Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene regulatory network inference in the era of single-cell multi-omics

Abstract

The interplay between chromatin, transcription factors and genes generates complex regulatory circuits that can be represented as gene regulatory networks (GRNs). The study of GRNs is useful to understand how cellular identity is established, maintained and disrupted in disease. GRNs can be inferred from experimental data — historically, bulk omics data — and/or from the literature. The advent of single-cell multi-omics technologies has led to the development of novel computational methods that leverage genomic, transcriptomic and chromatin accessibility information to infer GRNs at an unprecedented resolution. Here, we review the key principles of inferring GRNs that encompass transcription factor–gene interactions from transcriptomics and chromatin accessibility data. We focus on the comparison and classification of methods that use single-cell multimodal data. We highlight challenges in GRN inference, in particular with respect to benchmarking, and potential further developments using additional data modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principles of gene regulatory networks.
Fig. 2: Flow chart of methods for gene regulatory network inference.
Fig. 3: Applications of gene regulatory networks.
Fig. 4: Experimental assessment of gene regulatory networks.

Similar content being viewed by others

References

  1. Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol. Cell 83, 373–392 (2023). This extensive review covers the molecular basis of the cis-regulatory code.

    Article  CAS  PubMed  Google Scholar 

  2. Zaret, K. S. & Carroll, J. S. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25, 2227–2241 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lai, X., Wolkenhauer, O. & Vera, J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res. 44, 6019–6035 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Du, J.-X. et al. Splicing factors: insights into their regulatory network in alternative splicing in cancer. Cancer Lett. 501, 83–104 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Statello, L., Guo, C.-J., Chen, L.-L. & Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 22, 96–118 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Carthew, R. W. Gene regulation and cellular metabolism: an essential partnership. Trends Genet. 37, 389–400 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Davidson, E. H. & Erwin, D. H. Gene regulatory networks and the evolution of animal body plans. Science 311, 796–800 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Su, E. Y., Spangler, A., Bian, Q., Kasamoto, J. Y. & Cahan, P. Reconstruction of dynamic regulatory networks reveals signaling-induced topology changes associated with germ layer specification. Stem Cell Rep. 17, 427–442 (2022).

    Article  CAS  Google Scholar 

  9. Claringbould, A. & Zaugg, J. B. Enhancers in disease: molecular basis and emerging treatment strategies. Trends Mol. Med. 27, 1060–1073 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Jacob, F. & Monod, J. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3, 318–356 (1961). This seminal study delineates a gene regulatory system.

    Article  CAS  PubMed  Google Scholar 

  11. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Davidson, E. H. et al. A genomic regulatory network for development. Science 295, 1669–1678 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Snyder, M. & Gallagher, J. E. G. Systems biology from a yeast omics perspective. FEBS Lett. 583, 3895–3899 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380–D386 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-Rodriguez, J. Benchmark and integration of resources for the estimation of human transcription factor activities. Genome Res. 29, 1363–1375 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu, Z.-P., Wu, C., Miao, H. & Wu, H. RegNetwork: an integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database 2015, bav095 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Keenan, A. B. et al. ChEA3: transcription factor enrichment analysis by orthogonal omics integration. Nucleic Acids Res. 47, W212–W224 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Margolin, A. A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinforma. 7, S7 (2006).

    Article  Google Scholar 

  19. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559 (2008).

    Article  Google Scholar 

  20. Huynh-Thu, V. A., Irrthum, A., Wehenkel, L. & Geurts, P. Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5, e12776 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fiers, M. W. E. J. et al. Mapping gene regulatory networks from single-cell omics data. Brief. Funct. Genomics 17, 246–254 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cha, J. & Lee, I. Single-cell network biology for resolving cellular heterogeneity in human diseases. Exp. Mol. Med. 52, 1798–1808 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Klein, A. M. et al. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu, L. et al. Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity. Nat. Commun. 10, 470 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116.e20 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mercatelli, D., Scalambra, L., Triboli, L., Ray, F. & Giorgi, F. M. Gene regulatory network inference resources: a practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194430 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Moerman, T. et al. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35, 2159–2161 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Lambert, S. A. et al. The human transcription factors. Cell 175, 598–599 (2018).

    Article  CAS  PubMed  Google Scholar 

  32. Holland, C. H. et al. Robustness and applicability of transcription factor and pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marbach, D. et al. Wisdom of crowds for robust gene network inference. Nat. Methods 9, 796–804 (2012). This work is a crowdsourced benchmark for GRN inference from bulk transcriptomics data.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Pratapa, A., Jalihal, A. P., Law, J. N., Bharadwaj, A. & Murali, T. M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods 17, 147–154 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McCalla, S. G. et al. Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data. G3 3, jkad004 (2023).

    Article  Google Scholar 

  36. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in vivo protein–DNA interactions. Science 316, 1497–1502 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Kaya-Okur, H. S. et al. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 10, 1930 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lee, T. I. et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298, 799–804 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Grosselin, K. et al. High-throughput single-cell ChIP-seq identifies heterogeneity of chromatin states in breast cancer. Nat. Genet. 51, 1060–1066 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bartosovic, M. & Castelo-Branco, G. Multimodal chromatin profiling using nanobody-based single-cell CUT&Tag. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01535-4 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Qin, J., Hu, Y., Xu, F., Yalamanchili, H. K. & Wang, J. Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods 67, 294–303 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelly, T. K. et al. Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules. Genome Res. 22, 2497–2506 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Minnoye, L. et al. Chromatin accessibility profiling methods. Nat. Rev. Methods Prim. 1, 1–24 (2021).

    Google Scholar 

  46. Pranzatelli, T. J. F., Michael, D. G. & Chiorini, J. A. ATAC2GRN: optimized ATAC-seq and DNase1-seq pipelines for rapid and accurate genome regulatory network inference. BMC Genom. 19, 563 (2018).

    Article  Google Scholar 

  47. Qin, Q. et al. Lisa: inferring transcriptional regulators through integrative modeling of public chromatin accessibility and ChIP-seq data. Genome Biol. 21, 32 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sonawane, A. R., DeMeo, D. L., Quackenbush, J. & Glass, K. Constructing gene regulatory networks using epigenetic data. NPJ Syst. Biol. Appl. 7, 45 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tabula Sapiens Consortium et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  Google Scholar 

  50. Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods 14, 1083–1086 (2017). This work presents the first bespoke method to infer GRNs at the single-cell level, introducing the use of TF binding motif information for the estimation of GRNs.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Herring, C. A., Chen, B., McKinley, E. T. & Lau, K. S. Single-cell computational strategies for lineage reconstruction in tissue systems. Cell Mol. Gastroenterol. Hepatol. 5, 539–548 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wagner, A., Regev, A. & Yosef, N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Specht, A. T. & Li, J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics 33, 764–766 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Papili Gao, N., Ud-Dean, S. M. M., Gandrillon, O. & Gunawan, R. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics 34, 258–266 (2018).

    Article  PubMed  Google Scholar 

  55. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015). This paper introduces single-cell assay for transpose-accessible chromatin (scATAC) technology.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ramirez, R. N. et al. Dynamic gene regulatory networks of human myeloid differentiation. Cell Syst. 4, 416–429.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Starks, R. R., Biswas, A., Jain, A. & Tuteja, G. Combined analysis of dissimilar promoter accessibility and gene expression profiles identifies tissue-specific genes and actively repressed networks. Epigenetics Chromatin 12, 16 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Johnson, J. S. et al. A comprehensive map of the monocyte-derived dendritic cell transcriptional network engaged upon innate sensing of HIV. Cell Rep. 30, 914–931.e9 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Argelaguet, R., Cuomo, A. S. E., Stegle, O. & Marioni, J. C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 39, 1202–1215 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Ma, A. et al. Single-cell biological network inference using a heterogeneous graph transformer. Nat. Commun. 14, 964 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kartha, V. K. et al. Functional inference of gene regulation using single-cell multi-omics. Cell Genom. 2, 100166 (2022). This paper introduces FigR, which has a novel integration strategy for scRNA-seq and scATAC-seq data that can enhance GRN inference.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cao, Z.-J. & Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 40, 1458–1466 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jin, S., Zhang, L. & Nie, Q. scAI: an unsupervised approach for the integrative analysis of parallel single-cell transcriptomic and epigenomic profiles. Genome Biol. 21, 25 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jansen, C. et al. Building gene regulatory networks from scATAC-seq and scRNA-seq using linked self organizing maps. PLoS Comput. Biol. 15, e1006555 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  67. González-Blas, C. B. et al. SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks. Preprint at bioRxiv https://doi.org/10.1101/2022.08.19.504505 (2022). This study presents a large, curated collection of TF binding motifs and introduces a novel GRN inference method.

  68. Heinz, S. et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol. Cell 38, 576–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gasperini, M. et al. A genome-wide framework for mapping gene regulation via cellular genetic screens. Cell 176, 1516 (2019).

    Article  CAS  PubMed  Google Scholar 

  70. Zuin, J. et al. Nonlinear control of transcription through enhancer–promoter interactions. Nature 604, 571–577 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kamal, A. et al. GRaNIE and GRaNPA: inference and evaluation of enhancer-mediated gene regulatory networks. Mol. Syst. Biol. https://doi.org/10.15252/msb.202311627 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhang, L., Zhang, J. & Nie, Q. DIRECT-NET: an efficient method to discover cis-regulatory elements and construct regulatory networks from single-cell multiomics data. Sci. Adv. 8, eabl7393 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Duren, Z., Chen, X., Jiang, R., Wang, Y. & Wong, W. H. Modeling gene regulation from paired expression and chromatin accessibility data. Proc. Natl Acad. Sci. USA 114, E4914–E4923 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Burdziak, C., Azizi, E., Prabhakaran, S. & Pe’er, D. A nonparametric multi-view model for estimating cell type-specific gene regulatory networks. Preprint at arXiv https://doi.org/10.48550/arXiv.1902.08138 (2019).

  75. Bachireddy, P. et al. Mapping the evolution of T cell states during response and resistance to adoptive cellular therapy. Cell Rep. 37, 109992 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kamimoto, K. et al. Dissecting cell identity via network inference and in silico gene perturbation. Nature 614, 742–751 (2023). This work presents a novel GRN inference method from scRNA-seq and scATAC-seq data that also introduces an in silico TF perturbation strategy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Skok Gibbs, C. et al. High-performance single-cell gene regulatory network inference at scale: the Inferelator 3.0. Bioinformatics 38, 2519–2528 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Fleck, J. S. et al. Inferring and perturbing cell fate regulomes in human brain organoids. Nature https://doi.org/10.1038/s41586-022-05279-8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Li, Z., Nagai, J. S., Kuppe, C., Kramann, R. & Costa, I. G. scMEGA: single-cell multi-omic enhancer-based gene regulatory network inference. Bioinform. Adv. 3, vbad003 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Jiang, J. et al. IReNA: integrated regulatory network analysis of single-cell transcriptomes and chromatin accessibility profiles. iScience 25, 105359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, L. et al. Dictys: dynamic gene regulatory network dissects developmental continuum with single-cell multi-omics. Preprint at bioRxiv https://doi.org/10.1101/2022.09.14.508036 (2022).

  82. Zhang, S. et al. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets. Nat. Commun. 14, 3064 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Duren, Z., Chen, X., Xin, J., Wang, Y. & Wong, W. H. Time course regulatory analysis based on paired expression and chromatin accessibility data. Genome Res. 30, 622–634 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Xu, Q. et al. ANANSE: an enhancer network-based computational approach for predicting key transcription factors in cell fate determination. Nucleic Acids Res. 49, 7966–7985 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Duren, Z. et al. sc-compReg enables the comparison of gene regulatory networks between conditions using single-cell data. Nat. Commun. 12, 4763 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kuppe, C. et al. Spatial multi-omic map of human myocardial infarction. Nature 608, 766–777 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Argelaguet, R. et al. Decoding gene regulation in the mouse embryo using single-cell multi-omics. Preprint at bioRxiv https://doi.org/10.1101/2022.06.15.496239 (2022).

  88. Zeng, W. et al. DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data. Nat. Commun. 10, 4613 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Liberzon, A. et al. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anderson, A. G. et al. Single nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer’s disease-specific cis-regulatory elements. Cell Genomics 3, 100263 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thompson, D., Regev, A. & Roy, S. Comparative analysis of gene regulatory networks: from network reconstruction to evolution. Annu. Rev. Cell Dev. Biol. 31, 399–428 (2015).

    Article  CAS  PubMed  Google Scholar 

  92. Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lou, S. et al. TopicNet: a framework for measuring transcriptional regulatory network change. Bioinformatics 36, i474–i481 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Alvarez, M. J. et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat. Genet. 48, 838–847 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Badia-i-Mompel, P. et al. decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinforma. Adv. 2, vbac016 (2022).

    Article  Google Scholar 

  96. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Garcia-Alonso, L. et al. Transcription factor activities enhance markers of drug sensitivity in cancer. Cancer Res. 78, 769–780 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. Walsh, L. A. et al. An integrated systems biology approach identifies TRIM25 as a key determinant of breast cancer metastasis. Cell Rep. 20, 1623–1640 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Guan, X. et al. Androgen receptor activity in T cells limits checkpoint blockade efficacy. Nature 606, 791–796 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  102. de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M. & Vogel, C. Global signatures of protein and mRNA expression levels. Mol. Biosyst. 5, 1512–1526 (2009).

    PubMed  Google Scholar 

  103. Chung, H. et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods 18, 1204–1212 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bennett, H. M., Stephenson, W., Rose, C. M. & Darmanis, S. Single-cell proteomics enabled by next-generation sequencing or mass spectrometry. Nat. Methods 20, 363–374 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Uhlén, M. et al. A human protein atlas for normal and cancer tissues based on antibody proteomics. Mol. Cell. Proteom. 4, 1920–1932 (2005).

    Article  Google Scholar 

  106. Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419 (2015).

    Article  PubMed  Google Scholar 

  107. Weidemüller, P., Kholmatov, M., Petsalaki, E. & Zaugg, J. B. Transcription factors: bridge between cell signaling and gene regulation. Proteomics 21, e2000034 (2021).

    Article  PubMed  Google Scholar 

  108. Sousa, A. et al. Pan-cancer landscape of protein activities identifies drivers of signalling dysregulation and patient survival. Mol. Syst. Biol. 19, e10631 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Inukai, S., Kock, K. H. & Bulyk, M. L. Transcription factor–DNA binding: beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110–119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Oki, S. et al. ChIP-Atlas: a data-mining suite powered by full integration of public ChIP-seq data. EMBO Rep. 19, e46255 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 590, 300–307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Puig, R. R., Boddie, P., Khan, A., Castro-Mondragon, J. A. & Mathelier, A. UniBind: maps of high-confidence direct TF–DNA interactions across nine species. BMC Genom. 22, 482 (2021).

    Article  CAS  Google Scholar 

  113. Krebs, A. R. et al. Genome-wide single-molecule footprinting reveals high RNA polymerase II turnover at paused promoters. Mol. Cell 67, 411–422.e4 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sönmezer, C. et al. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell 81, 255–267.e6 (2021).

    Article  PubMed  Google Scholar 

  115. Gasperini, M., Tome, J. M. & Shendure, J. Towards a comprehensive catalogue of validated and target-linked human enhancers. Nat. Rev. Genet. 21, 292–310 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ibarra, I. L. et al. Mechanistic insights into transcription factor cooperativity and its impact on protein–phenotype interactions. Nat. Commun. 11, 124 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jolma, A. et al. DNA-dependent formation of transcription factor pairs alters their binding specificity. Nature 527, 384–388 (2015).

    Article  CAS  PubMed  Google Scholar 

  118. Lu, H. et al. Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal. Transduct. Target. Ther. 5, 1–23 (2020).

    Article  Google Scholar 

  119. Orchard, S. et al. The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases. Nucleic Acids Res. 42, D358–D363 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Patwardhan, R. P. et al. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat. Biotechnol. 27, 1173–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ren, X. et al. Parallel characterization of cis-regulatory elements for multiple genes using CRISPRpath. Sci. Adv. 7, eabi4360 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

    Article  Google Scholar 

  123. Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hardison, R. C., Oeltjen, J. & Miller, W. Long human–mouse sequence alignments reveal novel regulatory elements: a reason to sequence the mouse genome. Genome Res. 7, 959–966 (1997).

    Article  CAS  PubMed  Google Scholar 

  125. Pennacchio, L. A. et al. In vivo enhancer analysis of human conserved non-coding sequences. Nature 444, 499–502 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Wang, S. K. et al. Single-cell multiome of the human retina and deep learning nominate causal variants in complex eye diseases. Cell Genom. 2, 100164 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lieberman-Aiden, E. et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dixon, J. R. et al. Chromatin architecture reorganization during stem cell differentiation. Nature 518, 331–336 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen, H. et al. Dynamic interplay between enhancer–promoter topology and gene activity. Nat. Genet. 50, 1296–1303 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fukaya, T., Lim, B. & Levine, M. Enhancer control of transcriptional bursting. Cell 166, 358–368 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Xie, S., Duan, J., Li, B., Zhou, P. & Hon, G. C. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66, 285–299.e5 (2017).

    Article  CAS  PubMed  Google Scholar 

  134. GTEx Consortium et al. Genetic effects on gene expression across human tissues. Nature 550, 204–213 (2017).

    Article  PubMed Central  Google Scholar 

  135. van der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Kerimov, N. et al. A compendium of uniformly processed human gene expression and splicing quantitative trait loci. Nat. Genet. 53, 1290–1299 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Dixit, A. et al. Perturb-Seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167, 1853–1866.e17 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Datlinger, P. et al. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14, 297–301 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Schraivogel, D. et al. Targeted Perturb-seq enables genome-scale genetic screens in single cells. Nat. Methods 17, 629–635 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ng, A. H. M. et al. A comprehensive library of human transcription factors for cell fate engineering. Nat. Biotechnol. 39, 510–519 (2021).

    Article  CAS  PubMed  Google Scholar 

  141. Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209–229.e26 (2023).

    Article  CAS  PubMed  Google Scholar 

  142. Littman, R., Wang, N., Peng, C. & Yang, X. SCING: single cell integrative gene regulatory network inference elucidates robust, interpretable gene regulatory networks. Preprint at bioRxiv https://doi.org/10.1101/2022.09.07.506959 (2022).

  143. Yurkovsky, E. & Nachman, I. Event timing at the single-cell level. Brief. Funct. Genomics 12, 90–98 (2013).

    Article  CAS  PubMed  Google Scholar 

  144. Co, A. D., Lagomarsino, M. C., Caselle, M. & Osella, M. Stochastic timing in gene expression for simple regulatory strategies. Nucleic Acids Res. 45, 1069–1078 (2017).

    Article  PubMed  Google Scholar 

  145. Lee, M. Y. Y., Kaestner, K. H. & Li, M. Benchmarking algorithms for joint integration of unpaired and paired single-cell RNA-seq and ATAC-seq data. Preprint at bioRxiv https://doi.org/10.1101/2023.02.01.526609 (2023).

  146. Squair, J. W. et al. Confronting false discoveries in single-cell differential expression. Nat. Commun. 12, 5692 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Kuijjer, M. L., Tung, M. G., Yuan, G., Quackenbush, J. & Glass, K. Estimating sample-specific regulatory networks. iScience 14, 226–240 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Luecken, M. D. & Theis, F. J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15, e8746 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Yan, F., Powell, D. R., Curtis, D. J. & Wong, N. C. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 21, 22 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. https://doi.org/10.1038/s41576-023-00580-2 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Blencowe, M. et al. Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerg. Top. Life Sci. 3, 379–398 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lähnemann, D. et al. Eleven grand challenges in single-cell data science. Genome Biol. 21, 31 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729.e27 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Bravo González-Blas, C. et al. cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat. Methods 16, 397–400 (2019).

    Article  PubMed  Google Scholar 

  155. Li, Z. et al. Chromatin-accessibility estimation from single-cell ATAC-seq data with scOpen. Nat. Commun. 12, 6386 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Ly, L.-H. & Vingron, M. Effect of imputation on gene network reconstruction from single-cell RNA-seq data. Patterns 3, 100414 (2022).

    Article  CAS  PubMed  Google Scholar 

  157. Baran, Y. et al. MetaCell: analysis of single-cell RNA-seq data using Knn graph partitions. Genome Biol. 20, 206 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Persad, S. et al. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01716-9 (2023).

    Article  PubMed  Google Scholar 

  159. Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  160. Miao, Z. & Kim, J. Is single nucleus ATAC-seq accessibility a qualitative or quantitative measurement? Preprint at bioRxiv https://doi.org/10.1101/2022.04.20.488960 (2022).

  161. Martens, L. D., Fischer, D. S., Theis, F. J. & Gagneur, J. Modeling fragment counts improves single-cell ATAC-seq analysis. Preprint at bioRxiv https://doi.org/10.1101/2022.05.04.490536 (2022).

  162. Stuart, T., Srivastava, A., Madad, S., Lareau, C. A. & Satija, R. Single-cell chromatin state analysis with Signac. Nat. Methods 18, 1333–1341 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Granja, J. M. et al. ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis. Nat. Genet. 53, 403–411 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Bahr, C. et al. Author Correction: a Myc enhancer cluster regulates normal and leukaemic haematopoietic stem cell hierarchies. Nature 558, E4 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Monahan, K., Horta, A. & Lomvardas, S. LHX2- and LDB1-mediated trans interactions regulate olfactory receptor choice. Nature 565, 448–453 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chen, X. et al. Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data. Preprint at medRxiv https://doi.org/10.1101/2022.12.06.22282077 (2022).

  167. Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zhang, R., Zhou, T. & Ma, J. Multiscale and integrative single-cell Hi-C analysis with Higashi. Nat. Biotechnol. 40, 254–261 (2022).

    Article  CAS  PubMed  Google Scholar 

  170. Yu, M. & Ren, B. The three-dimensional organization of mammalian genomes. Annu. Rev. Cell Dev. Biol. 33, 265–289 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Marti-Renom, M. A. et al. Challenges and guidelines toward 4D nucleome data and model standards. Nat. Genet. 50, 1352–1358 (2018).

    Article  CAS  PubMed  Google Scholar 

  172. Rossini, R., Kumar, V., Mathelier, A., Rognes, T. & Paulsen, J. MoDLE: high-performance stochastic modeling of DNA loop extrusion interactions. Genome Biol. 23, 247 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Tan, J. et al. Cell-type-specific prediction of 3D chromatin organization enables high-throughput in silico genetic screening. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01612-8 (2023). This work demonstrates that the prediction of Hi-C data from chromatin accessibility is a promising strategy to replace the use of genomic distance thresholds.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Yuan, H. & Kelley, D. R. scBasset: sequence-based modeling of single-cell ATAC-seq using convolutional neural networks. Nat. Methods 19, 1088–1096 (2022). This work introduces the concept of in silico mutagenesis to contextualize TF binding motifs to cell types.

    Article  CAS  PubMed  Google Scholar 

  175. Taskiran, I. I., Spanier, K. I., Christiaens, V., Mauduit, D. & Aerts, S. Cell type directed design of synthetic enhancers. Preprint at bioRxiv https://doi.org/10.1101/2022.07.26.501466 (2022).

  176. Lundberg, S. M. & Lee, S.-I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 30, 4765–4774 (2017).

    Google Scholar 

  177. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    Article  CAS  Google Scholar 

  179. Neikes, H. K. et al. Quantification of absolute transcription factor binding affinities in the native chromatin context using BANC-seq. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-01715-w (2023).

    Article  PubMed  Google Scholar 

  180. Xu, W. et al. ISSAAC-seq enables sensitive and flexible multimodal profiling of chromatin accessibility and gene expression in single cells. Nat. Methods 19, 1243–1249 (2022).

    Article  CAS  PubMed  Google Scholar 

  181. Ogbeide, S., Giannese, F., Mincarelli, L. & Macaulay, I. C. Into the multiverse: advances in single-cell multiomic profiling. Trends Genet. 38, 831–843 (2022).

    Article  CAS  PubMed  Google Scholar 

  182. Chen, A. F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 19, 547–553 (2022).

    Article  CAS  PubMed  Google Scholar 

  183. Yan, R., Cheng, X. & Guo, F. Protocol for scChaRM-seq: simultaneous profiling of gene expression, DNA methylation, and chromatin accessibility in single cells. STAR Protoc. 2, 100972 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hansen, T. J. & Hodges, E. ATAC-STARR-seq reveals transcription factor-bound activators and silencers within chromatin-accessible regions of the human genome. Genome Res. 32, 1529–1541 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Blair, J. D. et al. Phospho-seq: integrated, multi-modal profiling of intracellular protein dynamics in single cells. Preprint at bioRxiv https://doi.org/10.1101/2023.03.27.534442 (2023).

  187. Uffelmann, E. et al. Genome-wide association studies. Nat. Rev. Methods Prim. 1, 1–21 (2021).

    Google Scholar 

  188. Tedesco, M. et al. Chromatin velocity reveals epigenetic dynamics by single-cell profiling of heterochromatin and euchromatin. Nat. Biotechnol. 40, 235–244 (2022).

    Article  CAS  PubMed  Google Scholar 

  189. Jerkovic, I. & Cavalli, G. Understanding 3D genome organization by multidisciplinary methods. Nat. Rev. Mol. Cell Biol. 22, 511–528 (2021).

    Article  CAS  PubMed  Google Scholar 

  190. Hsieh, T.-H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhang, Y. et al. Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus. Nat. Commun. 9, 750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Lance, C. et al. Multimodal single cell data integration challenge: Results and lessons learned. In Proc. NeurIPS 2021 Competitions and Demonstrations Track (eds. Kiela, D., Ciccone, M. & Caputo, B.) Vol. 176, 162–176 (PMLR, 2022).

  193. Rappez, L. et al. SpaceM reveals metabolic states of single cells. Nat. Methods 18, 799–805 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Garrido-Rodriguez, M., Zirngibl, K., Ivanova, O., Lobentanzer, S. & Saez-Rodriguez, J. Integrating knowledge and omics to decipher mechanisms via large-scale models of signaling networks. Mol. Syst. Biol. 18, e11036 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Browaeys, R., Saelens, W. & Saeys, Y. NicheNet: modeling intercellular communication by linking ligands to target genes. Nat. Methods 17, 159–162 (2020).

    Article  CAS  PubMed  Google Scholar 

  196. Armingol, E., Officer, A., Harismendy, O. & Lewis, N. E. Deciphering cell–cell interactions and communication from gene expression. Nat. Rev. Genet. 22, 71–88 (2021).

    Article  CAS  PubMed  Google Scholar 

  197. Dimitrov, D. et al. Comparison of methods and resources for cell–cell communication inference from single-cell RNA-seq data. Nat. Commun. 13, 3224 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Tanevski, J., Flores, R. O. R., Gabor, A., Schapiro, D. & Saez-Rodriguez, J. Explainable multiview framework for dissecting spatial relationships from highly multiplexed data. Genome Biol. 23, 97 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Fischer, D. S., Schaar, A. C. & Theis, F. J. Modeling intercellular communication in tissues using spatial graphs of cells. Nat. Biotechnol. 41, 332–336 (2023).

    Article  CAS  PubMed  Google Scholar 

  200. Zhang, D. et al. Spatial epigenome-transcriptome co-profiling of mammalian tissues. Nature 616, 113–122 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Li, Z. et al. Applications of deep learning in understanding gene regulation. Cell Rep. Methods 3, 100384 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Miraldi, E. R. et al. Leveraging chromatin accessibility for transcriptional regulatory network inference in T helper 17 cells. Genome Res. 29, 449–463 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Alanis-Lobato, G. et al. MICA: a multi-omics method to predict gene regulatory networks in early human embryos. Preprint at bioRxiv https://doi.org/10.1101/2023.02.03.527081 (2023).

  205. Zenere, A., Rundquist, O., Gustafsson, M. & Altafini, C. Using high-throughput multi-omics data to investigate structural balance in elementary gene regulatory network motifs. Bioinformatics 38, 173–178 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Ledru, N. et al. Predicting regulators of epithelial cell state through regularized regression analysis of single cell multiomic sequencing. Preprint at bioRxiv https://doi.org/10.1101/2022.12.29.522232 (2022).

  207. Jiang, Y. et al. Nonparametric single-cell multiomic characterization of trio relationships between transcription factors, target genes, and cis-regulatory regions. Cell Syst. 13, 737–751.e4 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Zambelli, F., Pesole, G. & Pavesi, G. Motif discovery and transcription factor binding sites before and after the next-generation sequencing era. Brief. Bioinform 14, 225–237 (2013).

    Article  CAS  PubMed  Google Scholar 

  209. Weirauch, M. T. et al. Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158, 1431–1443 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Kheradpour, P. & Kellis, M. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res. 42, 2976–2987 (2014).

    Article  CAS  PubMed  Google Scholar 

  211. Kulakovskiy, I. V. et al. HOCOMOCO: towards a complete collection of transcription factor binding models for human and mouse via large-scale ChIP-seq analysis. Nucleic Acids Res. 46, D252–D259 (2018).

    Article  CAS  PubMed  Google Scholar 

  212. Castro-Mondragon, J. A. et al. JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 50, D165–D173 (2022).

    Article  CAS  PubMed  Google Scholar 

  213. Matys, V. TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 34, D108–D110 (2006).

    Article  CAS  PubMed  Google Scholar 

  214. Newburger, D. E. & Bulyk, M. L. UniPROBE: an online database of protein binding microarray data on protein–DNA interactions. Nucleic Acids Res. 37, D77–D82 (2009).

    Article  CAS  PubMed  Google Scholar 

  215. Grant, C. E., Bailey, T. L. & Noble, W. S. FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Bruse, N. & van Heeringen, S. J. GimmeMotifs: an analysis framework for transcription factor motif analysis. Preprint at bioRxiv https://doi.org/10.1101/474403 (2018).

  217. Korhonen, J. H., Palin, K., Taipale, J. & Ukkonen, E. Fast motif matching revisited: high-order PWMs, SNPs and indels. Bioinformatics 33, 514–521 (2017).

    Article  CAS  PubMed  Google Scholar 

  218. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomic data. Nat. Methods 14, 975–978 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Li, Z. et al. RGT: a toolbox for the integrative analysis of high throughput regulatory genomics data. BMC Bioinforma. 24, 79 (2023).

    Article  CAS  Google Scholar 

  220. Sherwood, R. I. et al. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat. Biotechnol. 32, 171–178 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Ambrosini, G., Groux, R. & Bucher, P. PWMScan: a fast tool for scanning entire genomes with a position-specific weight matrix. Bioinformatics 34, 2483–2484 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Janssens, J. et al. Decoding gene regulation in the fly brain. Nature 601, 630–636 (2022).

    Article  CAS  PubMed  Google Scholar 

  223. Wayman, J. A. et al. An atlas of gene regulatory networks for memory CD4+ T cells in youth and old age. Preprint at bioRxiv https://doi.org/10.1101/2023.03.07.531590 (2023).

Download references

Acknowledgements

The authors thank the developers of the methods discussed for the insightful feedback they provided. S.M.-D. was funded by the LiSyM-cancer network supported by the German Federal Ministry of Education and Research (BMBF; Funding number 031L0257B).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. P.B.-i-M., L.W., S.M.-D., R.O.R.F., R.A. and J.S.-R. contributed substantially to discussion of the content. P.B.-i-M., L.W., R.A. and J.S.-R. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Julio Saez-Rodriguez.

Ethics declarations

Competing interests

J.S.-R. reports funding from GSK, Pfizer and Sanofi, and consultant fees from Travere Therapeutics, Stadapharm and Astex Pharmaceutical. R.A. is an employee of Altos Labs. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks X. Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Assay for transpose-accessible chromatin with sequencing

(ATAC-seq). A technique to identify accessible DNA regions using hyperactive Tn5 transposase.

Betweenness centrality

A network centrality measure representing the number of appearances of a node in the shortest path of any other two nodes in the network.

Chromatin

A higher-order filamentous structure of DNA–protein complex that can exist in a condensed or uncondensed state.

Chromatin immunoprecipitation followed by sequencing

(ChIP-seq). A technique to analyse protein interactions with accessible DNA regions using chromatin immunoprecipitation followed by DNA sequencing.

cis-Regulatory elements

(CREs). Non-coding DNA regions that regulate the transcription of nearby genes upon binding of transcription factors (TFs). These include promoters, enhancers and silencers.

Cleavage under targets and tagmentation

(CUT&Tag). An antibody-based technique to analyse protein interactions with accessible DNA regions using transposase Tn5-mediated tagmentation followed by DNA sequencing.

Closeness centrality

A network centrality measure describing the average distance (length of the shortest path) of a node to all other nodes.

Degree centrality

A network centrality measure describing the number of edges (degree) of a node.

DNA binding sites

DNA sequences where transcription factors can bind to drive gene regulation, usually represented as nucleotide patterns known as motifs.

Eigenvector centrality

A network centrality measure describing the importance of a node in the network based on the centrality of its neighbours.

Enhancers

Distal regulatory DNA regions where transcription regulatory proteins can bind and activate transcription.

Expression quantitative trait loci

Genomic locations whose sequence variation is associated with changes in gene expression.

Gene regulatory networks

(GRNs). Network representations of molecular interactions between transcriptional regulators and target genes.

Genome-wide association studies

Analysis approach to identify frequently appearing single-nucleotide polymorphisms in the genome across a large cohort of individuals.

Hi-C

A technique to study chromatin conformation in three dimensions to identify genomic sequences that might be distal to each other in linear distance but closer in the 3D space.

Metacells

Groups of cells with a similar molecular profile that can be aggregated into a single omics profile to reduce sparsity of the data.

Motif matcher algorithms

String matching algorithms to detect transcription factor binding sites in DNA sequences.

Network centrality

A group of graph theory metrics that defines the relative importance of a node in a network.

Peaks

Regions of accessible chromatin that form the read-out of epigenetic sequencing techniques.

Promoter

A regulatory region in the genome located before the transcriptional start site of a gene.

Silencers

Distal regulatory DNA regions where transcription regulatory proteins can bind and repress transcription.

Single-nucleotide polymorphisms

(SNPs). DNA sequence variations caused by substitution of a single nucleotide in a specific position.

Topologically associating domains

Self-interacting genomic regions with high interaction frequency of sequences within the domain and relative isolation from neighbouring regions, forming a 3D chromosome structure.

Transcription factors

(TFs). Proteins that modify the rate of transcription by binding to specific DNA sequences.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badia-i-Mompel, P., Wessels, L., Müller-Dott, S. et al. Gene regulatory network inference in the era of single-cell multi-omics. Nat Rev Genet 24, 739–754 (2023). https://doi.org/10.1038/s41576-023-00618-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41576-023-00618-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing