk, F. L., Scicluna, B. P. & Netea, M. G. The immunopathology of sepsis and potential therapeutic targets. Nat. Rev. Immunol. 17, 407–420 (2017).

    PubMed  Google Scholar 

  3. Coban, C., Lee, M. S. J. & Ishii, K. J. Tissue-specific immunopathology during malaria infection. Nat. Rev. Immunol. 18, 266–278 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805–820 (2010).

    CAS  PubMed  Google Scholar 

  5. Iwasaki, A. & Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol. 16, 343–353 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Flajnik, M. F. & Kasahara, M. Origin and evolution of the adaptive immune system: genetic events and selective pressures. Nat. Rev. Genet. 11, 47–59 (2010).

    CAS  PubMed  Google Scholar 

  7. Iversen, M. B. et al. An innate antiviral pathway acting before interferons at epithelial surfaces. Nat. Immunol. 17, 150–158 (2016).

    CAS  PubMed  Google Scholar 

  8. Yamane, D. et al. Basal expression of interferon regulatory factor 1 drives intrinsic hepatocyte resistance to multiple RNA viruses. Nat. Microbiol. 4, 1096–1104 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Thurston, T. L., Ryzhakov, G., Bloor, S., von Muhlinen, N. & Randow, F. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10, 1215–1221 (2009).

    CAS  PubMed  Google Scholar 

  10. Eddowes, L. A. et al. Antiviral activity of bone morphogenetic proteins and activins. Nat. Microbiol. 4, 339–351 (2019).

    CAS  PubMed  Google Scholar 

  11. Zhang, S. Y. et al. Inborn errors of RNA lariat metabolism in humans with brainstem viral infection. Cell 172, 952–965 (2018). Zhang et al. identify a genetic defect in a novel restriction mechanism that protects against viral brainstem infections.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lafaille, F. G. et al. Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis. Nat. Med. 25, 1873–1884 (2019). This work identifies SNORA31 as an interferon-independent small antiviral nucleolar RNA conferring protection against herpes simplex encephalitis.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Nish, S. & Medzhitov, R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34, 629–636 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ausubel, F. M. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6, 973–979 (2005).

    CAS  PubMed  Google Scholar 

  15. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    CAS  PubMed  Google Scholar 

  16. Liston, A. & Masters, S. L. Homeostasis-altering molecular processes as mechanisms of inflammasome activation. Nat. Rev. Immunol. 17, 208–214 (2017).

    CAS  PubMed  Google Scholar 

  17. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M. & Hoffmann, J. A. The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86, 973–983 (1996).

    CAS  PubMed  Google Scholar 

  18. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1999).

    Google Scholar 

  19. Crow, Y. J. & Manel, N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).

    CAS  PubMed  Google Scholar 

  20. Dinarello, C. A., Simon, A. & van der Meer, J. W. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov. 11, 633–652 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    CAS  PubMed  Google Scholar 

  22. Barton, E. S. et al. Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447, 326–329 (2007).

    CAS  PubMed  Google Scholar 

  23. Marie, I., Durbin, J. E. & Levy, D. E. Differential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 17, 6660–6669 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bauernfeind, F. G. et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    CAS  PubMed  Google Scholar 

  25. Yan, N., Regalado-Magdos, A. D., Stiggelbout, B., Lee-Kirsch, M. A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Luecke, S. et al. cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 18, 1707–1715 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gehrig, S. et al. Identification of modifications in microbial, native tRNA that suppress immunostimulatory activity. J. Exp. Med. 209, 225–233 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Rice, G. I. et al. Gain-of-function mutations in IFIH1 cause a spectrum of human disease phenotypes associated with upregulated type I interferon signaling. Nat. Genet. 46, 503–509 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Kagan, J. C., Magupalli, V. G. & Wu, H. SMOCs: supramolecular organizing centres that control innate immunity. Nat. Rev. Immunol. 14, 821–826 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Hamerman, J. A. et al. Negative regulation of TLR signaling in myeloid cells–implications for autoimmune diseases. Immunol. Rev. 269, 212–227 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Carey, C. M. et al. Recurrent loss-of-function mutations reveal costs to OAS1 antiviral activity in primates. Cell Host Microbe 25, 336–343 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Lim, J. K. et al. Genetic variation in OAS1 is a risk factor for initial infection with West Nile virus in man. PLoS Pathog. 5, e1000321 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Li, H. et al. Identification of a Sjogren’s syndrome susceptibility locus at OAS1 that influences isoform switching, protein expression, and responsiveness to type I interferons. PLoS Genet. 13, e1006820 (2017).

    PubMed  PubMed Central  Google Scholar 

  34. Laguette, N. et al. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474, 654–657 (2011). This work identifies SAMHD1 as an HIV-1 restriction factor that functions through a mechanism dependent on the phosphohydrolase activity of the enzyme.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Gariano, G. R. et al. The intracellular DNA sensor IFI16 gene acts as restriction factor for human cytomegalovirus replication. PLoS Pathog. 8, e1002498 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Orvedahl, A. et al. HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host. Microbe 1, 23–35 (2007).

    CAS  PubMed  Google Scholar 

  37. Harris, R. S., Hultquist, J. F. & Evans, D. T. The restriction factors of human immunodeficiency virus. J. Biol. Chem. 287, 40875–40883 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Duggal, N. K. & Emerman, M. Evolutionary conflicts between viruses and restriction factors shape immunity. Nat. Rev. Immunol. 12, 687–695 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bishop, K. N., Holmes, R. K., Sheehy, A. M. & Malim, M. H. APOBEC-mediated editing of viral RNA. Science 305, 645 (2004). This study describes the identification of APOBEC-mediated RNA editing as a mechanism restricting HIV-1 replication.

    CAS  PubMed  Google Scholar 

  40. Neil, S. J., Zang, T. & Bieniasz, P. D. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451, 425–430 (2008).

    CAS  PubMed  Google Scholar 

  41. Goldstone, D. C. et al. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480, 379–382 (2011).

    CAS  PubMed  Google Scholar 

  42. Glass, M. & Everett, R. D. Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J. Virol. 87, 2174–2185 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Merkl, P. E. & Knipe, D. M. Role for a filamentous nuclear assembly of IFI16, DNA, and host factors in restriction of herpesviral infection. mBio 10, e02621 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pichlmair, A. et al. IFIT1 is an antiviral protein that recognizes 5’-triphosphate RNA. Nat. Immunol. 12, 624–630 (2011).

    CAS  PubMed  Google Scholar 

  45. Full, F. et al. Centrosomal protein TRIM43 restricts herpesvirus infection by regulating nuclear lamina integrity. Nat. Microbiol. 4, 164–176 (2019).

    CAS  PubMed  Google Scholar 

  46. Schoggins, J. W. et al. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505, 691–695 (2013).

    PubMed  PubMed Central  Google Scholar 

  47. Brien, J. D. et al. Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8+ T cell immune responses against West Nile virus infection. PLoS Pathog. 7, e1002230 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou, R. & Rana, T. M. RNA-based mechanisms regulating host-virus interactions. Immunol. Rev. 253, 97–111 (2013).

    PubMed  PubMed Central  Google Scholar 

  49. Hamilton, A. J. & Baulcombe, D. C. A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286, 950–952 (1999).

    CAS  PubMed  Google Scholar 

  50. Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533–542 (2000). Mourrain et al. identify RNAi as an antiviral system in plants.

    CAS  PubMed  Google Scholar 

  51. Lu, R. et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans. Nature 436, 1040–1043 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Wang, X. H. et al. RNA interference directs innate immunity against viruses in adult Drosophila. Science 312, 452–454 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Galiana-Arnoux, D., Dostert, C., Schneemann, A., Hoffmann, J. A. & Imler, J. L. Essential function in vivo for Dicer-2 in host defense against RNA viruses in drosophila. Nat. Immunol. 7, 590–597 (2006).

    CAS  PubMed  Google Scholar 

  54. Maillard, P. V., van der Veen, A. G., Poirier, E. Z. & Reis, E. S. C. Slicing and dicing viruses: antiviral RNA interference in mammals. EMBO J. 38, e100941 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang, Y. et al. Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology 130, 883–892 (2006).

    CAS  PubMed  Google Scholar 

  56. Fabozzi, G., Nabel, C. S., Dolan, M. A. & Sullivan, N. J. Ebolavirus proteins suppress the effects of small interfering RNA by direct interaction with the mammalian RNA interference pathway. J. Virol. 85, 2512–2523 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yeaman, M. R. & Yount, N. Y. Mechanisms of antimicrobial peptide action and resistance. Pharmacol. Rev. 55, 27–55 (2003).

    CAS  PubMed  Google Scholar 

  58. Wilson, C. L. et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).

    CAS  PubMed  Google Scholar 

  59. Chromek, M. et al. The antimicrobial peptide cathelicidin protects the urinary tract against invasive bacterial infection. Nat. Med. 12, 636–641 (2006).

    CAS  PubMed  Google Scholar 

  60. Ganz, T., Metcalf, J. A., Gallin, J. I., Boxer, L. A. & Lehrer, R. I. Microbicidal/cytotoxic proteins of neutrophils are deficient in two disorders: Chediak-Higashi syndrome and “specific” granule deficiency. J. Clin. Invest. 82, 552–556 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Kumar, P., Kizhakkedathu, J. N. & Straus, S. K. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules 8, 4 (2018).

    PubMed Central  Google Scholar 

  62. Jenssen, H., Hamill, P. & Hancock, R. E. Peptide antimicrobial agents. Clin. Microbiol. Rev. 19, 491–511 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Valore, E. V. et al. Human beta-defensin-1: an antimicrobial peptide of urogenital tissues. J. Clin. Invest. 101, 1633–1642 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nizet, V. et al. Innate antimicrobial peptide protects the skin from invasive bacterial infection. Nature 414, 454–457 (2001).

    CAS  PubMed  Google Scholar 

  65. Quinones-Mateu, M. E. et al. Human epithelial beta-defensins 2 and 3 inhibit HIV-1 replication. AIDS 17, F39–F48 (2003).

    CAS  PubMed  Google Scholar 

  66. Ahmed, A., Siman-Tov, G., Hall, G., Bhalla, N. & Narayanan, A. Human antimicrobial peptides as therapeutics for viral infections. Viruses 11, 704 (2019).

    CAS  PubMed Central  Google Scholar 

  67. Casals, C., Garcia-Fojeda, B. & Minutti, C. M. Soluble defense collagens: sweeping up immune threats. Mol. Immunol. 112, 291–304 (2019).

    CAS  PubMed  Google Scholar 

  68. Meschi, J. et al. Surfactant protein D binds to human immunodeficiency virus (HIV) envelope protein gp120 and inhibits HIV replication. J. Gen. Virol. 86, 3097–3107 (2005).

    CAS  PubMed  Google Scholar 

  69. Hartshorn, K. L. et al. Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D. Respir. Res. 8, 9 (2007).

    PubMed  PubMed Central  Google Scholar 

  70. Reading, P. C. et al. Antiviral activity of the long chain pentraxin PTX3 against influenza viruses. J. Immunol. 180, 3391–3398 (2008).

    CAS  PubMed  Google Scholar 

  71. LeVine, A. M., Whitsett, J. A., Hartshorn, K. L., Crouch, E. C. & Korfhagen, T. R. Surfactant protein D enhances clearance of influenza A virus from the lung in vivo. J. Immunol. 167, 5868–5873 (2001).

    CAS  PubMed  Google Scholar 

  72. Jounblat, R. et al. Binding and agglutination of Streptococcus pneumoniae by human surfactant protein D (SP-D) vary between strains, but SP-D fails to enhance killing by neutrophils. Infect. Immun. 72, 709–716 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Isaacs, C. E. & Xu, W. Theaflavin-3,3’-digallate and lactic acid combinations reduce herpes simplex virus infectivity. Antimicrob. Agents. Chemother. 57, 3806–3814 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Tyssen, D. et al. Anti-HIV-1 activity of lactic acid in human cervicovaginal fluid. mSphere 3, e00055 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Sanchez, E. L. & Lagunoff, M. Viral activation of cellular metabolism. Virology 479-480, 609–618 (2015).

    CAS  PubMed  Google Scholar 

  76. Munger, J., Bajad, S. U., Coller, H. A., Shenk, T. & Rabinowitz, J. D. Dynamics of the cellular metabolome during human cytomegalovirus infection. PLoS Pathog. 2, e132 (2006).

    PubMed  PubMed Central  Google Scholar 

  77. Libran-Perez, M., Pereiro, P., Figueras, A. & Novoa, B. Antiviral activity of palmitic acid via autophagic flux inhibition in zebrafish (Danio rerio). Fish Shellfish Immunol. 95, 595–605 (2019).

    CAS  PubMed  Google Scholar 

  78. Kachroo, A. et al. An oleic acid-mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol. Plant Microbe Interact. 21, 564–575 (2008).

    CAS  PubMed  Google Scholar 

  79. Nevo, Y. & Nelson, N. The NRAMP family of metal-ion transporters. Biochim. Biophys. Acta 1763, 609–620 (2006).

    CAS  PubMed  Google Scholar 

  80. Vidal, S. M., Malo, D., Vogan, K., Skamene, E. & Gros, P. Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73, 469–485 (1993).

    CAS  PubMed  Google Scholar 

  81. Plant, J. E., Blackwell, J. M., O’Brien, A. D., Bradley, D. J. & Glynn, A. A. Are the Lsh and Ity disease resistance genes at one locus on mouse chromosome 1? Nature 297, 510–511 (1982).

    CAS  PubMed  Google Scholar 

  82. Supek, F., Supekova, L., Nelson, H. & Nelson, N. A yeast manganese transporter related to the macrophage protein involved in conferring resistance to mycobacteria. Proc. Natl Acad. Sci. USA 93, 5105–5110 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Mayeur, S., Spahis, S., Pouliot, Y. & Levy, E. Lactoferrin, a pleiotropic protein in health and disease. Antioxid. Redox Signal. 24, 813–836 (2016).

    CAS  PubMed  Google Scholar 

  84. Velusamy, S. K., Markowitz, K., Fine, D. H. & Velliyagounder, K. Human lactoferrin protects against Streptococcus mutans-induced caries in mice. Oral Dis. 22, 148–154 (2016).

    CAS  PubMed  Google Scholar 

  85. Levine, B., Mizushima, N. & Virgin, H. W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Lim, J. J., Grinstein, S. & Roth, Z. Diversity and versatility of phagocytosis: roles in innate immunity, tissue remodeling, and homeostasis. Front. Cell. Infect. Microbiol. 7, 191 (2017).

    PubMed  PubMed Central  Google Scholar 

  87. Thurston, T. L. M., Wandel, M. P., von Muhlinen, N., Foeglein, A. & Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414–418 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Gros, P., Milder, F. J. & Janssen, B. J. Complement driven by conformational changes. Nat. Rev. Immunol. 8, 48–58 (2008).

    CAS  PubMed  Google Scholar 

  89. Orvedahl, A. et al. Autophagy protects against Sindbis virus infection of the central nervous system. Cell Host Microbe 7, 115–127 (2010). This study identifies an essential role for autophagy in antiviral defence in vitro and in vivo in mice.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Sparrer, K. M. J. et al. TRIM23 mediates virus-induced autophagy via activation of TBK1. Nat. Microbiol. 2, 1543–1557 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Franco, L. H. et al. The ubiquitin ligase Smurf1 functions in selective autophagy of Mycobacterium tuberculosis and anti-tuberculous host defense. Cell Host Microbe 21, 59–72 (2017).

    CAS  PubMed  Google Scholar 

  92. Huett, A. et al. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella Typhimurium. Cell Host Microbe 12, 778–790 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Wild, P. et al. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Ravenhill, B. J. et al. The cargo receptor NDP52 initiates selective autophagy by recruiting the ULK complex to cytosol-invading bacteria. Mol. Cell 74, 320–329 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Gutierrez, M. G. et al. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119, 753–766 (2004). This work provides the first description of autophagy as an antibacterial mechanism.

    CAS  PubMed  Google Scholar 

  96. Castillo, E. F. et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation. Proc. Natl Acad. Sci. USA 109, E3168–E3176 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Kimmey, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Shi, L. et al. Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus. J. Exp. Med. 199, 1379–1390 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Whitnack, E. & Beachey, E. H. Inhibition of complement-mediated opsonization and phagocytosis of Streptococcus pyogenes by D fragments of fibrinogen and fibrin bound to cell surface M protein. J. Exp. Med. 162, 1983–1997 (1985).

    CAS  PubMed  Google Scholar 

  101. Heckmann, B. L., Boada-Romero, E., Cunha, L. D., Magne, J. & Green, D. R. LC3-associated phagocytosis and inflammation. J. Mol. Biol. 429, 3561–3576 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Martinez, J. et al. Noncanonical autophagy inhibits the autoinflammatory, lupus-like response to dying cells. Nature 533, 115–119 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Martinez, J. et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat. Cell. Biol. 17, 893–906 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Wang, Y. & Le, W. D. Autophagy and ubiquitin-proteasome system. Adv. Exp. Med. Biol. 1206, 527–550 (2019).

    CAS  PubMed  Google Scholar 

  105. Hauler, F., Mallery, D. L., McEwan, W. A., Bidgood, S. R. & James, L. C. AAA ATPase p97/VCP is essential for TRIM21-mediated virus neutralization. Proc. Natl Acad. Sci. USA 109, 19733–19738 (2012). These authors identify an important role for the ubiquitin–proteasome pathway in cytosolic neutralization of viral capsids.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tam, J. C., Bidgood, S. R., McEwan, W. A. & James, L. C. Intracellular sensing of complement C3 activates cell autonomous immunity. Science 345, 1256070 (2014).

    PubMed  PubMed Central  Google Scholar 

  107. Bottermann, M. et al. Complement C4 prevents viral infection through capsid inactivation. Cell Host Microbe 25, 617–629 e617 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Camborde, L. et al. The ubiquitin-proteasome system regulates the accumulation of Turnip yellow mosaic virus RNA-dependent RNA polymerase during viral infection. Plant Cell 22, 3142–3152 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ruckdeschel, K. et al. The proteasome pathway destabilizes Yersinia outer protein E and represses its antihost cell activities. J. Immunol. 176, 6093–6102 (2006).

    CAS  PubMed  Google Scholar 

  110. Sahana, N. et al. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro. PLoS ONE 7, e52546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Xu, Y. et al. Rice stripe tenuivirus nonstructural protein 3 hijacks the 26S proteasome of the small brown planthopper via direct interaction with regulatory particle non-ATPase subunit 3. J. Virol. 89, 4296–4310 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Dudnik, A., Bigler, L. & Dudler, R. Production of proteasome inhibitor syringolin A by the endophyte Rhizobium sp. strain AP16. Appl. Environ. Microbiol. 80, 3741–3748 (2014).

    PubMed  PubMed Central  Google Scholar 

  113. Groll, M. et al. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452, 755–758 (2008).

    CAS  PubMed  Google Scholar 

  114. Zimmermann, C. et al. The abundant tegument protein pUL25 of human cytomegalovirus prevents proteasomal degradation of pUL26 and supports its suppression of ISGylation. J. Virol. 92, e01180–e01218 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Chakrabarti, A., Jha, B. K. & Silverman, R. H. New insights into the role of RNase L in innate immunity. J. Interferon Cytokine Res. 31, 49–57 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Banerjee, S. et al. OAS-RNase L innate immune pathway mediates the cytotoxicity of a DNA-demethylating drug. Proc. Natl Acad. Sci. USA 116, 5071–5076 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Birdwell, L. D. et al. Activation of RNase L by murine coronavirus in myeloid cells is dependent on basal Oas gene expression and independent of virus-induced interferon. J. Virol. 90, 3160–3172 (2016).

    PubMed  PubMed Central  Google Scholar 

  118. Stetson, D. B., Ko, J. S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Mogensen, T. H. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22, 240–273 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Stavrou, S., Blouch, K., Kotla, S., Bass, A. & Ross, S. R. Nucleic acid recognition orchestrates the anti-viral response to retroviruses. Cell Host Microbe 17, 478–488 (2015). Stavrou et al. show that lack of the restriction factor APOBEC3 leads to higher load of retroviral nucleic acids, and increased STING-dependent IFNβ expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Maelfait, J., Bridgeman, A., Benlahrech, A., Cursi, C. & Rehwinkel, J. Restriction by SAMHD1 limits cGAS/STING-dependent innate and adaptive immune responses to HIV-1. Cell Rep. 16, 1492–1501 (2016). This work shows that SAMHD1 limits lentivirus-induced type I interferon production and T cell cytotoxicity, thus providing direct evidence for constitutive immune responses limiting inducible immune activities.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Marques, J. T. et al. A structural basis for discriminating between self and nonself double-stranded RNAs in mammalian cells. Nat. Biotechnol. 24, 559–565 (2006).

    CAS  PubMed  Google Scholar 

  123. Britigan, B. E., Lewis, T. S., Waldschmidt, M., McCormick, M. L. & Krieg, A. M. Lactoferrin binds CpG-containing oligonucleotides and inhibits their immunostimulatory effects on human B cells. J. Immunol. 167, 2921–2928 (2001).

    CAS  PubMed  Google Scholar 

  124. Cheng, J. et al. Autophagy regulates MAVS signaling activation in a phosphorylation-dependent manner in microglia. Cell Death Differ. 24, 276–287 (2017).

    CAS  PubMed  Google Scholar 

  125. Tal, M. C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl Acad. Sci. USA 106, 2770–2775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Prabakaran, T. et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J. 37, e97858 (2018). Cheng et al. (2017), Tal et al. (2009) and Prabakaran et al. show that autophagy directly inhibits signalling by the RIG-I-like receptor–MAVS and cGAS–STING pathways.

    PubMed  PubMed Central  Google Scholar 

  127. Aden, K. et al. ATG16L1 orchestrates interleukin-22 signaling in the intestinal epithelium via cGAS-STING. J. Exp. Med. 215, 2868–2886 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Zhang, W. et al. Lactate is a natural suppressor of RLR signaling by targeting MAVS. Cell 178, 176–189.e15 (2019). This report shows that lactate directly inhibits RIG-I-like receptor–MAVS signalling.

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Shim, D. W. et al. Anti-inflammatory action of an antimicrobial model peptide that suppresses the TRIF-dependent signaling pathway via inhibition of toll-like receptor 4 endocytosis in lipopolysaccharide-stimulated macrophages. PLoS ONE 10, e0126871 (2015).

    PubMed  PubMed Central  Google Scholar 

  130. Haber, J. E. Deciphering the DNA damage response. Cell 162, 1183–1185 (2015).

    CAS  PubMed  Google Scholar 

  131. Johnston, J. A., Ward, C. L. & Kopito, R. R. Aggresomes: a cellular response to misfolded proteins. J. Cell. Biol. 143, 1883–1898 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Fortun, J., Dunn, W. A. Jr, Joy, S., Li, J. & Notterpek, L. Emerging role for autophagy in the removal of aggresomes in Schwann cells. J. Neurosci. 23, 10672–10680 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Holze, C. et al. Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat. Immunol. 19, 130–140 (2018).

    CAS  PubMed  Google Scholar 

  134. Yu, X. H., Zhang, D. W., Zheng, X. L. & Tang, C. K. Cholesterol transport system: an integrated cholesterol transport model involved in atherosclerosis. Prog. Lipid Res. 73, 65–91 (2019).

    CAS  PubMed  Google Scholar 

  135. Mackenzie, K. J. et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature 548, 461–465 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Harding, S. M. et al. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Crow, Y. J. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006). Loss-of-function mutations in the gene encoding the DNA exonuclease TREX1 lead to constitutive type I interferon signalling.

    CAS  PubMed  Google Scholar 

  138. Rodero, M. P. et al. Type I interferon-mediated autoinflammation due to DNase II deficiency. Nat. Commun. 8, 2176 (2017).

    PubMed  PubMed Central  Google Scholar 

  139. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Laplana, M., Caruz, A., Pineda, J. A., Puig, T. & Fibla, J. Association of BST-2 gene variants with HIV disease progression underscores the role of BST-2 in HIV type 1 infection. J. Infect. Dis. 207, 411–419 (2013).

    CAS  PubMed  Google Scholar 

  142. Everitt, A. R. et al. IFITM3 restricts the morbidity and mortality associated with influenza. Nature 484, 519–523 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Tesse, R. et al. Association of beta-defensin-1 gene polymorphisms with Pseudomonas aeruginosa airway colonization in cystic fibrosis. Genes Immun. 9, 57–60 (2008).

    CAS  PubMed  Google Scholar 

  144. Shao, Y. et al. Association between genetic polymorphisms in the autophagy-related 5 gene promoter and the risk of sepsis. Sci. Rep. 7, 9399 (2017).

    PubMed  PubMed Central  Google Scholar 

  145. Yordy, B., Iijima, N., Huttner, A., Leib, D. & Iwasaki, A. A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 12, 334–345 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Wu, X. et al. Intrinsic immunity shapes viral resistance of stem cells. Cell 172, 423–438 e425 (2018).

    CAS  PubMed  Google Scholar 

  147. Eggenberger, J., Blanco-Melo, D., Panis, M., Brennand, K. J. & Tenoever, B. R. Type I interferon response impairs differentiation potential of pluripotent stem cells. Proc. Natl Acad. Sci. USA 116, 1384–1393 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu, Y. et al. Mutations in proteasome subunit beta type 8 cause chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature with evidence of genetic and phenotypic heterogeneity. Arthritis Rheum. 64, 895–907 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Brehm, A. et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 125, 4196–4211 (2015). These authors report that patients with mutations in genes encoding proteasome subunits develop disease with a type I interferon signature.

    PubMed  PubMed Central  Google Scholar 

  150. Massaad, M. J. et al. Deficiency of base excision repair enzyme NEIL3 drives increased predisposition to autoimmunity. J. Clin. Invest. 126, 4219–4236 (2016).

    PubMed  PubMed Central  Google Scholar 

  151. Khor, T. O. et al. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 66, 11580–11584 (2006).

    CAS  PubMed  Google Scholar 

  152. Ivanciuc, T., Sbrana, E., Casola, A. & Garofalo, R. P. Protective role of nuclear factor erythroid 2-related factor 2 against respiratory syncytial virus and human metapneumovirus infections. Front. Immunol. 9, 854 (2018).

    PubMed  PubMed Central  Google Scholar 

  153. Peyssonnaux, C. et al. HIF-1alpha expression regulates the bactericidal capacity of phagocytes. J. Clin. Invest. 115, 1806–1815 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Blondeau, C. et al. Tetherin restricts herpes simplex virus 1 and is antagonized by glycoprotein M. J. Virol. 87, 13124–13133 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Smith, S. E. et al. Interferon-induced transmembrane protein 1 restricts replication of viruses that enter cells via the plasma membrane. J. Virol. 93, e02003 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Bernhardt, A. et al. Inflammatory cell infiltration and resolution of kidney inflammation is orchestrated by the cold-shock protein Y-box binding protein-1. Kidney Int. 92, 1157–1177 (2017).

    CAS  PubMed  Google Scholar 

  157. Hollenbaugh, J. A. et al. Host factor SAMHD1 restricts DNA viruses in non-dividing myeloid cells. PLoS Pathog. 9, e1003481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Nakaya, Y., Stavrou, S., Blouch, K., Tattersall, P. & Ross, S. R. In vivo examination of mouse APOBEC3- and human APOBEC3A- and APOBEC3G-mediated restriction of parvovirus and herpesvirus infection in mouse models. J. Virol. 90, 8005–8012 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Girardi, E. et al. Cross-species comparative analysis of Dicer proteins during Sindbis virus infection. Sci. Rep. 5, 10693 (2015).

    PubMed  PubMed Central  Google Scholar 

  160. Dombrowski, Y. et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci. Transl. Med. 3, 82ra38 (2011).

    PubMed  PubMed Central  Google Scholar 

  161. Stamme, C., Muller, M., Hamann, L., Gutsmann, T. & Seydel, U. Surfactant protein a inhibits lipopolysaccharide-induced immune cell activation by preventing the interaction of lipopolysaccharide with lipopolysaccharide-binding protein. Am. J. Respir. Cell Mol. Biol. 27, 353–360 (2002).

    CAS  PubMed  Google Scholar 

  162. Daniels, B. P. et al. The nucleotide sensor ZBP1 and kinase RIPK3 induce the enzyme IRG1 to promote an antiviral metabolic state in neurons. Immunity 50, 64–76 e64 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Nair, S. et al. Irg1 expression in myeloid cells prevents immunopathology during M. tuberculosis infection. J. Exp. Med. 215, 1035–1045 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Jessop, F., Hamilton, R. F., Rhoderick, J. F., Shaw, P. K. & Holian, A. Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol. Appl. Pharmacol. 309, 101–110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Meissner, F. et al. Inflammasome activation in NADPH oxidase defective mononuclear phagocytes from patients with chronic granulomatous disease. Blood 116, 1570–1573 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Segal, B. H. et al. NADPH oxidase limits innate immune responses in the lungs in mice. PLoS ONE 5, e9631 (2010).

    PubMed  PubMed Central  Google Scholar 

  167. Gluschko, A. et al. The beta2 integrin Mac-1 induces protective LC3-associated phagocytosis of listeria monocytogenes. Cell Host Microbe 23, 324–337 e325 (2018).

    CAS  PubMed  Google Scholar 

  168. Gong, L. et al. The Burkholderia pseudomallei type III secretion system and BopA are required for evasion of LC3-associated phagocytosis. PLoS ONE 6, e17852 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Masters, S. L., Simon, A., Aksentijevich, I. & Kastner, D. L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Ann. Rev. Immunol. 27, 621–668 (2009).

    CAS  Google Scholar 

  170. Uggenti, C., Lepelley, A. & Crow, Y. J. Self-awareness: nucleic acid-driven inflammation and the type I interferonopathies. Annu. Rev. Immunol. 37, 247–267 (2019).

    CAS  PubMed  Google Scholar 

  171. Jesus, A. A. & Goldbach-Mansky, R. IL-1 blockade in autoinflammatory syndromes. Annu. Rev. Med. 65, 223–244 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Schwartz, D. M. et al. JAK inhibition as a therapeutic strategy for immune and inflammatory diseases. Nat. Rev. Drug. Discov. 17, 78 (2017).

    PubMed  PubMed Central  Google Scholar 

  173. Kim, H., Sanchez, G. A. & Goldbach-Mansky, R. Insights from Mendelian interferonopathies: comparison of CANDLE, SAVI with AGS, monogenic lupus. J. Mol. Med. 94, 1111–1127 (2016).

    CAS  PubMed  Google Scholar 

  174. Sanjuan, M. A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    CAS  PubMed  Google Scholar 

  175. Doyle, S. E. et al. Toll-like receptors induce a phagocytic gene program through p38. J. Exp. Med. 199, 81–90 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Henneke, P. et al. Cellular activation, phagocytosis, and bactericidal activity against group B streptococcus involve parallel myeloid differentiation factor 88-dependent and independent signaling pathways. J. Immunol. 169, 3970–3977 (2002).

    CAS  PubMed  Google Scholar 

  177. Hawley, K. L. et al. CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of Borrelia burgdorferi. Proc. Natl Acad. Sci. USA 109, 1228–1232 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Peng, G., Lei, K. J., Jin, W., Greenwell-Wild, T. & Wahl, S. M. Induction of APOBEC3 family proteins, a defensive maneuver underlying interferon-induced anti-HIV-1 activity. J. Exp. Med. 203, 41–46 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Walmsley, S. R. et al. Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice. J. Clin. Invest. 121, 1053–1063 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Olagnier, D. et al. Nrf2 negatively regulates STING indicating a link between antiviral sensing and metabolic reprogramming. Nat. Commun. 9, 3506 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.R.P. is funded by the European Research Council (ERC-AdG ENVISION; 786602), the Novo Nordisk Foundation (NNF18OC0030274) and the Lundbeck Foundation (R198-2015-171 and R268-2016-3927). T.P. is funded by the European Research Council (ERC-StG IDEM; 637647). S.L.M. acknowledges funding from a Howard Hughes Medical Institute–Wellcome International Research Scholarship and the Sylvia and Charles Viertel Foundation. T.H.M. received funding from Aarhus University Research Foundation (AUFF-E-215-FLS-8-66), the Danish Council for Independent Research-Medical Sciences (4004-00047B) and the Lundbeck Foundation (R268-2016-3927). The authors thank D. Olagnier for critical reading of the manuscript and comments and suggestions.

Author information

Authors and Affiliations

Authors

Contributions

S.R.P. conceived the idea and wrote the first version of the manuscript together with T.H.M. All authors together fully developed the work, and drafted, finalized and revised the manuscript.

Corresponding author

Correspondence to Søren R. Paludan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pattern recognition receptors

(PRRs). A family of germline-encoded immune receptors, including the Toll-like receptors, that detect immunostimulatory molecules to activate signal transduction and gene expression, which induces antimicrobial and inflammatory responses.

Constitutive immune mechanisms

Host mechanisms that are constitutively present in an active or latent form and thus can exert host defence activities immediately, independently of inducible processes.

Inducible mechanisms

Biological processes that depend on the activation of transcriptional programmes and hence require intermediate steps between the trigger stimulus and effector function.

Supramolecular organizing centres

Location-specific higher-order signalling complexes, such as the myddosome in Toll-like receptor signalling, that amplify pattern recognition receptor signalling when pathogen-associated molecular pattern levels exceed specific threshold concentrations.

RNA interference

(RNAi). The use of double-stranded RNA molecules containing sequences that match a given gene to knock down the expression of that gene by inhibiting translation of the targeted mRNA or by directing RNA-degrading enzymes to destroy the encoded mRNA transcript.

Nuclear domain 10 bodies

(ND10 bodies). Membraneless, interchromatin structures in the nucleus of eukaryotic cells. ND10 bodies are made up mainly of proteins and have been described to be involved in a broad range of processes, including gene regulation, cell cycle, apoptosis, DNA repair and antiviral defence.

Aerobic glycolysis

The process by which glucose is converted to lactate in the presence of oxygen to produce energy in the form of ATP.

cGAS–STING pathway

(Cyclic GMP–AMP synthase–stimulator of interferon genes pathway). cGAS is a cytosolic DNA-sensing pattern recognition receptor that signals via STING to induce the expression of type I interferon and inflammatory cytokines.

RIG-I–MAVS pathway

(Retinoic acid-inducible gene I protein–mitochondrial antiviral signalling protein pathway). RIG-I is a cytosolic RNA-sensing pattern recognition receptor that signals via MAVS to induce the expression of type I interferon and inflammatory cytokines.

DNA damage response

Cellular response to DNA damage, including the re-establishment of genome integrity and cell death responses.

NLRP3 inflammasome

The NLRP3 inflammasome is activated by danger-associated molecular patterns and molecular signatures associated with homeostasis-altering molecular processes to execute caspase 1-mediated cleavage of molecules such as pro-IL-1β and gasdermin D.

NRF2–KEAP1

Nuclear factor erythroid 2-related factor 2 (NRF2) senses oxidative stress, whereupon it is released from Kelch-like ECH-associated protein 1 (KEAP1) to translocate to the nucleus and induce gene expression.

Hypoxia-inducible factor 1α

A transcription factor that is activated by hypoxia to induce the expression of genes with hypoxia-responsive elements in their promoters.

Bone morphogenetic protein–SMAD

Bone morphogenetic proteins are growth factors that signal through SMAD proteins to induce gene transcription.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paludan, S.R., Pradeu, T., Masters, S.L. et al. Constitutive immune mechanisms: mediators of host defence and immune regulation. Nat Rev Immunol 21, 137–150 (2021). https://doi.org/10.1038/s41577-020-0391-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-0391-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing