Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunomodulation by anticancer cell cycle inhibitors

Abstract

Cell cycle proteins that are often dysregulated in malignant cells, such as cyclin-dependent kinase 4 (CDK4) and CDK6, have attracted considerable interest as potential targets for cancer therapy. In this context, multiple inhibitors of CDK4 and CDK6 have been developed, including three small molecules (palbociclib, abemaciclib and ribociclib) that are currently approved for the treatment of patients with breast cancer and are being extensively tested in individuals with other solid and haematological malignancies. Accumulating preclinical and clinical evidence indicates that the anticancer activity of CDK4/CDK6 inhibitors results not only from their ability to block the cell cycle in malignant cells but also from a range of immunostimulatory effects. In this Review, we discuss the ability of anticancer cell cycle inhibitors to modulate various immune functions in support of effective antitumour immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cyclins and cyclin-dependent kinases in immune cells.
Fig. 2: Immunostimulation upon cyclin-dependent kinase inhibition.
Fig. 3: Immunoevasion upon cyclin-dependent kinase inhibition.

Similar content being viewed by others

References

  1. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Woods, D. & Turchi, J. J. Chemotherapy induced DNA damage response: convergence of drugs and pathways. Cancer Biol. Ther. 14, 379–389 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Schirrmacher, V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int. J. Oncol. 54, 407–419 (2019).

    CAS  PubMed  Google Scholar 

  4. Kent, L. N. & Leone, G. The broken cycle: E2F dysfunction in cancer. Nat. Rev. Cancer 19, 326–338 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Fry, D. W. et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3, 1427–1438 (2004).

    CAS  PubMed  Google Scholar 

  6. O’Leary, B., Finn, R. S. & Turner, N. C. Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13, 417–430 (2016).

    Article  PubMed  CAS  Google Scholar 

  7. Baughn, L. B. et al. A novel orally active small molecule potently induces G1 arrest in primary myeloma cells and prevents tumor growth by specific inhibition of cyclin-dependent kinase 4/6. Cancer Res. 66, 7661–7667 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Leonard, J. P. et al. Selective CDK4/6 inhibition with tumor responses by PD0332991 in patients with mantle cell lymphoma. Blood 119, 4597–4607 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859–869 (1999). This work is the first demonstration that CDK4 and CDK6 support cell cycle progression by initiating the inactivating phosphorylation of RB1.

    Article  CAS  PubMed  Google Scholar 

  10. Condorelli, R. et al. Polyclonal RB1 mutations and acquired resistance to CDK 4/6 inhibitors in patients with metastatic breast cancer. Ann. Oncol. 29, 640–645 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. O’Leary, B. et al. The genetic landscape and clonal evolution of breast cancer resistance to palbociclib plus fulvestrant in the PALOMA-3 trial. Cancer Discov. 8, 1390–1403 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Niu, Y., Xu, J. & Sun, T. Cyclin-dependent kinases 4/6 inhibitors in breast cancer: current status, resistance, and combination strategies. J. Cancer 10, 5504–5517 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klein, M. E., Kovatcheva, M., Davis, L. E., Tap, W. D. & Koff, A. CDK4/6 inhibitors: the mechanism of action may not be as simple as once thought. Cancer Cell 34, 9–20 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, H. et al. The metabolic function of cyclin D3–CDK6 kinase in cancer cell survival. Nature 546, 426–430 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lopez-Mejia, I. C. et al. CDK4 phosphorylates AMPKα2 to inhibit its activity and repress fatty acid oxidation. Mol. Cell 68, 336–349.e6 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Martinez-Carreres, L. et al. CDK4 regulates lysosomal function and mTORC1 activation to promote cancer cell survival. Cancer Res. 79, 5245–5259 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu, T. et al. CDK4/6-dependent activation of DUB3 regulates cancer metastasis through SNAIL1. Nat. Commun. 8, 13923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ameratunga, M., Kipps, E., Okines, A. F. C. & Lopez, J. S. To cycle or fight — CDK4/6 inhibitors at the crossroads of anticancer immunity. Clin. Cancer Res. 25, 21–28 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Laphanuwat, P. & Jirawatnotai, S. Immunomodulatory roles of cell cycle regulators. Front. Cell Dev. Biol. 7, 23 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in β-islet cell hyperplasia. Nat. Genet. 22, 44–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Cooper, A. B. et al. A unique function for cyclin D3 in early B cell development. Nat. Immunol. 7, 489–497 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Peled, J. U. et al. Requirement for cyclin D3 in germinal center formation and function. Cell Res. 20, 631–646 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Cato, M. H., Chintalapati, S. K., Yau, I. W., Omori, S. A. & Rickert, R. C. Cyclin D3 is selectively required for proliferative expansion of germinal center B cells. Mol. Cell Biol. 31, 127–137 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Sicinska, E. et al. Essential role for cyclin D3 in granulocyte colony-stimulating factor-driven expansion of neutrophil granulocytes. Mol. Cell Biol. 26, 8052–8060 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493–504 (2004). Together with Kozar et al. (2004), this work reports the ability of some mammalian cells to progress in the cell cycle in the absence of both CDK4 and CDK6, or of all cyclin D isoforms.

    Article  CAS  PubMed  Google Scholar 

  27. Sicinska, E. et al. Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4, 451–461 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Franklin, D. S. et al. CDK inhibitors p18INK4c and p27Kip1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes. Dev. 12, 2899–2911 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tourigny, M. R. et al. CDK inhibitor p18INK4c is required for the generation of functional plasma cells. Immunity 17, 179–189 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Hu, M. G. et al. A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. Cancer Res. 69, 810–818 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hu, M. G. et al. CDK6 kinase activity is required for thymocyte development. Blood 117, 6120–6131 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sharpless, N. E. et al. Loss of p16Ink4a with retention of p19Arf predisposes mice to tumorigenesis. Nature 413, 86–91 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Solvason, N. et al. Cyclin D2 is essential for BCR-mediated proliferation and CD5 B cell development. Int. Immunol. 12, 631–638 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Goel, S. et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 548, 471–475 (2017). This work shows that CDK4/CDK6 inhibitors favour the expression of endogenous retroviral elements that drive type III interferon secretion and suppress the proliferation of Treg cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Konig, S. et al. First insight into the kinome of human regulatory T cells. PLoS One 7, e40896 (2012). This study uses a kinase-selective proteomic strategy to compare TCR signalling in effector T cells and Treg cells, leading to the identification of CDK6 as an effector of TCR-driven proliferation in Treg cells.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rowell, E. A., Wang, L., Chunder, N., Hancock, W. W. & Wells, A. D. Regulation of T cell differentiation and alloimmunity by the cyclin-dependent kinase inhibitor p18ink4c. PLoS One 9, e91587 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wells, A. D. & Morawski, P. A. New roles for cyclin-dependent kinases in T cell biology: linking cell division and differentiation. Nat. Rev. Immunol. 14, 261–270 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Malumbres, M. Cyclin-dependent kinases. Genome Biol. 15, 122 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boussiotis, V. A. et al. p27kip1 functions as an anergy factor inhibiting interleukin 2 transcription and clonal expansion of alloreactive human and mouse helper T lymphocytes. Nat. Med. 6, 290–297 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Jatzek, A., Marie Tejera, M., Plisch, E. H., Fero, M. L. & Suresh, M. T-cell intrinsic and extrinsic mechanisms of p27Kip1 in the regulation of CD8 T-cell memory. Immunol. Cell Biol. 91, 120–129 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Pareek, T. K. et al. Cyclin-dependent kinase 5 activity is required for T cell activation and induction of experimental autoimmune encephalomyelitis. J. Exp. Med. 207, 2507–2519 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Chunder, N., Wang, L., Chen, C., Hancock, W. W. & Wells, A. D. Cyclin-dependent kinase 2 controls peripheral immune tolerance. J. Immunol. 189, 5659–5666 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Tsai, L. H., Delalle, I., Caviness, V. S. Jr., Chae, T. & Harlow, E. p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371, 419–423 (1994).

    Article  CAS  PubMed  Google Scholar 

  44. Rowell, E. A., Wang, L., Hancock, W. W. & Wells, A. D. The cyclin-dependent kinase inhibitor p27kip1 is required for transplantation tolerance induced by costimulatory blockade. J. Immunol. 177, 5169–5176 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Askew, D. et al. Cyclin-dependent kinase 5 activity is required for allogeneic T-cell responses after hematopoietic cell transplantation in mice. Blood 129, 246–256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Cortes, N., Guzman-Martinez, L., Andrade, V., Gonzalez, A. & Maccioni, R. B. CDK5: a unique CDK and its multiple roles in the nervous system. J. Alzheimers Dis. 68, 843–855 (2019).

    Article  PubMed  Google Scholar 

  47. Lam, E., Choi, S. H., Pareek, T. K., Kim, B. G. & Letterio, J. J. Cyclin-dependent kinase 5 represses Foxp3 gene expression and Treg development through specific phosphorylation of Stat3 at Serine 727. Mol. Immunol. 67, 317–324 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lam, E., Pareek, T. K. & Letterio, J. J. Cdk5 controls IL-2 gene expression via repression of the mSin3a–HDAC complex. Cell Cycle 14, 1327–1336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morawski, P. A., Mehra, P., Chen, C., Bhatti, T. & Wells, A. D. Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J. Biol. Chem. 288, 24494–24502 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Vanden Bush, T. J. & Bishop, G. A. CDK-mediated regulation of cell functions via c-Jun phosphorylation and AP-1 activation. PLoS One 6, e19468 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amulic, B. et al. Cell-cycle proteins control production of neutrophil extracellular traps. Dev. Cell 43, 449–462.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  52. Dannappel, M. V., Sooraj, D., Loh, J. J. & Firestein, R. Molecular and in vivo functions of the CDK8 and CDK19 kinase modules. Front. Cell Dev. Biol. 6, 171 (2018).

    Article  PubMed  Google Scholar 

  53. Johannessen, L. et al. Small-molecule studies identify CDK8 as a regulator of IL-10 in myeloid cells. Nat. Chem. Biol. 13, 1102–1108 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martinek, J., Wu, T. C., Cadena, D., Banchereau, J. & Palucka, K. Interplay between dendritic cells and cancer cells. Int. Rev. Cell Mol. Biol. 348, 179–215 (2019).

    Article  PubMed  CAS  Google Scholar 

  55. Wculek, S. K. et al. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20, 7–24 (2020).

    Article  CAS  PubMed  Google Scholar 

  56. Yu, C. R., Young, H. A. & Ortaldo, J. R. Characterization of cytokine differential induction of STAT complexes in primary human T and NK cells. J. Leukoc. Biol. 64, 245–258 (1998).

    Article  CAS  PubMed  Google Scholar 

  57. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bancerek, J. et al. CDK8 kinase phosphorylates transcription factor STAT1 to selectively regulate the interferon response. Immunity 38, 250–262 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, Z., Wang, G., Lv, Y., Wan, Y. Y. & Zheng, J. Inhibition of Cdk8/Cdk19 activity promotes Treg cell differentiation and suppresses autoimmune diseases. Front. Immunol. 10, 1988 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Witalisz-Siepracka, A. et al. NK cell-specific CDK8 deletion enhances antitumor responses. Cancer Immunol. Res. 6, 458–466 (2018).

    Article  CAS  PubMed  Google Scholar 

  61. Alarcon, C. et al. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell 139, 757–769 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Anders, L. et al. A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20, 620–634 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vijayaraghavan, S. et al. CDK4/6 and autophagy inhibitors synergistically induce senescence in Rb positive cytoplasmic cyclin E negative cancers. Nat. Commun. 8, 15916 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoshida, A., Lee, E. K. & Diehl, J. A. Induction of therapeutic senescence in vemurafenib-resistant melanoma by extended inhibition of CDK4/6. Cancer Res. 76, 2990–3002 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Kovatcheva, M. et al. ATRX is a regulator of therapy induced senescence in human cells. Nat. Commun. 8, 386 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Llanos, S. et al. Lysosomal trapping of palbociclib and its functional implications. Oncogene 38, 3886–3902 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Narita, M. et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113, 703–716 (2003).

    Article  CAS  PubMed  Google Scholar 

  68. Gorgoulis, V. et al. Cellular senescence: defining a path forward. Cell 179, 813–827 (2019). This recent review article provides a critical discussion of key cellular and molecular features of senescence from the International Cell Senescence Association.

    Article  CAS  PubMed  Google Scholar 

  69. Textor, S. et al. Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res. 71, 5998–6009 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  PubMed  Google Scholar 

  71. Lopez-Soto, A., Gonzalez, S., Smyth, M. J. & Galluzzi, L. Control of metastasis by NK cells. Cancer Cell 32, 135–154 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Coppe, J. P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, 2853–2868 (2008).

    Article  CAS  PubMed  Google Scholar 

  73. Faget, D. V., Ren, Q. & Stewart, S. A. Unmasking senescence: context-dependent effects of SASP in cancer. Nat. Rev. Cancer 19, 439–453 (2019).

    Article  CAS  PubMed  Google Scholar 

  74. Xue, W. et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445, 656–660 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Iannello, A., Thompson, T. W., Ardolino, M., Lowe, S. W. & Raulet, D. H. p53-dependent chemokine production by senescent tumor cells supports NKG2D-dependent tumor elimination by natural killer cells. J. Exp. Med. 210, 2057–2069 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kang, T. W. et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479, 547–551 (2011).

    Article  CAS  PubMed  Google Scholar 

  77. Lujambio, A. et al. Non-cell-autonomous tumor suppression by p53. Cell 153, 449–460 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Guerriero, J. L. Macrophages: their untold story in T cell activation and function. Int. Rev. Cell Mol. Biol. 342, 73–93 (2019).

    Article  CAS  PubMed  Google Scholar 

  79. Vitale, I. et al. Mutational and antigenic landscape in tumor progression and cancer immunotherapy. Trends Cell Biol. 29, 396–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  80. Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).

    Article  CAS  PubMed  Google Scholar 

  81. Galluzzi, L. & Vitale, I. Oncogene-induced senescence and tumour control in complex biological systems. Cell Death Differ. 25, 1005–1006 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP–AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  83. Vanpouille-Box, C., Hoffmann, J. A. & Galluzzi, L. Pharmacological modulation of nucleic acid sensors — therapeutic potential and persisting obstacles. Nat. Rev. Drug. Discov. 18, 845–867 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).

    Article  CAS  PubMed  Google Scholar 

  85. Gluck, S. et al. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 19, 1061–1070 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Sabapathy, K. & Lane, D. P. Therapeutic targeting of p53: all mutants are equal, but some mutants are more equal than others. Nat. Rev. Clin. Oncol. 15, 13–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  87. Vilgelm, A. E. et al. Connecting the dots: therapy-induced senescence and a tumor-suppressive immune microenvironment. J. Natl Cancer Inst. 108, djv406 (2016).

    Article  PubMed  CAS  Google Scholar 

  88. Mitchell, J. P. & Carmody, R. J. NF-κB and the transcriptional control of inflammation. Int. Rev. Cell Mol. Biol. 335, 41–84 (2018).

    Article  CAS  PubMed  Google Scholar 

  89. Jerby-Arnon, L. et al. A cancer cell program promotes T cell exclusion and resistance to checkpoint blockade. Cell 175, 984–997.e24 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ruscetti, M. et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 362, 1416–1422 (2018). This report describes the ability of NK cells to support the eradication of lung cancer cells exposed to a MAPK inhibitor and a CDK4/CDK6 inhibitor, which reflects the ability of the latter to drive the secretion of immunostimulatory cytokines.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schaer, D. A. et al. The CDK4/6 inhibitor abemaciclib induces a T cell inflamed tumor microenvironment and enhances the efficacy of PD-L1 checkpoint blockade. Cell Rep. 22, 2978–2994 (2018).

    Article  CAS  PubMed  Google Scholar 

  92. Zhang, H. et al. CDK7 inhibition potentiates genome instability triggering anti-tumor immunity in small cell lung cancer. Cancer Cell 37, 37–54.e9 (2020).

    Article  CAS  PubMed  Google Scholar 

  93. Zitvogel, L., Galluzzi, L., Kepp, O., Smyth, M. J. & Kroemer, G. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15, 405–414 (2015).

    Article  CAS  PubMed  Google Scholar 

  94. Ishak, C. A., Classon, M. & De Carvalho, D. D. Deregulation of retroelements as an emerging therapeutic opportunity in cancer. Trends Cancer 4, 583–597 (2018).

    Article  CAS  PubMed  Google Scholar 

  95. Sprooten, J., Agostinis, P. & Garg, A. D. Type I interferons and dendritic cells in cancer immunotherapy. Int. Rev. Cell Mol. Biol. 348, 217–262 (2019).

    Article  PubMed  CAS  Google Scholar 

  96. Kollmann, K. et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 24, 167–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Terme, M. et al. VEGFA–VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 73, 539–549 (2013).

    Article  CAS  PubMed  Google Scholar 

  98. Tanchot, C. et al. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 6, 147–157 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Obata, Y. et al. The epigenetic regulator Uhrf1 facilitates the proliferation and maturation of colonic regulatory T cells. Nat. Immunol. 15, 571–579 (2014).

    Article  CAS  PubMed  Google Scholar 

  100. De Simone, M. et al. Transcriptional landscape of human tissue lymphocytes unveils uniqueness of tumor-infiltrating T regulatory cells. Immunity 45, 1135–1147 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Heng, T. S., Painter, M. W. & Immunological Genome Project Consortium. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Deng, J. et al. CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discov. 8, 216–233 (2018). This paper reports the ability of CDK4/CDK6 inhibitors to derepress transcription factors of the NFAT family, thereby boosting T cell activation.

    Article  CAS  PubMed  Google Scholar 

  103. McCartney, A. et al. Mechanisms of resistance to CDK4/6 inhibitors: potential implications and biomarkers for clinical practice. Front. Oncol. 9, 666 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Galluzzi, L., Yamazaki, T. & Kroemer, G. Linking cellular stress responses to systemic homeostasis. Nat. Rev. Mol. Cell Biol. 19, 731–745 (2018).

    Article  CAS  PubMed  Google Scholar 

  105. Munoz-Espin, D. et al. A versatile drug delivery system targeting senescent cells. EMBO Mol. Med. 10 (2018).

  106. Formenti, S. C. et al. Focal irradiation and systemic TGFβ blockade in metastatic breast cancer. Clin. Cancer Res. 24, 2493–2504 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554, 544–548 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tauriello, D. V. F. et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 554, 538–543 (2018).

    Article  CAS  PubMed  Google Scholar 

  109. Cornell, L., Wander, S. A., Visal, T., Wagle, N. & Shapiro, G. I. MicroRNA-mediated suppression of the TGF-β pathway confers transmissible and reversible CDK4/6 inhibitor resistance. Cell Rep. 26, 2667–2680.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kitamura, T. et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. J. Exp. Med. 212, 1043–1059 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Qian, B. Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bonapace, L. et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 515, 130–133 (2014).

    Article  CAS  PubMed  Google Scholar 

  113. Rybstein, M. D., Bravo-San Pedro, J. M., Kroemer, G. & Galluzzi, L. The autophagic network and cancer. Nat. Cell Biol. 20, 243–251 (2018).

    Article  CAS  PubMed  Google Scholar 

  114. Yoshida, A. et al. SLC36A1–mTORC1 signaling drives acquired resistance to CDK4/6 inhibitors. Sci. Adv. 5, eaax6352 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Michaloglou, C. et al. Combined inhibition of mTOR and CDK4/6 is required for optimal blockade of E2F function and long-term growth inhibition in estrogen receptor-positive breast cancer. Mol. Cancer Ther. 17, 908–920 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Galluzzi, L., Bravo-San Pedro, J. M., Levine, B., Green, D. R. & Kroemer, G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat. Rev. Drug. Discov. 16, 487–511 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Garcia-Prat, L. et al. Autophagy maintains stemness by preventing senescence. Nature 529, 37–42 (2016).

    Article  CAS  PubMed  Google Scholar 

  118. Laberge, R. M. et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17, 1049–1061 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhong, Z., Sanchez-Lopez, E. & Karin, M. Autophagy, inflammation, and immunity: a troika governing cancer and its treatment. Cell 166, 288–298 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Spranger, S. & Gajewski, T. F. Impact of oncogenic pathways on evasion of antitumour immune responses. Nat. Rev. Cancer 18, 139–147 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Toso, A. et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9, 75–89 (2014).

    Article  CAS  PubMed  Google Scholar 

  122. Di Mitri, D. et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature 515, 134–137 (2014).

    Article  PubMed  CAS  Google Scholar 

  123. Vilgelm, A. E. et al. MDM2 antagonists overcome intrinsic resistance to CDK4/6 inhibition by inducing p21. Sci. Transl Med. 11, eaav7171 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Ruhland, M. K. et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat. Commun. 7, 11762 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Guan, X. et al. Stromal senescence by prolonged CDK4/6 inhibition potentiates tumor growth. Mol. Cancer Res. 15, 237–249 (2017).

    Article  CAS  PubMed  Google Scholar 

  126. Laroche-Clary, A. et al. Combined targeting of MDM2 and CDK4 is synergistic in dedifferentiated liposarcomas. J. Hematol. Oncol. 10, 123 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Zhang, J. et al. Cyclin D–CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553, 91–95 (2018). This work is the first demonstration that CDK4 promotes proteasomal degradation of PDL1, which suggests that immune checkpoint blockers specific for PD1 or PDL1 could be potential therapeutic partners for CDK4/CDK6 inhibitors.

    Article  CAS  PubMed  Google Scholar 

  128. Galluzzi, L., Chan, T. A., Kroemer, G., Wolchok, J. D. & Lopez-Soto, A. The hallmarks of successful anticancer immunotherapy. Sci. Transl Med. 10, eaat7807 (2018).

    Article  PubMed  CAS  Google Scholar 

  129. Jin, X. et al. Phosphorylated RB promotes cancer immunity by inhibiting NF-κB activation and PD-L1 expression. Mol. Cell 73, 22–35 e26 (2019). This study documents the ability of phosphorylated RB1 to physically interact with and hence inhibit NF-κB, resulting in suppression of CD274 transcription.

    Article  CAS  PubMed  Google Scholar 

  130. Valenzuela, C. A. et al. SASP-dependent interactions between senescent cells and platelets modulate migration and invasion of cancer cells. Int. J. Mol. Sci. 20, E5292 (2019).

    Article  PubMed  CAS  Google Scholar 

  131. Kanikarla-Marie, P. et al. Platelet metabolism and other targeted drugs; potential impact on immunotherapy. Front. Oncol. 8, 107 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Rolfes, V. et al. PD-L1 is expressed on human platelets and is affected by immune checkpoint therapy. Oncotarget 9, 27460–27470 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Cingoz, O. & Goff, S. P. Cyclin-dependent kinase activity is required for type I interferon production. Proc. Natl Acad. Sci. USA 115, E2950–E2959 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Buque, A. & Galluzzi, L. Modeling tumor immunology and immunotherapy in mice. Trends Cancer 4, 599–601 (2018).

    Article  CAS  PubMed  Google Scholar 

  135. Acevedo, M. et al. A CDK4/6-dependent epigenetic mechanism protects cancer cells from PML-induced senescence. Cancer Res. 76, 3252–3264 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Baksh, S. et al. NFATc2-mediated repression of cyclin-dependent kinase 4 expression. Mol. Cell 10, 1071–1081 (2002).

    Article  CAS  PubMed  Google Scholar 

  137. Gelbert, L. M. et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest. N. Drugs 32, 825–837 (2014).

    Article  CAS  Google Scholar 

  138. Chen, P. et al. Spectrum and degree of CDK drug interactions predicts clinical performance. Mol. Cancer Ther. 15, 2273–2281 (2016).

    Article  PubMed  CAS  Google Scholar 

  139. Toogood, P. L. et al. Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J. Med. Chem. 48, 2388–2406 (2005).

    Article  CAS  PubMed  Google Scholar 

  140. Hsieh, F. S. et al. Palbociclib induces activation of AMPK and inhibits hepatocellular carcinoma in a CDK4/6-independent manner. Mol. Oncol. 11, 1035–1049 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Bates, S. et al. CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene 9, 71–79 (1994).

    CAS  PubMed  Google Scholar 

  142. Tsai, L. H., Harlow, E. & Meyerson, M. Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature 353, 174–177 (1991).

    Article  CAS  PubMed  Google Scholar 

  143. Koff, A. et al. Human cyclin E, a new cyclin that interacts with two members of the CDC2 gene family. Cell 66, 1217–1228 (1991).

    Article  CAS  PubMed  Google Scholar 

  144. Kato, J., Matsushime, H., Hiebert, S. W., Ewen, M. E. & Sherr, C. J. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes. Dev. 7, 331–342 (1993).

    Article  CAS  PubMed  Google Scholar 

  145. van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050–2054 (1993).

    Article  PubMed  Google Scholar 

  146. Fang, F. & Newport, J. W. Evidence that the G1–S and G2–M transitions are controlled by different cdc2 proteins in higher eukaryotes. Cell 66, 731–742 (1991).

    Article  CAS  PubMed  Google Scholar 

  147. King, R. W. et al. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279–288 (1995).

    Article  CAS  PubMed  Google Scholar 

  148. Quelle, D. E. et al. Cloning and characterization of murine p16INK4a and p15INK4b genes. Oncogene 11, 635–645 (1995).

    CAS  PubMed  Google Scholar 

  149. Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704–707 (1993).

    Article  CAS  PubMed  Google Scholar 

  150. Guan, K. L. et al. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes. Dev. 8, 2939–2952 (1994).

    Article  CAS  PubMed  Google Scholar 

  151. Okuda, T. et al. Molecular cloning, expression pattern, and chromosomal localization of human CDKN2D/INK4d, an inhibitor of cyclin D-dependent kinases. Genomics 29, 623–630 (1995).

    Article  CAS  PubMed  Google Scholar 

  152. Harper, J. W., Adami, G. R., Wei, N., Keyomarsi, K. & Elledge, S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75, 805–816 (1993).

    Article  CAS  PubMed  Google Scholar 

  153. Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59–66 (1994).

    Article  CAS  PubMed  Google Scholar 

  154. Lee, M. H., Reynisdottir, I. & Massague, J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes. Dev. 9, 639–649 (1995).

    Article  CAS  PubMed  Google Scholar 

  155. Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25, 486–541 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Wang, E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res. 55, 2284–2292 (1995).

    CAS  PubMed  Google Scholar 

  157. Zhu, Y. et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell 15, 428–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Di Leonardo, A., Linke, S. P., Clarkin, K. & Wahl, G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes. Dev. 8, 2540–2551 (1994).

    Article  PubMed  Google Scholar 

  159. Alcorta, D. A. et al. Involvement of the cyclin-dependent kinase inhibitor p16INK4a in replicative senescence of normal human fibroblasts. Proc. Natl Acad. Sci. USA 93, 13742–13747 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.P., S.C.F. and L.G. are supported by the 2019 Laura Ziskin Prize in Translational Research (no. ZP-6177) from the Stand Up to Cancer initiative. S.C.-K. and L.G. are supported by a Mantle Cell Lymphoma Research Initiative grant from the Leukemia and Lymphoma Society. S.C.-K. is further supported by a P01 grant (no. CA214274) from the National Institutes of Health/National Cancer Institute. L.G. is further supported by a Breakthrough Level 2 grant from the US Department of Defense, Breast Cancer Research Program (no. BC180476P1), a start-up grant from the Department of Radiation Oncology at Weill Cornell Medicine (New York, USA), a Rapid Response Grant from the Functional Genomics Initiative (New York, USA), industrial collaborations with Lytix (Oslo, Norway) and Phosplatin (New York, USA), and donations from Phosplatin (New York, USA), the Luke Heller TECPR2 Foundation (Boston, USA) and Sotio a.s. (Prague, Czech Republic).

Author information

Authors and Affiliations

Authors

Contributions

G.P. and L.G. conceived the idea for the Review and wrote the first version of the manuscript, with constructive input from S.C.F. and S.C.-K. G.P. prepared display items under the supervision of L.G. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Lorenzo Galluzzi.

Ethics declarations

Competing interests

L.G. received consulting fees from OmniSEQ, Astra Zeneca, Inzen and the Luke Heller TECPR2 Foundation, and is a member of the Scientific Advisory Committee of Boehringer Ingelheim, The Longevity Labs and OmniSEQ. G.P., S.C.F. and S.C.-K. declare no competing interests.

Additional information

Peer review information

Nature Reviews Immunology thanks A. Wells and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Related links

ClinicalTrials.gov: http://www.clinicaltrials.gov

Glossary

Retinoblastoma 1

(RB1). A multifunctional tumour suppressor protein that is dysfunctional in most human cancers. Biallelic germline loss of RB1 is associated with hereditary paediatric retinoblastoma.

Hormone receptor-positive breast cancer

A common form of breast cancer characterized by the expression of oestrogen receptor 1 and/or progesterone receptor.

13q14 deletion

A frequent genomic alteration, consisting of the deletion of a portion of the long arm of chromosome 13 that includes the retinoblastoma 1 (RB1) gene.

Type 1 diabetes

An autoimmune form of glucose intolerance that originates from the immunological destruction of insulin-producing pancreatic β-cells and, hence, can be treated with insulin administration.

Notch signalling

A highly conserved signal transduction pathway that regulates the differentiation of multiple cell types.

Histone deacetylase

(HDAC). One of multiple enzymes that repress transcriptional programmes by removing functional acetyl groups from histones.

Mediator complex

A tetrameric cyclin-dependent kinase 8 (CDK8)-containing or CDK19-containing complex that is involved in transcriptional regulation.

Senescence surveillance

An immunological mechanism that ensures the natural killer cell-dependent and T cell-dependent elimination of potentially pathogenic senescent cells.

Hepatic stellate cells

Liver-resident stromal cells that are largely found in proximity of the vasculature and contribute to hepatic fibrosis and carcinogenesis.

The Cancer Genome Atlas

A large, publicly available patient data set containing mutational, transcriptional and pathophysiological data from multiple independent cohorts of patients with cancer.

Mitogen-activated protein kinase

(MAPK). The generic name commonly used to indicate one or more members of a large serine/threonine protein kinase family involved in numerous cellular functions, including proliferation.

Patient-derived xenografts

Patient-derived tumour samples implanted into immunologically compatible mice for investigational purposes.

Endogenous retroviral elements

DNA sequences encoded (but normally not expressed) by the genome of multiple mammals (including humans and mice) that resemble modern retroviruses.

Micronucleation

The accumulation of small nuclear structures containing one or a few chromosomes resulting from one or more rounds of defective mitosis.

Viral mimicry

The state whereby mammalian cells that are not exposed to an exogenous viral infection activate one or more pathways involved in viral resistance, including antigen presentation and interferon signalling.

Senolytic

An agent that specifically kills senescent cells.

Autophagy

A conserved mechanism through which all eukaryotic cells can dispose of superfluous or potentially toxic cytosolic material via lysosomal degradation.

Cytokine release syndrome

A life-threatening condition characterized by systemic inflammation that can arise as a complication of some diseases, or as an adverse effect of some immunotherapeutic agents.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petroni, G., Formenti, S.C., Chen-Kiang, S. et al. Immunomodulation by anticancer cell cycle inhibitors. Nat Rev Immunol 20, 669–679 (2020). https://doi.org/10.1038/s41577-020-0300-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-020-0300-y

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer