Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metformin: update on mechanisms of action and repurposing potential

Abstract

Currently, metformin is the first-line medication to treat type 2 diabetes mellitus (T2DM) in most guidelines and is used daily by >200 million patients. Surprisingly, the mechanisms underlying its therapeutic action are complex and are still not fully understood. Early evidence highlighted the liver as the major organ involved in the effect of metformin on reducing blood levels of glucose. However, increasing evidence points towards other sites of action that might also have an important role, including the gastrointestinal tract, the gut microbial communities and the tissue-resident immune cells. At the molecular level, it seems that the mechanisms of action vary depending on the dose of metformin used and duration of treatment. Initial studies have shown that metformin targets hepatic mitochondria; however, the identification of a novel target at low concentrations of metformin at the lysosome surface might reveal a new mechanism of action. Based on the efficacy and safety records in T2DM, attention has been given to the repurposing of metformin as part of adjunct therapy for the treatment of cancer, age-related diseases, inflammatory diseases and COVID-19. In this Review, we highlight the latest advances in our understanding of the mechanisms of action of metformin and discuss potential emerging novel therapeutic uses.

Key points

  • The liver and gut are the main target organs for metformin.

  • Mitochondria and lysosomes are the organelle targets in the glucose-lowering effect of metformin.

  • Host–gut microbiota interactions contribute to metformin’s therapeutic effects.

  • Metformin has anti-inflammatory and immunomodulatory properties in various immune-related diseases through AMPK-dependent and AMPK-independent mechanisms involving both the innate and adaptive immune systems.

  • Metformin therapy in patients with type 2 diabetes mellitus enhances the release of GDF15, which might facilitate weight loss but is not required for the effect in reducing blood levels of glucose.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Proposed mechanisms for metformin-induced reductions in blood levels of glucose.
Fig. 2: Anti-inflammatory and immunomodulatory effects of metformin.

Similar content being viewed by others

References

  1. Schernthaner, G. & Schernthaner, G. H. The right place for metformin today. Diabetes Res. Clin. Pract. 159, 107946 (2020).

    Article  PubMed  Google Scholar 

  2. Ahmad, E. et al. Where does metformin stand in modern day management of type 2 diabetes? Pharmaceuticals 13, 427 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Triggle, C. R. et al. Metformin: Is it a drug for all reasons and diseases? Metabolism 133, 155223 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Bailey, C. J. Metformin: historical overview. Diabetologia 60, 1566–1576 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. Garcia, E. Y. Flumamine, a new synthetic analgesic and anti-flu drug. J. Philipp. Med. Assoc. 26, 287–293 (1950).

    CAS  PubMed  Google Scholar 

  6. Cummings, T. H., Magagnoli, J., Hardin, J. W. & Sutton, S. S. Patients with obesity and a history of metformin treatment have lower influenza mortality: a retrospective cohort study. Pathogens 11, 270 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Khunti, K. et al. Prescription of glucose-lowering therapies and risk of COVID-19 mortality in people with type 2 diabetes: a nationwide observational study in England. Lancet Diabetes Endocrinol. 9, 293–303 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bramante, C. T. et al. Metformin and risk of mortality in patients hospitalised with COVID-19: a retrospective cohort analysis. Lancet Healthy Longev. 2, e34–e41 (2021).

    Article  PubMed  Google Scholar 

  9. Lalau, J. D. et al. Metformin use is associated with a reduced risk of mortality in patients with diabetes hospitalised for COVID-19. Diabetes Metab. 47, 101216 (2021).

    Article  CAS  PubMed  Google Scholar 

  10. Flory, J. & Lipska, K. Metformin in 2019. JAMA 321, 1926–1927 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Foretz, M., Guigas, B., Bertrand, L., Pollak, M. & Viollet, B. Metformin: from mechanisms of action to therapies. Cell Metab. 20, 953–966 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Matthews, D. R. et al. Glycaemic durability of an early combination therapy with vildagliptin and metformin versus sequential metformin monotherapy in newly diagnosed type 2 diabetes (VERIFY): a 5-year, multicentre, randomised, double-blind trial. Lancet 394, 1519–1529 (2019).

    Article  CAS  PubMed  Google Scholar 

  13. Day, E. A. et al. Metformin-induced increases in GDF15 are important for suppressing appetite and promoting weight loss. Nat. Metab. 1, 1202–1208 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Coll, A. P. et al. GDF15 mediates the effects of metformin on body weight and energy balance. Nature 578, 444–448 (2020).

    Article  CAS  PubMed  Google Scholar 

  15. Newman, C. & Dunne, F. P. Metformin for pregnancy and beyond: the pros and cons. Diabet. Med. 39, e14700 (2022).

    Article  PubMed  Google Scholar 

  16. Verma, V. & Mehendale, A. M. A review on the use of metformin in pregnancy and its associated fetal outcomes. Cureus 14, e30039 (2022).

    PubMed  PubMed Central  Google Scholar 

  17. Nguyen, L., Chan, S. Y. & Teo, A. K. K. Metformin from mother to unborn child – are there unwarranted effects? EBioMedicine 35, 394–404 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feig, D. S. et al. Outcomes in children of women with type 2 diabetes exposed to metformin versus placebo during pregnancy (MiTy Kids): a 24-month follow-up of the MiTy randomised controlled trial. Lancet Diabetes Endocrinol. 11, 191–202 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Wilcock, C. & Bailey, C. J. Accumulation of metformin by tissues of the normal and diabetic mouse. Xenobiotica 24, 49–57 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Pentikäinen, P. J., Neuvonen, P. J. & Penttilä, A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur. J. Clin. Pharmacol. 16, 195–202 (1979).

    Article  PubMed  Google Scholar 

  21. Jensen, J. B. et al. [11C]-Labeled metformin distribution in the liver and small intestine using dynamic positron emission tomography in mice demonstrates tissue-specific transporter dependency. Diabetes 65, 1724–1730 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Chan, P., Shao, L., Tomlinson, B., Zhang, Y. & Liu, Z. M. Metformin transporter pharmacogenomics: insights into drug disposition – where are we now? Expert. Opin. Drug. Metab. Toxicol. 14, 1149–1159 (2018).

    CAS  PubMed  Google Scholar 

  23. Graham, G. G. et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 50, 81–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  24. Chandel, N. S. et al. Are metformin doses used in murine cancer models clinically relevant? Cell Metab. 23, 569–570 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. He, L. & Wondisford, F. E. Metformin action: concentrations matter. Cell Metab. 21, 159–162 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Foretz, M., Guigas, B. & Viollet, B. Understanding the glucoregulatory mechanisms of metformin in type 2 diabetes mellitus. Nat. Rev. Endocrinol. 15, 569–589 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Dowling, R. J. et al. Metformin pharmacokinetics in mouse tumors: implications for human therapy. Cell Metab. 23, 567–568 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Quinn, B. J. et al. Inhibition of lung tumorigenesis by metformin is associated with decreased plasma IGF-I and diminished receptor tyrosine kinase signaling. Cancer Prev. Res. 6, 801–810 (2013).

    Article  CAS  Google Scholar 

  29. Sundelin, E., Jensen, J. B., Jakobsen, S., Gormsen, L. C. & Jessen, N. Metformin biodistribution: a key to mechanisms of action? J. Clin. Endocrinol. Metab. 105, dgaa332 (2020).

    Article  PubMed  Google Scholar 

  30. Singhal, A. et al. Metformin as adjunct antituberculosis therapy. Sci. Transl. Med. 6, 263ra159 (2014).

    Article  PubMed  Google Scholar 

  31. Thakkar, B., Aronis, K. N., Vamvini, M. T., Shields, K. & Mantzoros, C. S. Metformin and sulfonylureas in relation to cancer risk in type II diabetes patients: a meta-analysis using primary data of published studies. Metabolism 62, 922–934 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Gormsen, L. C. et al. Metformin increases endogenous glucose production in non-diabetic individuals and individuals with recent-onset type 2 diabetes. Diabetologia 62, 1251–1256 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. McCreight, L. J. et al. Metformin increases fasting glucose clearance and endogenous glucose production in non-diabetic individuals. Diabetologia 63, 444–447 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Duca, F. A. et al. Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506–511 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, E. et al. Intestinal AMPK modulation of microbiota mediates crosstalk with brown fat to control thermogenesis. Nat. Commun. 13, 1135 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma, T. et al. Low-dose metformin targets the lysosomal AMPK pathway through PEN2. Nature 603, 159–165 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tobar, N. et al. Metformin acts in the gut and induces gut–liver crosstalk. Proc. Natl Acad. Sci. USA 120, e2211933120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gormsen, L. C. et al. In vivo imaging of human 11C-metformin in peripheral organs: dosimetry, biodistribution, and kinetic analyses. J. Nucl. Med. 57, 1920–1926 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Bailey, C. J., Wilcock, C. & Scarpello, J. H. Metformin and the intestine. Diabetologia 51, 1552–1553 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Proctor, W. R. et al. Why does the intestine lack basolateral efflux transporters for cationic compounds? A provocative hypothesis. J. Pharm. Sci. 105, 484–496 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Shirasaka, Y. et al. Multiple transport mechanisms involved in the intestinal absorption of metformin: impact on the nonlinear absorption kinetics. J. Pharm. Sci. 111, 1531–1541 (2022).

    Article  CAS  PubMed  Google Scholar 

  42. Wilcock, C. & Bailey, C. J. Reconsideration of inhibitory effect of metformin on intestinal glucose absorption. J. Pharm. Pharmacol. 43, 120–121 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Ikeda, T., Iwata, K. & Murakami, H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem. Pharmacol. 59, 887–890 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Wu, T. et al. Metformin reduces the rate of small intestinal glucose absorption in type 2 diabetes. Diabetes Obes. Metab. 19, 290–293 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Bailey, C. J. Metformin and intestinal glucose handling. Diabetes Metab. Rev. 11, S23–S32 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Zubiaga, L. et al. Oral metformin transiently lowers post-prandial glucose response by reducing the apical expression of sodium-glucose co-transporter 1 in enterocytes. iScience 26, 106057 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Borg, M. J. et al. Comparative effects of proximal and distal small intestinal administration of metformin on plasma glucose and glucagon-like peptide-1, and gastric emptying after oral glucose, in type 2 diabetes. Diabetes Obes. Metab. 21, 640–647 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Koffert, J. P. et al. Metformin treatment significantly enhances intestinal glucose uptake in patients with type 2 diabetes: results from a randomized clinical trial. Diabetes Res. Clin. Pract. 131, 208–216 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Chang, H. S., Kim, S. J. & Kim, Y. H. Association between colonic 18F-FDG uptake and glycemic control in patients with diabetes mellitus. Nucl. Med. Mol. Imaging 54, 168–174 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ito, J. et al. Dose-dependent accumulation of glucose in the intestinal wall and lumen induced by metformin as revealed by 18F-labelled fluorodeoxyglucose positron emission tomography-MRI. Diabetes Obes. Metab. 23, 692–699 (2021).

    Article  CAS  PubMed  Google Scholar 

  51. Morita, Y. et al. Enhanced release of glucose into the intraluminal space of the intestine associated with metformin treatment as revealed by [18F]fluorodeoxyglucose PET-MRI. Diabetes Care 43, 1796–1802 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Horakova, O. et al. Metformin acutely lowers blood glucose levels by inhibition of intestinal glucose transport. Sci. Rep. 9, 6156 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ait-Omar, A. et al. GLUT2 accumulation in enterocyte apical and intracellular membranes: a study in morbidly obese human subjects and ob/ob and high fat-fed mice. Diabetes 60, 2598–2607 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rathmann, W. et al. A variant of the glucose transporter gene SLC2A2 modifies the glycaemic response to metformin therapy in recently diagnosed type 2 diabetes. Diabetologia 62, 286–291 (2019).

    Article  CAS  PubMed  Google Scholar 

  55. McCreight, L. J., Bailey, C. J. & Pearson, E. R. Metformin and the gastrointestinal tract. Diabetologia 59, 426–435 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kjøbsted, R. et al. Metformin improves glycemia independently of skeletal muscle AMPK via enhanced intestinal glucose clearance. Preprint at bioRxiv https://www.biorxiv.org/content/10.1101/2022.05.22.492936v1 (2022).

  57. Rittig, N. et al. Metformin stimulates intestinal glycolysis and lactate release: a single-dose study of metformin in patients with intrahepatic portosystemic stent. Clin. Pharmacol. Ther. 110, 1329–1336 (2021).

    Article  CAS  PubMed  Google Scholar 

  58. Schommers, P. et al. Metformin causes a futile intestinal-hepatic cycle which increases energy expenditure and slows down development of a type 2 diabetes-like state. Mol. Metab. 6, 737–747 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chondronikola, M. et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 63, 4089–4099 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sponton, C. H. et al. The regulation of glucose and lipid homeostasis via PLTP as a mediator of BAT–liver communication. EMBO Rep. 21, e49828 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Breining, P. et al. Metformin targets brown adipose tissue in vivo and reduces oxygen consumption in vitro. Diabetes Obes. Metab. 20, 2264–2273 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Bridges, H. R. et al. Structural basis of mammalian respiratory complex I inhibition by medicinal biguanides. Science 379, 351–357 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bridges, H. R., Jones, A. J., Pollak, M. N. & Hirst, J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem. J. 462, 475–487 (2014).

    Article  CAS  PubMed  Google Scholar 

  64. Madiraju, A. K. et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542–546 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. LaMoia, T. E. et al. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proc. Natl Acad. Sci. USA 119, e2122287119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. MacDonald, M. J., Ansari, I. H., Longacre, M. J. & Stoker, S. W. Metformin’s therapeutic efficacy in the treatment of diabetes does not involve inhibition of mitochondrial glycerol phosphate dehydrogenase. Diabetes 70, 1575–1580 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Fontaine, E. Metformin-induced mitochondrial complex I inhibition: facts, uncertainties, and consequences. Front. Endocrinol. 9, 753 (2018).

    Article  Google Scholar 

  68. Pecinová, A., Brázdová, A., Drahota, Z., Houštěk, J. & Mráček, T. Mitochondrial targets of metformin – are they physiologically relevant? Biofactors 45, 703–711 (2019).

    Article  PubMed  Google Scholar 

  69. Vial, G., Detaille, D. & Guigas, B. Role of mitochondria in the mechanism(s) of action of metformin. Front. Endocrinol. 10, 294 (2019).

    Article  Google Scholar 

  70. Zhou, G. et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 108, 1167–1174 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shaw, R. J. et al. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310, 1642–1646 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, C. S. et al. Metformin activates AMPK through the lysosomal pathway. Cell Metab. 24, 521–522 (2016).

    Article  PubMed  Google Scholar 

  73. Howell, J. J. et al. Metformin inhibits hepatic mTORC1 signaling via dose-dependent mechanisms involving AMPK and the TSC complex. Cell Metab. 25, 463–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hunter, R. W. et al. Metformin reduces liver glucose production by inhibition of fructose-1-6-bisphosphatase. Nat. Med. 24, 1395–1406 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Miller, R. A. et al. Biguanides suppress hepatic glucagon signalling by decreasing production of cyclic AMP. Nature 494, 256–260 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Foretz, M. et al. Metformin inhibits hepatic gluconeogenesis in mice independently of the LKB1/AMPK pathway via a decrease in hepatic energy state. J. Clin. Invest. 120, 2355–2369 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Olivier, S. et al. Deletion of intestinal epithelial AMP-activated protein kinase alters distal colon permeability but not glucose homeostasis. Mol. Metab. 47, 101183 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fullerton, M. D. et al. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulin-sensitizing effects of metformin. Nat. Med. 19, 1649–1654 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Stein, B. D. et al. Quantitative in vivo proteomics of metformin response in liver reveals AMPK-dependent and -independent signaling networks. Cell Rep. 29, 3331–3348.e7 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. LaMoia, T. E. & Shulman, G. I. Cellular and molecular mechanisms of metformin action. Endocr. Rev. 42, 77–96 (2021).

    Article  PubMed  Google Scholar 

  81. Yoval-Sánchez, B., Ansari, F., Lange, D. & Galkin, A. Effect of metformin on intact mitochondria from liver and brain: concept revisited. Eur. J. Pharmacol. 931, 175177 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Owen, M. R., Doran, E. & Halestrap, A. P. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem. J. 348, 607–614 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Alshawi, A. & Agius, L. Low metformin causes a more oxidized mitochondrial NADH/NAD redox state in hepatocytes and inhibits gluconeogenesis by a redox-independent mechanism. J. Biol. Chem. 294, 2839–2853 (2019).

    Article  CAS  PubMed  Google Scholar 

  84. Cao, J. et al. Low concentrations of metformin suppress glucose production in hepatocytes through AMP-activated protein kinase (AMPK). J. Biol. Chem. 289, 20435–20446 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang, C. S. et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 20, 526–540 (2014).

    Article  CAS  PubMed  Google Scholar 

  86. Blazina, I. & Selph, S. Diabetes drugs for nonalcoholic fatty liver disease: a systematic review. Syst. Rev. 8, 295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Li, Y., Liu, L., Wang, B., Wang, J. & Chen, D. Metformin in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Biomed. Rep. 1, 57–64 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Holmes, O., Paturi, S., Selkoe, D. J. & Wolfe, M. S. Pen-2 is essential for γ-secretase complex stability and trafficking but partially dispensable for endoproteolysis. Biochemistry 53, 4393–4406 (2014).

    Article  CAS  PubMed  Google Scholar 

  89. Hasenour, C. M. et al. 5-Aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR) effect on glucose production, but not energy metabolism, is independent of hepatic AMPK in vivo. J. Biol. Chem. 289, 5950–5959 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cokorinos, E. C. et al. Activation of skeletal muscle AMPK promotes glucose disposal and glucose lowering in non-human primates and mice. Cell Metab. 25, 1147–1159.e10 (2017).

    Article  CAS  PubMed  Google Scholar 

  91. Madiraju, A. K. et al. Metformin inhibits gluconeogenesis via a redox-dependent mechanism in vivo. Nat. Med. 24, 1384–1394 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baur, J. A. & Birnbaum, M. J. Control of gluconeogenesis by metformin: does redox trump energy charge? Cell Metab. 20, 197–199 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Saheki, T. et al. Citrin/mitochondrial glycerol-3-phosphate dehydrogenase double knock-out mice recapitulate features of human citrin deficiency. J. Biol. Chem. 282, 25041–25052 (2007).

    Article  CAS  PubMed  Google Scholar 

  94. Calza, G. et al. Lactate-induced glucose output is unchanged by metformin at a therapeutic concentration – a mass spectrometry imaging study of the perfused rat liver. Front. Pharmacol. 9, 141 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Glossmann, H. H. & Lutz, O. M. D. Commentary: lactate-induced glucose output is unchanged by metformin at a therapeutic concentration – a mass spectrometry imaging study of the perfused rat liver. Front. Pharmacol. 10, 90 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Logie, L. et al. Cellular responses to the metal-binding properties of metformin. Diabetes 61, 1423–1433 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. El-Mir, M. Y. et al. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J. Biol. Chem. 275, 223–228 (2000).

    Article  CAS  PubMed  Google Scholar 

  98. Hawley, S. A. et al. Use of cells expressing γ subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab. 11, 554–565 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xie, D. et al. Let-7 underlies metformin-induced inhibition of hepatic glucose production. Proc. Natl Acad. Sci. USA 119, e2122217119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  101. Napolitano, A. et al. Novel gut-based pharmacology of metformin in patients with type 2 diabetes mellitus. PLoS ONE 9, e100778 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Forslund, K. et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528, 262–266 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de la Cuesta-Zuluaga, J. et al. Metformin is associated with higher relative abundance of mucin-degrading Akkermansia muciniphila and several short-chain fatty acid-producing microbiota in the gut. Diabetes Care 40, 54–62 (2017).

    Article  PubMed  Google Scholar 

  104. Wu, H. et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 23, 850–858 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Vich Vila, A. et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun. 11, 362 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Mueller, N. T. et al. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids: a randomized trial. Diabetes Care 44, 1462–1471 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, Q. & Hu, N. Effects of metformin on the gut microbiota in obesity and type 2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 13, 5003–5014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Alvarez-Silva, C. et al. Trans-ethnic gut microbiota signatures of type 2 diabetes in Denmark and India. Genome Med. 13, 37 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Elbere, I. et al. Association of metformin administration with gut microbiome dysbiosis in healthy volunteers. PLoS ONE 13, e0204317 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Bryrup, T. et al. Metformin-induced changes of the gut microbiota in healthy young men: results of a non-blinded, one-armed intervention study. Diabetologia 62, 1024–1035 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Yang, Y. et al. Changes of saliva microbiota in the onset and after the treatment of diabetes in patients with periodontitis. Aging 12, 13090–13114 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lee, H. & Ko, G. Effect of metformin on metabolic improvement and gut microbiota. Appl. Env. Microbiol. 80, 5935–5943 (2014).

    Article  Google Scholar 

  113. Shin, N. R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Bauer, P. V. et al. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway. Cell Metab. 27, 101–117 (2018).

    Article  CAS  PubMed  Google Scholar 

  115. Zhang, X. et al. Modulation of gut microbiota by berberine and metformin during the treatment of high-fat diet-induced obesity in rats. Sci. Rep. 5, 14405 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Silamiķele, L. et al. Metformin strongly affects gut microbiome composition in high-fat diet-induced type 2 diabetes mouse model of both sexes. Front. Endocrinol. 12, 626359 (2021).

    Article  Google Scholar 

  117. Broadfield, L. A. et al. Metformin-induced reductions in tumor growth involves modulation of the gut microbiome. Mol. Metab. 61, 101498 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Adeshirlarijaney, A., Zou, J., Tran, H. Q., Chassaing, B. & Gewirtz, A. T. Amelioration of metabolic syndrome by metformin associates with reduced indices of low-grade inflammation independently of the gut microbiota. Am. J. Physiol. Endocrinol. Metab. 317, E1121–E1130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Adeshirlarijaney, A. & Gewirtz, A. T. Considering gut microbiota in treatment of type 2 diabetes mellitus. Gut Microbes 11, 253–264 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Bravard, A. et al. Metformin treatment for 8 days impacts multiple intestinal parameters in high-fat high-sucrose fed mice. Sci. Rep. 11, 16684 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Sun, L. et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat. Med. 24, 1919–1929 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. DeFronzo, R. A. et al. Once-daily delayed-release metformin lowers plasma glucose and enhances fasting and postprandial GLP-1 and PYY: results from two randomised trials. Diabetologia 59, 1645–1654 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Ke, H. et al. Metformin exerts anti-inflammatory and mucus barrier protective effects by enriching Akkermansia muciniphila in mice with ulcerative colitis. Front. Pharmacol. 12, 726707 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou, Z. Y. et al. Metformin exerts glucose-lowering action in high-fat fed mice via attenuating endotoxemia and enhancing insulin signaling. Acta Pharmacol. Sin. 37, 1063–1075 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ahmadi, S. et al. Metformin reduces aging-related leaky gut and improves cognitive function by beneficially modulating gut microbiome/goblet cell/mucin axis. J. Gerontol. A Biol. Sci. Med. Sci. 75, e9–e21 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Brandt, A. et al. Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Sci. Rep. 9, 6668 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Li, L. et al. An in vitro model maintaining taxon-specific functional activities of the gut microbiome. Nat. Commun. 10, 4146 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hao, Z. et al. Metaproteomics reveals growth phase-dependent responses of an in vitro gut microbiota to metformin. J. Am. Soc. Mass. Spectrom. 31, 1448–1458 (2020).

    Article  CAS  PubMed  Google Scholar 

  129. Rosario, D. et al. Understanding the representative gut microbiota dysbiosis in metformin-treated type 2 diabetes patients using genome-scale metabolic modeling. Front. Physiol. 9, 775 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cabreiro, F. et al. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153, 228–239 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Pryor, R. et al. Host-microbe-drug-nutrient screen identifies bacterial effectors of metformin therapy. Cell 178, 1299–1312.e29 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Lee, Y. et al. Changes in the gut microbiome influence the hypoglycemic effect of metformin through the altered metabolism of branched-chain and nonessential amino acids. Diabetes Res. Clin. Pract. 178, 108985 (2021).

    Article  CAS  PubMed  Google Scholar 

  133. Hung, W. W. et al. Gut microbiota compositions and metabolic functions in type 2 diabetes differ with glycemic durability to metformin monotherapy. Diabetes Res. Clin. Pract. 174, 108731 (2021).

    Article  CAS  PubMed  Google Scholar 

  134. De Vadder, F. et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156, 84–96 (2014).

    Article  PubMed  Google Scholar 

  135. Holst, J. J., Gasbjerg, L. S. & Rosenkilde, M. M. The role of incretins on insulin function and glucose homeostasis. Endocrinology 162, bqab065 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sansome, D. J. et al. Mechanism of glucose-lowering by metformin in type 2 diabetes: role of bile acids. Diabetes Obes. Metab. 22, 141–148 (2020).

    Article  CAS  PubMed  Google Scholar 

  137. Zhernakova, A. et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 352, 565–569 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Su, C. et al. Metformin alleviates choline diet-induced TMAO elevation in C57BL/6J mice by influencing gut-microbiota composition and functionality. Nutr. Diabetes 11, 27 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Kuka, J. et al. Metformin decreases bacterial trimethylamine production and trimethylamine N-oxide levels in db/db mice. Sci. Rep. 10, 14555 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ji, S., Wang, L. & Li, L. Effect of metformin on short-term high-fat diet-induced weight gain and anxiety-like behavior and the gut microbiota. Front. Endocrinol. 10, 704 (2019).

    Article  Google Scholar 

  141. Deng, W. et al. Metformin alleviates autistic-like behaviors elicited by high-fat diet consumption and modulates the crosstalk between serotonin and gut microbiota in mice. Behav. Neurol. 2022, 6711160 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Huang, X. et al. Metformin elicits antitumour effect by modulation of the gut microbiota and rescues Fusobacterium nucleatum-induced colorectal tumourigenesis. EBioMedicine 61, 103037 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Wanchaitanawong, W., Thinrungroj, N., Chattipakorn, S. C., Chattipakorn, N. & Shinlapawittayatorn, K. Repurposing metformin as a potential treatment for inflammatory bowel disease: evidence from cell to the clinic. Int. Immunopharmacol. 112, 109230 (2022).

    Article  CAS  PubMed  Google Scholar 

  144. Liu, Z. et al. Metformin affects gut microbiota composition and diversity associated with amelioration of dextran sulfate sodium-induced colitis in mice. Front. Pharmacol. 12, 640347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Seicaru, E. M., Popa Ilie, I. R., Cătinean, A., Crăciun, A. M. & Ghervan, C. Enhancing metformin effects by adding gut microbiota modulators to ameliorate the metabolic status of obese, insulin-resistant hosts. J. Gastrointestin Liver Dis. 31, 344–354 (2022).

    Article  PubMed  Google Scholar 

  146. Koh, A. et al. Microbial imidazole propionate affects responses to metformin through p38γ-dependent inhibitory AMPK phosphorylation. Cell Metab. 32, 643–653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Bonnet, F. & Scheen, A. Understanding and overcoming metformin gastrointestinal intolerance. Diabetes Obes. Metab. 19, 473–481 (2017).

    Article  CAS  PubMed  Google Scholar 

  148. Díaz-Perdigones, C. M., Muñoz-Garach, A., Álvarez-Bermúdez, M. D., Moreno-Indias, I. & Tinahones, F. J. Gut microbiota of patients with type 2 diabetes and gastrointestinal intolerance to metformin differs in composition and functionality from tolerant patients. Biomed. Pharmacother. 145, 112448 (2022).

    Article  PubMed  Google Scholar 

  149. Nakajima, H. et al. The effects of metformin on the gut microbiota of patients with type 2 diabetes: a two-center, quasi-experimental study. Life 10, 195 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).

    Article  CAS  PubMed  Google Scholar 

  151. Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Rohm, T. V., Meier, D. T., Olefsky, J. M. & Donath, M. Y. Inflammation in obesity, diabetes, and related disorders. Immunity 55, 31–55 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hoogerland, J. A., Staels, B. & Dombrowicz, D. Immune-metabolic interactions in homeostasis and the progression to NASH. Trends Endocrinol. Metab. 33, 690–709 (2022).

    Article  CAS  PubMed  Google Scholar 

  154. Roy, P., Orecchioni, M. & Ley, K. How the immune system shapes atherosclerosis: roles of innate and adaptive immunity. Nat. Rev. Immunol. 22, 251–265 (2022).

    Article  CAS  PubMed  Google Scholar 

  155. Eckold, C. et al. Impact of intermediate hyperglycemia and diabetes on immune dysfunction in tuberculosis. Clin. Infect. Dis. 72, 69–78 (2021).

    Article  CAS  PubMed  Google Scholar 

  156. Caputa, G., Castoldi, A. & Pearce, E. J. Metabolic adaptations of tissue-resident immune cells. Nat. Immunol. 20, 793–801 (2019).

    Article  CAS  PubMed  Google Scholar 

  157. Kristófi, R. & Eriksson, J. W. Metformin as an anti-inflammatory agent: a short review. J. Endocrinol. 251, R11–R22 (2021).

    Article  PubMed  Google Scholar 

  158. Bhansali, S., Bhansali, A. & Dhawan, V. Metformin promotes mitophagy in mononuclear cells: a potential in vitro model for unraveling metformin’s mechanism of action. Ann. N. Y. Acad. Sci. 1463, 23–36 (2020).

    Article  CAS  PubMed  Google Scholar 

  159. de Marañón, A. M. et al. Metformin modulates mitochondrial function and mitophagy in peripheral blood mononuclear cells from type 2 diabetic patients. Redox Biol. 53, 102342 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Menegazzo, L. et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo. Acta Diabetol. 55, 593–601 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Wang, H., Li, T., Chen, S., Gu, Y. & Ye, S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 67, 3190–3200 (2015).

    Article  CAS  PubMed  Google Scholar 

  162. Wculek, S. K., Dunphy, G., Heras-Murillo, I., Mastrangelo, A. & Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell Mol. Immunol. 19, 384–408 (2022).

    Article  CAS  PubMed  Google Scholar 

  163. Xiong, W. et al. Metformin alleviates inflammation through suppressing FASN-dependent palmitoylation of Akt. Cell Death Dis. 12, 934 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Xian, H. et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 54, 1463–1477 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Soberanes, S. et al. Metformin targets mitochondrial electron transport to reduce air-pollution-induced thrombosis. Cell Metab. 29, 335–347 (2019).

    Article  CAS  PubMed  Google Scholar 

  166. Franceschi, C., Garagnani, P., Parini, P., Giuliani, C. & Santoro, A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 14, 576–590 (2018).

    Article  CAS  PubMed  Google Scholar 

  167. Aiello, A. et al. Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front. Immunol. 10, 2247 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Kulkarni, A. S., Gubbi, S. & Barzilai, N. Benefits of metformin in attenuating the hallmarks of aging. Cell Metab. 32, 15–30 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. Metformin enhances B cell function and antibody responses of elderly individuals with type-2 diabetes mellitus. Front. Aging 2, 715981 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lee, J. Y. et al. Diabetes mellitus and ovarian cancer risk: a systematic review and meta-analysis of observational studies. Int. J. Gynecol. Cancer 23, 402–412 (2013).

    Article  PubMed  Google Scholar 

  171. Landry, D. A. et al. Metformin prevents age-associated ovarian fibrosis by modulating the immune landscape in female mice. Sci. Adv. 8, eabq1475 (2022).

    Article  CAS  PubMed  Google Scholar 

  172. Bharath, L. P. et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 32, 44–55 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ursini, F. et al. Metformin and autoimmunity: a “new deal” of an old drug. Front. Immunol. 9, 1236 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Titov, A. A., Baker, H. V., Brusko, T. M., Sobel, E. S. & Morel, L. Metformin inhibits the type 1 IFN response in human CD4+ T cells. J. Immunol. 203, 338–348 (2019).

    Article  CAS  PubMed  Google Scholar 

  175. Duan, W. et al. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production. Am. J. Transl. Res. 11, 2393–2402 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Sun, F. et al. Safety and efficacy of metformin in systemic lupus erythematosus: a multicentre, randomised, double-blind, placebo-controlled trial. Lancet Rheumatol. 2, e210–e216 (2020).

    Article  Google Scholar 

  177. Malik, F. et al. Is metformin poised for a second career as an antimicrobial? Diabetes Metab. Res. Rev. 34, e2975 (2018).

    Article  PubMed  Google Scholar 

  178. Kim, K., Yang, W. H., Jung, Y. S. & Cha, J. H. A new aspect of an old friend: the beneficial effect of metformin on anti-tumor immunity. BMB Rep. 53, 512–520 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Leow, M. K. et al. Latent tuberculosis in patients with diabetes mellitus: prevalence, progression and public health implications. Exp. Clin. Endocrinol. Diabetes 122, 528–532 (2014).

    Article  CAS  PubMed  Google Scholar 

  180. Lachmandas, E. et al. Metformin alters human host responses to Mycobacterium tuberculosis in healthy subjects. J. Infect. Dis. 220, 139–150 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Böhme, J. et al. Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nat. Commun. 11, 5225 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Wang, S. et al. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: results of a phase II clinical trial. Clin. Cancer Res. 26, 4921–4932 (2020).

    Article  CAS  PubMed  Google Scholar 

  183. Crist, M. et al. Metformin increases natural killer cell functions in head and neck squamous cell carcinoma through CXCL1 inhibition. J. Immunother. Cancer 10, e005632 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  184. Wabitsch, S. et al. Metformin treatment rescues CD8+ T-cell response to immune checkpoint inhibitor therapy in mice with NAFLD. J. Hepatol. 77, 748–760 (2022).

    Article  CAS  PubMed  Google Scholar 

  185. Wei, Z. et al. Boosting anti-PD-1 therapy with metformin-loaded macrophage-derived microparticles. Nat. Commun. 12, 440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Heckman-Stoddard, B. M., DeCensi, A., Sahasrabuddhe, V. V. & Ford, L. G. Repurposing metformin for the prevention of cancer and cancer recurrence. Diabetologia 60, 1639–1647 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Misirkic Marjanovic, M. S., Vucicevic, L. M., Despotovic, A. R., Stamenkovic, M. M. & Janjetovic, K. D. Dual anticancer role of metformin: an old drug regulating AMPK dependent/independent pathways in metabolic, oncogenic/tumorsuppresing and immunity context. Am. J. Cancer Res. 11, 5625–5643 (2021).

    PubMed  PubMed Central  Google Scholar 

  189. Badrick, E. & Renehan, A. G. Diabetes and cancer: 5 years into the recent controversy. Eur. J. Cancer 50, 2119–2125 (2014).

    Article  PubMed  Google Scholar 

  190. Goodwin, P. J. et al. Effect of metformin vs placebo on invasive disease-free survival in patients with breast cancer: the MA.32 randomized clinical trial. JAMA 327, 1963–1973 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Skuli, S. J. et al. Metformin and cancer, an ambiguanidous relationship. Pharmaceuticals 15, 626 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Heng, T. S. & Painter, M. W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  193. Jones, R. C. et al. The Tabula Sapiens: a multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

    Article  CAS  PubMed  Google Scholar 

  194. Vara-Ciruelos, D. et al. Phenformin, but not metformin, delays development of T cell acute lymphoblastic leukemia/lymphoma via cell-autonomous AMPK activation. Cell Rep. 27, 690–698.e4 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhao, H., Swanson, K. D. & Zheng, B. Therapeutic repurposing of biguanides in cancer. Trends Cancer 7, 714–730 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Valencia, W. M., Palacio, A., Tamariz, L. & Florez, H. Metformin and ageing: improving ageing outcomes beyond glycaemic control. Diabetologia 60, 1630–1638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Anisimov, V. N. et al. If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging 3, 148–157 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Espada, L. et al. Loss of metabolic plasticity underlies metformin toxicity in aged Caenorhabditis elegans. Nat. Metab. 2, 1316–1331 (2020).

    Article  CAS  PubMed  Google Scholar 

  199. Mohammed, I., Hollenberg, M. D., Ding, H. & Triggle, C. R. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan. Front. Endocrinol. 12, 718942 (2021).

    Article  Google Scholar 

  200. Simonnet, A. et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 28, 1195–1199 (2020).

    Article  CAS  PubMed  Google Scholar 

  201. Petrilli, C. M. et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York city: prospective cohort study. BMJ 369, m1966 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  202. Cai, Q. et al. Obesity and COVID-19 severity in a designated hospital in Shenzhen, China. Diabetes Care 43, 1392–1398 (2020).

    Article  CAS  PubMed  Google Scholar 

  203. Zhu, L. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 31, 1068–1077 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Stefan, N., Birkenfeld, A. L. & Schulze, M. B. Global pandemics interconnected – obesity, impaired metabolic health and COVID-19. Nat. Rev. Endocrinol. 17, 135–149 (2021).

    Article  CAS  PubMed  Google Scholar 

  205. Cheng, X. et al. Metformin is associated with higher incidence of acidosis, but not mortality, in individuals with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 32, 537–547.e3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Schaller, M. A. et al. Ex vivo SARS-CoV-2 infection of human lung reveals heterogeneous host defense and therapeutic responses. JCI Insight 6, e148003 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Cory, T. J., Emmons, R. S., Yarbro, J. R., Davis, K. L. & Pence, B. D. Metformin suppresses monocyte immunometabolic activation by SARS-CoV-2 spike protein subunit 1. Front. Immunol. 12, 733921 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Reis, G. et al. Effect of early treatment with metformin on risk of emergency care and hospitalization among patients with COVID-19: the TOGETHER randomized platform clinical trial. Lancet Reg. Health Am. 6, 100142 (2022).

    PubMed  Google Scholar 

  210. Bramante, C. T. et al. Randomized trial of metformin, ivermectin, and fluvoxamine for Covid-19. N. Engl. J. Med. 387, 599–610 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Bramante, C. T. et al. Outpatient treatment of Covid-19 with metformin, ivermectin, and fluvoxamine and the development of Long Covid over 10-month follow-up. Preprint at medRxiv https://www.medrxiv.org/content/10.1101/2022.12.21.22283753v1 (2022).

  212. Gerstein, H. C. et al. Growth differentiation factor 15 as a novel biomarker for metformin. Diabetes Care 40, 280–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  213. Natali, A. et al. Metformin is the key factor in elevated plasma growth differentiation factor-15 levels in type 2 diabetes: a nested, case-control study. Diabetes Obes. Metab. 21, 412–416 (2019).

    Article  CAS  PubMed  Google Scholar 

  214. Klein, A. B. et al. The GDF15-GFRAL pathway is dispensable for the effects of metformin on energy balance. Cell Rep. 40, 111258 (2022).

    Article  CAS  PubMed  Google Scholar 

  215. Aguilar-Recarte, D. et al. A positive feedback loop between AMPK and GDF15 promotes metformin antidiabetic effects. Pharmacol. Res. 187, 106578 (2022).

    Article  PubMed  Google Scholar 

  216. Klein, A. B., Kleinert, M., Richter, E. A. & Clemmensen, C. GDF15 in appetite and exercise: essential player or coincidental bystander? Endocrinology 163, bqab242 (2022).

    Article  PubMed  Google Scholar 

  217. Yang, L. et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat. Med. 23, 1158–1166 (2017).

    Article  CAS  PubMed  Google Scholar 

  218. Mullican, S. E. et al. GFRAL is the receptor for GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nat. Med. 23, 1150–1157 (2017).

    Article  CAS  PubMed  Google Scholar 

  219. Diabetes Prevention Program Research Group. Long-term safety, tolerability, and weight loss associated with metformin in the Diabetes Prevention Program Outcomes Study. Diabetes Care 35, 731–737 (2012).

    Article  Google Scholar 

  220. Ning, H. H. et al. The effects of metformin on simple obesity: a meta-analysis. Endocrine 62, 528–534 (2018).

    Article  CAS  PubMed  Google Scholar 

  221. Gao, F. et al. Growth differentiation factor 15 is not associated with glycemic control in patients with type 2 diabetes mellitus treated with metformin: a post-hoc analysis of AIM study. BMC Endocr. Disord. 22, 256 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Al-Kuraishy, H. M. et al. Metformin and growth differentiation factor 15 (GDF15) in type 2 diabetes mellitus: a hidden treasure. J. Diabetes 14, 806–814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Kincaid, J. W. R. & Coll, A. P. Metformin and GDF15: where are we now? Nat. Rev. Endocrinol. 19, 6–7 (2022).

    Article  Google Scholar 

  224. Karise, I., Bargut, T. C., Del Sol, M., Aguila, M. B. & Mandarim-de-Lacerda, C. A. Metformin enhances mitochondrial biogenesis and thermogenesis in brown adipocytes of mice. Biomed. Pharmacother. 111, 1156–1165 (2019).

    Article  CAS  PubMed  Google Scholar 

  225. Yang, Q. et al. AMPK/α-ketoglutarate axis dynamically mediates DNA demethylation in the Prdm16 promoter and brown adipogenesis. Cell Metab. 24, 542–554 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Geerling, J. J. et al. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes 63, 880–891 (2014).

    Article  CAS  PubMed  Google Scholar 

  227. Tokubuchi, I. et al. Beneficial effects of metformin on energy metabolism and visceral fat volume through a possible mechanism of fatty acid oxidation in human subjects and rats. PLoS ONE 12, e0171293 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  228. English, P. J. et al. Metformin prolongs the postprandial fall in plasma ghrelin concentrations in type 2 diabetes. Diabetes Metab. Res. Rev. 23, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  229. Rouru, J., Isaksson, K., Santti, E., Huupponen, R. & Koulu, M. Metformin and brown adipose tissue thermogenetic activity in genetically obese Zucker rats. Eur. J. Pharmacol. 246, 67–71 (1993).

    Article  CAS  PubMed  Google Scholar 

  230. Pescador, N. et al. Metformin reduces macrophage HIF1α-dependent proinflammatory signaling to restore brown adipocyte function in vitro. Redox Biol. 48, 102171 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Yang, D. et al. A nationwide wastewater-based assessment of metformin consumption across Australia. Env. Int. 165, 107282 (2022).

    Article  CAS  Google Scholar 

  232. He, Y., Zhang, Y. & Ju, F. Metformin contamination in global waters: biotic and abiotic transformation, byproduct generation and toxicity, and evaluation as a pharmaceutical indicator. Env. Sci. Technol. 56, 13528–13545 (2022).

    Article  CAS  Google Scholar 

  233. Elizalde-Velázquez, G. A. & Gómez-Oliván, L. M. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: recent trends and perspectives. Sci. Total. Environ. 702, 134924 (2020).

    Article  PubMed  Google Scholar 

  234. Balakrishnan, A., Sillanpää, M., Jacob, M. M. & Vo, D. N. Metformin as an emerging concern in wastewater: occurrence, analysis and treatment methods. Environ. Res. 213, 113613 (2022).

    Article  CAS  PubMed  Google Scholar 

  235. Ambrosio-Albuquerque, E. P. et al. Metformin environmental exposure: a systematic review. Environ. Toxicol. Pharmacol. 83, 103588 (2021).

    Article  CAS  PubMed  Google Scholar 

  236. Wilkinson, J. L. et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl Acad. Sci. USA 119, e2113947119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Niemuth, N. J. & Klaper, R. D. Low-dose metformin exposure causes changes in expression of endocrine disruption-associated genes. Aquat. Toxicol. 195, 33–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  238. Barros, S. et al. Metformin disrupts Danio rerio metabolism at environmentally relevant concentrations: a full life-cycle study. Sci. Total Environ. 846, 157361 (2022).

    Article  CAS  PubMed  Google Scholar 

  239. Phillips, J. et al. Developmental phenotypic and transcriptomic effects of exposure to nanomolar levels of metformin in zebrafish. Environ. Toxicol. Pharmacol. 87, 103716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Barros, S. et al. Are fish populations at risk? Metformin disrupts zebrafish development and reproductive processes at chronic environmentally relevant concentrations. Env. Sci. Technol. 57, 1049–1059 (2023).

    Article  CAS  Google Scholar 

  241. Li, T., Xu, Z. J. & Zhou, N. Y. Aerobic degradation of the antidiabetic drug metformin by Aminobacter sp. strain NyZ550. Environ. Sci. Technol. 57, 1510–1519 (2023).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of grants from Inserm, CNRS, Université Paris Cité, Agence Nationale de la Recherche (ANR), Société Francophone du Diabète (SFD), Fondation pour la Recherche Médicale (FRM), the Dutch Organization for Scientific Research (ZonMW) and DiabetesFonds.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Benoit Viollet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Michael Pollak and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

ImmGen Consortium: https://www.immgen.org/

Tabula Sapiens Consortium: https://tabula-sapiens-portal.ds.czbiohub.org/

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foretz, M., Guigas, B. & Viollet, B. Metformin: update on mechanisms of action and repurposing potential. Nat Rev Endocrinol 19, 460–476 (2023). https://doi.org/10.1038/s41574-023-00833-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-023-00833-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing