Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in TRP channel drug discovery: from target validation to clinical studies

Abstract

Transient receptor potential (TRP) channels are multifunctional signalling molecules with many roles in sensory perception and cellular physiology. Therefore, it is not surprising that TRP channels have been implicated in numerous diseases, including hereditary disorders caused by defects in genes encoding TRP channels (TRP channelopathies). Most TRP channels are located at the cell surface, which makes them generally accessible drug targets. Early drug discovery efforts to target TRP channels focused on pain, but as our knowledge of TRP channels and their role in health and disease has grown, these efforts have expanded into new clinical indications, ranging from respiratory disorders through neurological and psychiatric diseases to diabetes and cancer. In this Review, we discuss recent findings in TRP channel structural biology that can affect both drug development and clinical indications. We also discuss the clinical promise of novel TRP channel modulators, aimed at both established and emerging targets. Last, we address the challenges that these compounds may face in clinical practice, including the need for carefully targeted approaches to minimize potential side-effects due to the multifunctional roles of TRP channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Similarities and differences between the structures of TRP channels.
Fig. 2: TRPV1 in the pain pathway: similarities and differences between desensitization by agonists and blockade by antagonists.
Fig. 3: Structural information on ligand and drug binding by TRP channels, and gain-of-function mutations.
Fig. 4: The pain pathway: wide expression of TRP channels in sensory neurons, skin and brain.

Similar content being viewed by others

References

  1. Cosens, D. J. & Manning, A. Abnormal electroretinogram from a Drosophila mutant. Nature 224, 285–287 (1969). This article represents the birth of TRP channels with the discovery of a mutant fruit fly that responds to sustained light stimulation with a transient current (‘transient receptor potential’) instead of the usual sustained response.

    CAS  PubMed  Google Scholar 

  2. Montell, C. & Rubin, G. M. Molecular characterization of the drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron 2, 1313–1323 (1989).

    CAS  PubMed  Google Scholar 

  3. Wu, L. J., Sweet, T. B. & Clapham, D. E. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol. Rev. 62, 381–404 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nilius, B. & Szallasi, A. Transient receptor potential channels as drug targets: from the science of basic research to the art of medicine. Pharmacol. Rev. 66, 676–814 (2014).

    PubMed  Google Scholar 

  5. Kashio, M. et al. Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc. Natl Acad. Sci. USA 109, 6745–6750 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Mittermeier, L. et al. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc. Natl Acad. Sci. USA 116, 4706–4715 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002).

    CAS  PubMed  Google Scholar 

  8. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell 108, 705–715 (2002). McKemy et al. (2002) and Peier et al. (2002) describe the discovery of the cold-responsive TRP channel, TRPM8.

    CAS  PubMed  Google Scholar 

  9. Bidaux, G. et al. Evidence for specific TRPM8 expression in human prostate secretory epithelial cells: functional androgen receptor requirement. Endocr. Relat. Cancer 12, 367–382 (2005).

    CAS  PubMed  Google Scholar 

  10. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997). This article describes the cloning of the long-sought-after capsaicin (vanilloid) receptor, which turned out to be a heat-activated channel.

    CAS  PubMed  Google Scholar 

  11. Jordt, S. E. & Julius, D. Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108, 421–430 (2002).

    CAS  PubMed  Google Scholar 

  12. Chu, Y., Cohen, B. E. & Chuang, H. H. A single amino acid controls species sensitivity to capsaicin. Sci. Rep. 10, 8038 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mishra, S. K., Tisel, S. M., Orestes, P., Bhangoo, S. K. & Hoon, M. A. TRPV1-lineage neurons are required for thermal sensation. EMBO J. 30, 582–593 (2011).

    CAS  PubMed  Google Scholar 

  14. Laursen, W. J., Schneider, E. R., Merriman, D. K., Bagriantsev, S. N. & Gracheva, E. O. Low-cost functional plasticity of TRPV1 supports heat tolerance in squirrels and camels. Proc. Natl Acad. Sci. USA 113, 11342–11347 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laursen, W. J., Anderson, E. O., Hoffstaetter, L. J., Bagriantsev, S. N. & Gracheva, E. O. Species-specific temperature sensitivity of TRPA1. Temperature 11, 214–226 (2015).

    Google Scholar 

  16. Szallasi, A. & Blumberg, P. M. Vanilloid (capsaicin) receptors and mechanisms. Pharmacol. Rev. 51, 160–211 (1999).

    Google Scholar 

  17. Yarmolinsky, D. A. et al. Coding and plasticity in the mammalian thermosensory system. Neuron 92, 1079–1092 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Paricio-Montesinos, R. et al. The sensory coding of warm perception. Neuron 106, 830–841 (2020). This paper identifies two distinct neuronal populations that signal ‘warm’: warmth perception excites one population and, conversely, suppresses another with ongoing cool-drive firing.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Tóth, B. I., Szallasi, A. & Bíró, T. Transient receptor potential channels and itch: how deep should we scratch? Handb. Exp. Pharmacol. 226, 89–133 (2015).

    PubMed  Google Scholar 

  20. Mezey, E. et al. Distribution of mRNA for vanilloid receptor subtype 1 (VR1), and VR1-like immunoreactivity, in the central nervous system of the rat and human. Proc. Natl Acad. Sci. USA 97, 3655–3660 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fernandes, E. S., Fernandes, M. A. & Keeble, J. E. The functions of TRPA1 and TRPV1: moving away from sensory nerves. Br. J. Pharmacol. 166, 510–521 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Romanovsky, A. A. The transient receptor potential vanilloid-1 channel in thermoregulation: a thermosensor it is not. Pharmacol. Rev. 61, 228–261 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Szolcsányi, J. Effect of capsaicin on thermoregulation: an update with new aspects. Temperature 2, 277–296 (2015).

    Google Scholar 

  24. Yonghak, P., Miyata, S. & Kuganov, E. TRPV1 is crucial for thermal homeostasis in the mouse by heat loss behaviors under warm ambient temperature. Sci. Rep. 10, 8799 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Szallasi, A., Cortright, D. N., Blum, C. A. & Eid, S. R. The vanilloid receptor TRPV1: 10 years from channel cloning to antagonist proof-of-concept. Nat. Rev. Drug Discov. 6, 357–372 (2007).

    CAS  PubMed  Google Scholar 

  26. Garami, A. et al. Hyperthermia induced by transient receptor potential vanilloid-1 (TRPV1) antagonists in human clinical trials: insights from mathematical modeling and meta-analysis. Pharmacol. Ther. 208, 107474 (2020).

    CAS  PubMed  Google Scholar 

  27. Garami, A. et al. TRPV1 antagonists that cause hypothermia, instead of hyperthermia, in rodents: compounds’ pharmacological profiles, in vivo targets, thermoeffectors recruited and implications for drug development. Acta Physiol. 223, e13038 (2018).

    CAS  Google Scholar 

  28. Garami, A. et al. Transient receptor potential vanilloid 1 antagonists prevent anesthesia-induced hypothermia and decrease postincisional opioid dose requirements in rodents. Anesthesiology 127, 813–823 (2017).

    CAS  PubMed  Google Scholar 

  29. Catalina Pharma. A pharmacological way to treat perioperative hypothermia https://www.catalinapharma.com (2017).

  30. Cao, Z. et al. TRPV1-mediated pharmacological hypothermia promotes improved functional recovery following ischemic stroke. Sci. Rep. 7, 17685 (2017). This preclinical study suggests that TRPV1 agonist may be beneficial in patients with ischaemic stroke by inducing pharmacological hypothermia.

    PubMed  PubMed Central  Google Scholar 

  31. Benítez-Angeles, M., Morales-Lázaro, S. L., Juárez-González, E. & Rosenbaum, T. TRPV1: structure, endogenous agonists, and mechanisms. Int. J. Mol. Sci. 21, 3421 (2020).

    PubMed Central  Google Scholar 

  32. Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347–351 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lin King, J. V. et al. A cell-penetrating scorpion toxin enables mode-specific modulation of TRPA1 and pain. Cell 178, 1362–1374 (2020).

    Google Scholar 

  34. Hong, S., Zheng, G. & Wiley, J. W. Epigenetic regulation of genes that modulate chronic stress-induced visceral pain in the peripheral nervous system. Gastroenterology 148, 148–157 (2015).

    CAS  PubMed  Google Scholar 

  35. Agarwal, N. et al. SUMOylation of enzymes and ion channels in sensory neurons protects against metabolic dysfunction, neuropathy, and sensory loss in diabetes. Neuron 107, 1141–1159.e7 (2020).

    CAS  PubMed  Google Scholar 

  36. Bell, J. T. et al. Differential methylation of the TRPA1 promoter in pain sensitivity. Nat. Commun. 5, 2978 (2014). This article demonstrates for the first time that epigenetic regulation of a TRP channel can affect pain response.

    CAS  PubMed  Google Scholar 

  37. Gombert, S. et al. Transient receptor potential ankyrin 1 promoter methylation and peripheral pain sensitivity in Crohn’s disease. Clin. Epigenet. 12, 1 (2019).

    Google Scholar 

  38. White, J. P. M. et al. TRPV4: molecular conductor of a diverse orchestra. Physiol. Rev. 96, 911–973 (2016).

    CAS  PubMed  Google Scholar 

  39. Gavva, N. R. Reduced TRPM8 expression underpins reduced migraine risk and attenuated cold pain sensation in humans. Sci. Rep. 9, 19655 (2019). This article reveals TRPM8 to be a promising drug target in migraine.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Patapoutian, A., Tate, S. & Woolf, C. J. Transient receptor potential channels: targeting pain at the source. Nat. Rev. Drug Discov. 8, 55–68 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Noto, C., Pappagallo, M. & Szallasi, A. NGX-4010, a high-concentration capsaicin dermal patch for lasting relief of peripheral neuropathic pain. Curr. Opin. Investig. Drugs 10, 702–710 (2009).

    CAS  PubMed  Google Scholar 

  42. Bonezzi, C. et al. Capsaicin 8% dermal patch in clinical practice: an expert opinion. Exp. Opin. Pharmacother. 21, 1377–1387 (2020).

    CAS  Google Scholar 

  43. Chung, M. K. & Campbell, J. N. Use of capsaicin to treat pain: mechanistic and therapeutic considerations. Pharmaceuticals 9, 66 (2016).

    PubMed Central  Google Scholar 

  44. Sidenius, P. The axonopathy of diabetic neuropathy. Diabetes 31, 356–363 (1982).

    CAS  PubMed  Google Scholar 

  45. Brand, L. et al. NE-19550: a novel, orally active anti-inflammatory agent. Drugs Exp. Clin. Res. 13, 259–265 (1987).

    CAS  PubMed  Google Scholar 

  46. Ann, J. et al. Discovery of nonpungent transient potential receptor vanilloid 1 (TRPV1) agonist as strong topical analgesic. J. Med. Chem. 63, 418–424 (2020).

    CAS  PubMed  Google Scholar 

  47. Brown, D. C. Resiniferatoxin: the evolution of the “molecular scalpel” for chronic pain relief. Pharmaceuticals 9, 47 (2016).

    PubMed Central  Google Scholar 

  48. US National Library of Medicine. A phase 3 study to evaluate the efficacy and safety of resiniferatoxin for pain due to osteoarthritis of the knee. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04044742 (2019).

  49. US National Library of Medicine. Resiniferatoxin to treat severe pain associated with advanced cancer. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00804154 (2008).

  50. Brown, D. C. et al. Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology 103, 1052–1059 (2005). This articles is the first preclinical study that paved the way to clinical trials using intrathecal resiniferatoxin to achieve permanent analgesia in patients with cancer pain.

    PubMed  Google Scholar 

  51. Heiss, N. et al. A phase I study of the intrathecal administration of resiniferatoxin for treating severe refractory pain associated with advanced cancer. http://sorrentotherapeutics.com/wp-content/uploads/2013/10/APS-poster-042514-Final.pdf (NIH, 2014).

  52. Appendino, G. & Szallasi, A. Clinically useful vanilloid receptor TRPV1 antagonists: just around the corner (or too early to tell)? Prog. Med. Chem. 44, 145–180 (2006).

    CAS  PubMed  Google Scholar 

  53. Moran, M. M. & Szallasi, A. Targeting nociceptive transient receptor potential channels to treat chronic pain: current state of the field. Br. J. Pharmacol. 175, 2185–2203 (2018).

    CAS  PubMed  Google Scholar 

  54. Gavva, N. R. et al. Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade. J. Pharmacol. Exp. Ther. 323, 128–137 (2007).

    CAS  PubMed  Google Scholar 

  55. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    CAS  PubMed  Google Scholar 

  56. Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).

    CAS  PubMed  Google Scholar 

  57. Gavva, N. R. et al. Pharmacological blockade of the vanilloid receptor TRPV1 elicits marked hyperthermia in humans. Pain 136, 202–210 (2008).

    CAS  PubMed  Google Scholar 

  58. Eid, S. Therapeutic targeting of TRP channels: the TR(i)P to pain relief. Curr. Top. Med. Chem. 11, 2118–2130 (2011).

    CAS  PubMed  Google Scholar 

  59. Miller, F., Björnsson, M., Svensson, O. & Karlsten, R. Experiences with an adaptive design for a dose-finding study in patients with osteoarthritis. Contemp. Clin. Trials 37, 189–199 (2014).

    PubMed  Google Scholar 

  60. Long, W. et al. Vitamin D is an endogenous partial agonist of the transient receptor potential vanilloid 1 channel. J. Physiol. 598, 4321–4338 (2020).

    CAS  PubMed  Google Scholar 

  61. Manitpisitkul, P. et al. A multiple-dose, double-blind randomized study to evaluate the safety, pharmacokinetics, pharmacodynamics, and analgesic efficacy of the TRPV1 antagonist JNJ-39439335 (mavatrep). Scand. J. Pain. 18, 151–164 (2018). This paper reports the first clinical study demonstrating analgesic potential for a TRPV1 antagonist.

    PubMed  Google Scholar 

  62. Arsenault, P. et al. NEO6860, a modality-selective TRPV1 antagonist: a randomized, controlled, proof-of-concept trial in patients with osteoarthritic knee pain. Pain. Rep. 3, e696 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Damann, N. et al. In vitro characterization of the thermoneutral transient receptor potential vanilloid-1 (TRPV1) receptor inhibitor GRTE16523. Eur. J. Pharmacol. 871, 172934 (2020).

    CAS  PubMed  Google Scholar 

  64. Gu, Y., Li, G. & Huang, L.-Y. M. Inflammation induces Epac-protein kinase C alpha and epsilon signaling in TRPV1-mediated hyperalgesia. Pain 159, 2383–2393 (2018).

    CAS  PubMed  Google Scholar 

  65. Joseph, J. et al. Phosphorylation of the TRPV1 S801 contributes to modality-specific hyperalgesia in mice. J. Neurosci. 39, 9954–9966 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Hoffmeister, C. et al. Participation of TRPV1 receptor in the development of acute gout attacks. Rheumatology 53, 240–249 (2014).

    CAS  PubMed  Google Scholar 

  67. Yin, C. et al. Eucalyptol alleviates inflammation and pain responses in a mouse model of gout arthritis. Br. J. Pharmacol. 177, 2042–2057 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Urata, K. et al. Involvement of TRPV1 and TRPA1 in incisional intraoral and extraoral pain. J. Dent. Res. 94, 446–454 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Ossola, C. A. et al. A new target to ameliorate the damage of periodontal disease: the role of transient receptor potential vanilloid type-1 in contrast to that of specific cannabinoid receptors in rats. J. Periodontol. 90, 1325–1335 (2019).

    CAS  PubMed  Google Scholar 

  70. Bohonyi, N. et al. Local upregulation of transient receptor potential ankyrin-1 and transient receptor potential vanilloid-1 channels in rectosigmoid deep infiltrating endometriosis. Mol. Pain. 13, 1744806917705564 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Ramesh, D., D’Agata, A., Starkweather, A. R. & Young, E. E. Contribution of endocannabinoid gene expression and genotype on low back pain susceptibility and chronicity. Clin. J. Pain. 34, 8–14 (2018).

    PubMed  PubMed Central  Google Scholar 

  72. Kim, H., Mittal, D. P., Iadarola, M. J. & Dionne, R. A. Genetic predictors for acute experimental cold and heat pain sensitivity in humans. J. Med. Genet. 43, e40 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Jhun, E. H. et al. Transient receptor potential polymorphism and haplotype associate with crisis pain in sickle cell disease. Pharmacogenetics 19, 401–411 (2018).

    CAS  Google Scholar 

  74. Nirenberg, M. J., Chaouni, R., Biller, T. M., Gilbert, R. M. & Paisán-Ruiz, C. A novel TRPA1 variant is associated with carbamazepine-responsive cramp-fasciculation syndrome. Clin. Genet. 93, 164–168 (2018).

    CAS  PubMed  Google Scholar 

  75. Kremeyer, B. et al. A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66, 671–680 (2010). This article described the first genetic evidence implying a causative role for TRPA1 in human pain.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Naert, R., Talavera, A., Startek, J. B. & Talavera, K. TRPA1 gene variants hurting our feelings. Pflügers Arch. 472, 953–960 (2020).

    CAS  PubMed  Google Scholar 

  77. Bessac, B. F. & Jordt, S.-E. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology 23, 360–370 (2008).

    CAS  PubMed  Google Scholar 

  78. Moran, M. M., McAlexander, M. A., Bíró, T. & Szallasi, A. Transient receptor potential channels as therapeutic targets. Nat. Rev. Drug Discov. 10, 601–620 (2011).

    CAS  PubMed  Google Scholar 

  79. Eberhardt, M. J. et al. Methylglyoxal activates nociceptors through transient receptor potential channel A1 (TRPA1): a possible mechanism of metabolic neuropathies. J. Biol. Chem. 287, 28291–28306 (2012). This study provides a mechanistic explanation for the neuropathic pain that develops in patients with long-standing diabetes, and pinpoints TRPA1 as a potential preventive target.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Ohkawara, S., Tanaka-Kagawa, T., Furukawa, Y. & Jinno, H. Methylglyoxal activates the human transient receptor potential ankyrin 1 channel. J. Toxicol. Sci. 37, 831–835 (2012).

    CAS  PubMed  Google Scholar 

  81. Shimizu, S., Takahashi, N. & Mori, Y. TRPs as chemosensors (ROS, RNS, RCS, gasotransmitters). Handb. Exp. Pharmacol. 223, 767–794 (2014).

    CAS  PubMed  Google Scholar 

  82. Hinman, A., Chuang, H. H., Bautista, D. M. & Julius, D. TRP channel activation by reversible covalent modification. Proc. Natl Acad. Sci. USA 103, 19564–19568 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Nassini, R. et al. Oxaliplatin elicits mechanical and cold allodynia in rodents via TRPA1 receptor stimulation. Pain 152, 1621–1631 (2011).

    CAS  PubMed  Google Scholar 

  84. De Logu, F. et al. Macrophages and Schwann cell TRPA1 mediate chronic allodynia in a mouse model of complex regional pain syndrome type I. Brain Behav. Immun. 88, 535–546 (2020).

    PubMed  Google Scholar 

  85. Vermeulen, W. et al. The role of TRPV1 and TRPA1 in visceral hypersensitivity to colorectal distension during experimental colitis in rats. Eur. J. Pharmacol. 698, 404–412 (2013).

    CAS  PubMed  Google Scholar 

  86. Reese, R. M. et al. Behavioral characterization of CRISPR-generated TRPA1 knockout rat in models of pain, itch, and asthma. Sci. Rep. 10, 979 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Koivisto, A., Jalava, N., Bratty, R. & Pertovaara, A. TRPA1 antagonists for pain relief. Pharmaceuticals 11, 117 (2018).

    CAS  PubMed Central  Google Scholar 

  88. Koivisto, A. et al. Inhibiting TRPA1 ion channel reduces loss of cutaneous nerve fiber function in diabetic animals: sustained activation of TRPA1 channel contributes to the pathogenesis of peripheral diabetic neuropathy. Pharmacol. Res. 65, 149–158 (2012). This preclinical study implies that pharmacological blockade of TRPA1 may protect sensory nerves and prevent the development of peripheral diabetic neuropathy.

    CAS  PubMed  Google Scholar 

  89. A phase 2, 4 week randomized, double-blind, parallel group, placebo controlled proof of concept study to evaluate efficacy, safety and tolerability of GRC 17536 in patients with painful diabetic peripheral neuropathy. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2012-002320-33/results (2021).

  90. de David Antoniazzi, C. T. et al. Topical treatment with a transient receptor potential ankyrin 1 (TRPA1) antagonist reduced nociception and inflammation in a thermal lesion model in rats. Eur. J. Pharm. Sci. 125, 28–38 (2018).

    PubMed  Google Scholar 

  91. Petrus, M. et al. A role of TRPA1 in mechanical hyperalgesia is revealed by pharmacological inhibition. Mol. Pain. 3, 40 (2007).

    PubMed  PubMed Central  Google Scholar 

  92. Kissin, I., Davison, N. & Bradley, E. L. Jr. Perineural resiniferatoxin prevents hyperalgesia in a rat model of postoperative pain. Anesth. Analg. 100, 774–780 (2005).

    CAS  PubMed  Google Scholar 

  93. Szallasi, A. Vanilloid-sensitive neurons: a fundamental subdivision of the peripheral nervous system. J. Periph. Nerv. Syst. 1, 6–18 (1996).

    CAS  Google Scholar 

  94. Lilly. Lilly to acquire pre-clinical pain program from Hydra Biosciences. https://prnewswire.com/news-releases/lilly-to-acquire-pre-clinical-pain-program-from-hydra-biosciences-300765876.html (2018).

  95. Chen, H. & Terrett, J. A. Transient receptor potential ankyrin 1 (TRPA1) antagonists: a patent review (2015-2019). Expert Opin. Ther. Pat. 30, 643–657 (2020).

    CAS  PubMed  Google Scholar 

  96. Bautista, D. M. et al. The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448, 204–208 (2007).

    CAS  PubMed  Google Scholar 

  97. Knowlton, W. M., Bifolck-Fisher, A., Bautista, D. M. & McKemy, D. D. TRPM8, but not TRPA1, is required for neural and behavioral responses to acute noxious cold temperatures and cold-mimetics in vivo. Pain 150, 340–350 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Weyer, A. D. & Lehto, S. G. Development of TRPM8 antagonists to treat chronic pain and migraine. Pharmaceuticals 10, 37 (2017).

    PubMed Central  Google Scholar 

  99. Reimúndez, A. et al. Deletion of the cold thermoreceptor TRPM8 increases heat loss and food intake, leading to reduced body temperature and obesity in mice. J. Neurosci. 38, 3643–3656 (2018).

    PubMed  PubMed Central  Google Scholar 

  100. Winchester, W. J. et al. Inhibition of TRPM8 channels reduces pain in the cold pressor test in humans. J. Pharmacol. Exp. Ther. 351, 259–269 (2014).

    PubMed  Google Scholar 

  101. Horne, D. B. et al. Discovery of TRPM8 antagonist (S)-6-(((3-fluoro-4-(trifluoromethoxy)phenyl)(3-fluoropyridin-2-yl)methyl)carbamoyl)nicotinic acid (AMG 333), a clinical candidate for the treatment of migraine. J. Med. Chem. 61, 8186–8201 (2018).

    CAS  PubMed  Google Scholar 

  102. Amato, A., Terzo, S., Lentini, L., Marchesa, P. & Mulé, F. TRPM8 channel activation reduces the spontaneous contractions in distal human colon. Int. J. Mol. Sci. 21, 5403 (2020).

    CAS  PubMed Central  Google Scholar 

  103. Lin, Z. et al. Exome sequencing reveals mutations in TRPV3 as a cause of Olmsted syndrome. Am. J. Hum. Genet. 90, 558–564 (2012). This article reports the identification of a TRPV3 gene defect that causes a human disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Duchatelet, S. et al. A new TRPV3 missense mutation in a patient with Olmsted syndrome and erythromelalgia. JAMA Dermatol. 150, 303–306 (2014).

    PubMed  Google Scholar 

  105. Peters, F., Kopp, J., Fischer, J. & Tantcheva-Poór, I. Mutation in TRPV3 causes painful focal plantar keratoderma. J. Acad. Eur. Dermatol. Venereol. 34, e620–e622 (2020).

    CAS  Google Scholar 

  106. Facer, P. et al. Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4, and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol. 7, 11 (2007).

    PubMed  PubMed Central  Google Scholar 

  107. Broad, L. M. et al. TRPV3 in drug development. Pharmaceuticals 9, 55 (2016).

    PubMed Central  Google Scholar 

  108. Cenac, N. et al. Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135, 937–946 (2008).

    CAS  PubMed  Google Scholar 

  109. Kanju, P. et al. Small molecule dual-inhibitors of TRPV4 and TRPA1 for attenuation of inflammation and pain. Sci. Rep. 6, 26894 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Schwatz, E. S. et al. TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic inflammation and pain in chronic pancreatitis. J. Neurosci. 33, 5603–5611 (2013).

    Google Scholar 

  111. Wang, H., Song, T., Wang, W. & Zhang, Z. TRPM2 participates the transformation of acute pain to chronic pain during injury-induced neuropathic pain. Synapse 73, e22117 (2019).

    PubMed  Google Scholar 

  112. Wick, E. C. et al. Transient receptor potential vanilloid 1, calcitonin gene-related peptide, and substance P mediate nociception in acute pancreatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G959–G969 (2006).

    CAS  PubMed  Google Scholar 

  113. Schwartz, E. S. et al. TRPV1 and TRPA1 antagonists prevent the transition of acute to chronic pain in chronic pancreatitis. J. Neurosci. 33, 5603–5611 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Haraguchi, K. et al. TRPM2 contributes to inflammatory and neuropathic pain through the aggravation pronociceptive inflammatory reponses in mice. J. Neurosci. 32, 3931–3941 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Vriens, J. et al. TRPM3 is a nociceptor channel involved in the detection of noxious heat. Neuron 70, 482–494 (2011).

    CAS  PubMed  Google Scholar 

  116. Vandewauw, I. et al. A TRP channel trio mediates acute noxious heat sensing. Nature 555, 662–666 (2018). This article describes how, in mice, eliminating pain responses to harmful heat requires a triple knockout of the TRPA1, TRPV1 and TRPM3 genes, suggesting a high degree of redundancy; the triple knockout mouse retains noxious cold and mechanical sensing and preference for moderate temperatures.

    CAS  PubMed  Google Scholar 

  117. Su, S., Yudin, Y., Kim, N., Tao, Y.-X. & Rohacs, T. TRPM3 channels play roles in heat hypersensitivity and spontaneous pain after nerve injury. J. Neurosci. 41, 3457–2474 (2021).

    Google Scholar 

  118. Straub, I. et al. Flavanones that selectively inhibit TRPM3 attenuate thermal nociception in vivo. Mol. Pharmacol. 84, 736–750 (2013).

    CAS  PubMed  Google Scholar 

  119. Jia, S., Zhang, Y. & Yu, J. Antinociceptive effects of isosakuranetin in a rat model of peripheral neuropathy. Pharmacology 100, 201–207 (2017).

    CAS  PubMed  Google Scholar 

  120. Yao, Q., Lin, M.-T., Zhu, Y.-D., Xu, H.-L. & Zhao, Y.-Z. Recent trends in potential therapeutic applications of the dietary flavonoid didymin. Molecules 23, 2547 (2018).

    PubMed Central  Google Scholar 

  121. Buniel, M., Wisnoskey, B., Glazebrook, P. A., Schilling, W. P. & Kunze, D. L. Distribution of TRPC channels in the visceral sensory pathway. Novartis Found. Symp. 258, 236–243 (2004).

    CAS  PubMed  Google Scholar 

  122. Sadler, K. E. et al. Transient receptor potential canonical 5 mediates inflammatory mechanical and spontaneous pain in mice. Sci. Transl. Med. 13, eabd7702 (2021). This article reports TRPC5 to be a promising pain target.

    CAS  PubMed  Google Scholar 

  123. Westlund, K. N. et al. A rat knockout model implicates TRPC4 in visceral pain sensation. Neuroscience 262, 165–175 (2014).

    CAS  PubMed  Google Scholar 

  124. Miller, M. et al. Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J. Biol. Chem. 286, 33436–33446 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Chen, Y. et al. Epithelia-sensory neuron cross talk underlies cholestatic itch induced by lysophosphatidylcholine. Gastroenterology 161, 301–317.e16 (2021).

    CAS  PubMed  Google Scholar 

  126. Blum, T. et al. Trpc5 deficiency causes hypoprolactinemia and altered functions of oscillatory dopamine neurons in the arcuate nucleus. Proc. Natl Acad. Sci. USA 116, 15236–15243 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Wei, H., Sagalajev, B., Yüzer, M. A., Koivisto, A. & Pertovaara, A. Regulation of neuropathic pain behavior by amygdaloid TRPC4/C5 channels. Neurosci. Lett. 608, 12–17 (2015).

    CAS  PubMed  Google Scholar 

  128. Belvisi, M. G. & Birrell, M. A. The emerging role of transient receptor potential channels in chronic lung disease. Eur. Respir. J. 50, 1601357 (2017).

    PubMed  Google Scholar 

  129. Collier, J. G. & Fuller, R. W. Capsaicin inhalation in man and the effects of sodium cromoglycate. Br. J. Pharmacol. 81, 113–117 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Belvisi, M. G. et al. Neurophenotypes in airway diseases. Insights from translational cough studies. Am. J. Respir. Crit. Care Med. 193, 1364–1372 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Grace, M., Birrell, M. A., Dubuis, E., Maher, S. A. & Belvisi, M. G. Transient receptor potential channels mediate the tussive response to prostaglandin E2 and bradykinin. Thorax 67, 891–900 (2012).

    PubMed  Google Scholar 

  132. Zhang, G., Lin, R.-L., Wiggers, M., Snow, D. M. & Lee, L.-Y. Altered expression of TRPV1 and sensitivity to capsaicin in pulmonary myelinated afferents following chronic airway inflammation in the rat. J. Physiol. 586, 5771–5786 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Lieu, T. M., Myers, A. C., Meeker, S. & Undem, B. J. TRPV1 induction in airway vagal low-threshold mechanosensory neurons by allergen challenge and neurotrophic factors. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L941–L948 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Smit, L. A. M. et al. Transient receptor potential genes, smoking, occupational exposures and cough in adults. Respir. Res. 13, 26 (2012).

    PubMed  PubMed Central  Google Scholar 

  135. Khalid, J. et al. Transient receptor potential vanilloid 1 (TRPV1) antagonism in patients with refractory chronic cough: a double-blind, randomized. controlled trial. J. Allergy Clin. Immunol. 134, 56–62 (2014).

    CAS  PubMed  Google Scholar 

  136. Belvisi, M. G. et al. XEN-D0501, a novel transient receptor potential vanilloid 1 antagonist, does not reduce cough in patients with refractory cough. Am. J. Respir. Crit. Care Med. 196, 1255–1263 (2017).

    CAS  PubMed  Google Scholar 

  137. Smith, J. A. et al. TRPV1 antagonism with XEN-D0501 in chronic obstructive pulmonay disease: translation from pre-clinical model to clinical trial. Am. J. Respir. Crit. Care Med. 195, A6339 (2017).

    Google Scholar 

  138. Grace, M. S., Baxter, M., Dubuis, E., Birrell, M. A. & Belvisi, M. G. Transient receptor potential (TRP) channels in the airway: role in airway disease. Br. J. Pharmacol. 171, 2593–2607 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. McGarvey, L. P. et al. Increased expression of bronchial epithelial transient receptor potential vanilloid 1 channels in patients with severe asthma. J. Allergy Clin. Immunol. 133, 704–712 (2014).

    CAS  PubMed  Google Scholar 

  140. Yu, H., Li, Q., Kolosov, V. P., Perelman, J. M. & Zhou, X. Regulation of particulate matter-induced mucin secretion by transient receptor potential vanilloid 1 receptors. Inflammation 35, 1851–1859 (2012).

    CAS  PubMed  Google Scholar 

  141. Reilly, C. A. et al. Calcium-dependent and independent mechanisms of capsaicin receptor (TRPV1)-mediated cytokine production and cell death in human bronchial epithelial cells. J. Biochem. Mol. Toxicol. 19, 266–275 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Baxter, M. et al. Role of transient receptor potential and pannexin channels in cigarette smoke-triggered ATP release in the lung. Thorax 69, 1080–1089 (2014).

    PubMed  Google Scholar 

  143. Baker, K. et al. Role of the ion channel, transient receptor potential cation channel subfamily V member 1 (TRPV1), in allergic asthma. Respir. Res. 17, 67 (2016).

    PubMed  PubMed Central  Google Scholar 

  144. Delescluse, I., Mace, H. & Adcock, J. J. Inhibition of airway hyper-responsiveness by TRPV1 antagonists (SB-705498 and PF-04065463) in the unanesthesized, ovalbumin-sensitized guinea pig. Br. J. Pharmacol. 166, 1822–1832 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Bessac, B. F. et al. TRPA1 is a major oxygen sensor in murine airway sensory neurons. J. Clin. Invest. 118, 1899–1990 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Birrell, M. A. et al. TRPA1 agonists evoke coughing in guinea pig and human volunteers. Am. J. Respir. Crit. Care Med. 180, 1042–1047 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Mukhopadhyay, I. et al. Transient receptor potential ankyrin 1 receptor activation in vitro and in vivo by pro-tussive agents: GRC 17536 as a promising anti-tussive therapeutic. PLoS ONE 9, e97005 (2014).

    PubMed  PubMed Central  Google Scholar 

  148. Andre, E. et al. Transient receptor potential ankyrin receptor 1 is a novel target for pro-tussive agents. Br. J. Pharmacol. 158, 1621–1628 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Mukhopadhyay, I. et al. Expression of functional TRPA1 receptor on human lung fibroblast and epithelial cells. J. Recept. Signal. Tranduct. Res. 31, 350–358 (2011).

    CAS  Google Scholar 

  150. Bandell, M. et al. Noxious cold ion channel is activated by pungent compounds and bradykinin. Neuron 41, 848–857 (2004).

    Google Scholar 

  151. Bautista, D. M. et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124, 1269–1282 (2006).

    CAS  PubMed  Google Scholar 

  152. Andre, E. et al. Cigarette smoke-induced neurogenic inflammation is mediated by α,β-unsaturated aldehydes and the TRPA1 receptor in rodents. J. Clin. Invest. 118, 2574–2582 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Taylor-Clark, T. E. Role of reactive oxygen species and TRP channels in the cough reflex. Cell Calcium 60, 155–162 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Robinson, R. K. et al. Mechanistic link between diesel exhaust particles and respiratory reflexes. J. Allergy Clin. Immunol. 141, 1074–1084 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Profita, M. et al. Increased prostaglandin E2 concentrations and cyclooxygenase-2 expression in asthmatic subjects with sputum eosinophilia. J. Allergy Clin. Immunol. 112, 709–716 (2003).

    CAS  PubMed  Google Scholar 

  156. MacNee, W. et al. Evaluation of exhaled breath condensate pH as a biomarker for COPD. Respir. Med. 105, 1037–1045 (2011).

    PubMed  Google Scholar 

  157. Tevisani, M. et al. Antitussive activity of iodo-resiniferatoxin in guinea pigs. Thorax 59, 769–772 (2004).

    Google Scholar 

  158. Kollarik, M., Ru, F. & Undem, B. Acid-sensitive vagal sensory pathways and cough. Pulm. Pharmacol. Ther. 20, 402–411 (2007).

    CAS  PubMed  Google Scholar 

  159. Raemdonck, K. et al. A role for sensory nerves in the late asthmatic response. Thorax 67, 19–25 (2012).

    PubMed  Google Scholar 

  160. Caceres, A. I. et al. A sensory neuronal ion channel essential for airway inflammationand hyperreactivity in asthma. Proc. Natl Acad. Sci. USA 106, 9099–9104 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Taylor-Clark, T. E., Kiros, F., Carr, M. J. & McAlexander, M. A. Transient receptor potential ankyrin 1 mediates toluene diisocyanate-evoked respiratory irritation. Am. J. Respir. Cell. Mol. Biol. 40, 756–762 (2009).

    CAS  PubMed  Google Scholar 

  162. Fabbri, L. M. et al. Prednisone inhibits late asthmatic reactions and the associated increase in airway responsiveness induced by toluene-diisocyanate in sensitized subjects. Am. Rev. Respir. Dis. 132, 1010–1014 (1985).

    CAS  PubMed  Google Scholar 

  163. Hox, V. et al. Crucial role of transient receptor potential ankyrin 1 and mast cells in induction of nonallergic airway hyperreactivity in mice. Am. J. Respir. Crit. Care Med. 187, 486–493 (2013).

    CAS  PubMed  Google Scholar 

  164. WHO. Pneumonia. https://www.who.int/en/news-room/fact-sheets/detail/pneumonia (2019).

  165. Meseguer, V. et al. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins. Nat. Commun. 5, 3125 (2014).

    PubMed  Google Scholar 

  166. Gallo, V. et al. TRPA1 gene polymorphisms and childhood asthma. Pediatr. Allergy Immunol. 28, 191–198 (2017).

    PubMed  Google Scholar 

  167. Preti, D., Saponaro, G. & Szallasi, A. Transient receptor potential ankyrin 1 (TRPA1) antagonists. Pharm. Pat. Anal. 4, 75–94 (2015).

    CAS  PubMed  Google Scholar 

  168. Mukhopadhyay, I., Kulkarni, A. & Khairatkar-Joshi, N. Blocking TRPA1 in respiratory disorders: does it hold a promise? Pharmaceuticals 9, 70 (2016).

    PubMed Central  Google Scholar 

  169. Balestrini, A. et al. A TRPA1 inhibitor suppresses neurogenic inflammation and airway contraction for asthma treatment. J. Exp. Med. 218, e20201637 (2021). This article reports a potent and orally bioavailable TRPA1 antagonist with good target engagement in humans that effectively blocks cough response, airway hyperreactivity and edema formation in preclinical models of asthma.

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Dietrich, A. Modulators of transient receptor potential (TRP) channels as therapeutic options in lung disease. Pharmaceuticals 12, 23 (2019).

    CAS  PubMed Central  Google Scholar 

  171. Scheraga, R. G., Southern, B. D., Grove, L. M. & Olman, M. A. The role of transient receptor potential vanilloid 4 in pulmonary inflammatory diseases. Front. Immunol. 8, 503 (2017).

    PubMed  PubMed Central  Google Scholar 

  172. Grace, M. S., Bonvini, S. J., Belvisi, M. G. & McIntyre, P. Modulation of the TRPV4 ion channel as a therapeutic target for disease. Pharmacol. Ther. 177, 9–22 (2017).

    CAS  PubMed  Google Scholar 

  173. Alvarez, D. F. et al. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ. Res. 99, 988–995 (2006). This is one of the first articles in which TRPV4 is revealed as a key player in acute lung injury.

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Simonsen, U., Wandall-Frosthom, C., Viguera-Oliván, A. & Köhler, R. Emerging roles of calcium-activated K channels and TRPV4 channels in lung edema and pulmonary circulatory collapse. Acta Physiol. 219, 176–187 (2017).

    CAS  Google Scholar 

  175. Hamanaka, K. et al. TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 299, L353–L362 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Balakrishna, S. et al. TRPV4 inhibition counteracts edema and inflammation and imrproves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 307, L158–L172 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Yeung, D. T., Harper, J. R. & Platoff, G. E.Jr The National Institutes of Health Countermeasures Research Program (NIH CCRP): a collaborative opportunity to develop effective and accessible chemical medical countermeasures for the American people. Drug Dev. Res. 81, 907–910 (2020).

    CAS  Google Scholar 

  178. Thorneloe, K. S. et al. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci. Transl. Med. 4, 159ra148 (2012).

    PubMed  Google Scholar 

  179. Kuebler, W. M., Jordt, S. E. & Liedtke, W. B. Urgent reconsideration of lung edema as a preventable outcome in COVID-19: inhibition of TRPV4 represents a promising and feasible approach. Am. J. Physiol. Lung Cell. Mol. Physiol. 318, L1239–L1243 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Bonvini, S. J. et al. Transient receptor potential cation channel, subfamily V, member 4 and airway sensory afferent activation: role of adenosine triphosphate. J. Allergy Clin. Immunol. 138, 249–261 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  181. Bonvini, S. J. et al. Novel airway smooth muscle-mast cell interactions and a role for the TRPV4-ATP axis in non-atopic asthma. Eur. Respir. J. 56, 1901458 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Seminario-Vidal, L. et al. Rho signaling regulates pannexin 1-mediated ATP release from airway epithelia. J. Biol. Chem. 286, 26277–26286 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Abdulqawi, L. et al. P2X3 receptor antagonist (AF-219) in refractory chronic cough: a randomized, double-blind, placebo-controlled phase 2 study. Lancet 385, 1198–1205 (2015).

    CAS  PubMed  Google Scholar 

  184. McAlexander, M. A., Luttmann, M. A., Hunsberger, G. E. & Undem, B. J. Transient receptor potential vanilloid 4 activation constricts the human bronchus via the release of cysteinyl leukotrienes. J. Pharmacol. Exp. Ther. 349, 118–125 (2014).

    PubMed  PubMed Central  Google Scholar 

  185. Cantero-Recasens, G. et al. Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma. J. Biol. Chem. 285, 27532–27535 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Zhu, G. et al. Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum. Mol. Genet. 18, 2053–2062 (2009).

    CAS  PubMed  Google Scholar 

  187. Rahaman, S. O. et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J. Clin. Invest. 124, 5225–5238 (2014).

    PubMed  PubMed Central  Google Scholar 

  188. Al-Azzam, N. et al. Transient receptor vanilloid channel regulates fibroblast differentiation and airway remodelling by modulating redox signals through NADPH oxydase 4. Sci. Rep. 10, 9827 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Zhan, L. & Li, J. The role of TRPV4 in fibrosis. Gene 642, 1–8 (2018).

    CAS  PubMed  Google Scholar 

  190. Riteau, N. et al. Extracellular ATP is a danger signal activating P2X7 receptor in lung inflammation and fibrosis. Am. J. Respir. Crit. Care Med. 182, 774–783 (2010).

    CAS  PubMed  Google Scholar 

  191. Plevkova, J. et al. The role of trigeminal nasal TRPM8-expressing sensory neurons in the antitussive effects of menthol. J. Appl. Physiol. 115, 268–274 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Morice, A. H., Marshall, A. E., Higgins, K. S. & Grattan, T. J. Effect of inhaled menthol on citric acid-induced cough in normal subjects. Thorax 49, 1024–1026 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Wise, P. M., Breslin, P. A. S. & Dalton, P. Sweet taste and menthol increase cough reflex thresholds. Pulm. Pharmacol. Ther. 25, 236–241 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Karashima, Y. et al. Bimodal action of menthol on the transient receptor potential channel TRPA1. J. Neurosci. 27, 9874–9884 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Cruz, F. et al. Desensitization of bladder sensory fibers by intravesical capsaicin has long lasting clinical and urodynamic effects in patients with hyperactive or hypersensitive bladder dysfunction. J. Urol. 157, 585–589 (1997).

    CAS  PubMed  Google Scholar 

  196. Silva, C., Rio, M. E. & Cruz, F. Desensitization of bladder sensory fibers by intravesical resiniferatoxin, a capsaicin analog: long-term results for the treatment of detrusor hyperreflexia. Eur. Urol. 38, 444–452 (2000).

    CAS  PubMed  Google Scholar 

  197. Phé, V. et al. Intravesical vanilloids for treating neurogenic lower urinary tract dysfunction in patients with multiple sclerosis: a systematic review and meta-analysis. A report from the Neuro-Urology Promotion Committee of the International Continence Society (ICS). Neurourol. Urodyn. 37, 67–82 (2018).

    PubMed  Google Scholar 

  198. Liu, B. L. et al. Increased severity of inflammation correlates with elevated expression of TRPV1 nerve fibers and nerve growth factor on interstitial cystitis/bladder pain syndrome. Urol. Int. 92, 202–208 (2014).

    CAS  PubMed  Google Scholar 

  199. Payne, S. K. et al. Intravesical resiniferatoxin for the treatment of interstitial cystitis: a randomized, double-blind, placebo controlled trial. J. Urol. 173, 1590–1594 (2005).

    CAS  PubMed  Google Scholar 

  200. Shi, B. et al. Resiniferatoxin for the treatment of lifelong premature ejaculation: a preliminary study. Int. J. Urol. 21, 923–926 (2014).

    CAS  PubMed  Google Scholar 

  201. Charrua, A. et al. GRC-6211, a new oral specific TRPV1 antagonist, decreases bladder overactivity and noxious bladder input in cystitis animal models. J. Urol. 181, 379–386 (2009).

    CAS  PubMed  Google Scholar 

  202. Aizawa, N. et al. RQ-00434739, a novel TRPM8 antagonist, inhibits prostaglandin E2-induced hyperactivity of the primary bladder afferent nerves in rats. Life Sci. 218, 89–95 (2019).

    CAS  PubMed  Google Scholar 

  203. Aizawa, N. et al. KPR-2579, a novel TRPM8 antagonist, inhibits acetic acid-induced bladder afferent hyperactivity in rats. Neurourol. Urodyn. 37, 1633–1640 (2018).

    CAS  PubMed  Google Scholar 

  204. Birder, L. et al. Activation of urothelial transient receptor potential vanilloid 4 by 4α-phorbol 12,13-didecanoate contributes to the altered bladder reflexes in the rat. J. Pharmacol. Exp. Ther. 323, 227–235 (2007).

    CAS  PubMed  Google Scholar 

  205. Gevaert, T. et al. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Invest. 117, 3453–3462 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Thorneloe, K. S. et al. N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J. Pharmacol. Exp. Ther. 326, 432–442 (2008).

    CAS  PubMed  Google Scholar 

  207. Roberts, M. W. G. et al. TRPV4 receptor as a functional sensory molecule in bladder urothelium: stretch-independent, tissue-specific actions and pathological implications. FASEB J. 34, 263–286 (2020).

    CAS  PubMed  Google Scholar 

  208. Deruyver, Y. et al. Intravesical activation of the cation channel TRPV4 improves bladder function in a rat model for detrusor underactivity. Eur. Urol. 74, 336–345 (2018).

    PubMed  Google Scholar 

  209. Everaerts, W. et al. Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc. Natl Acad. Sci. USA 107, 19084–19089 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhou, Y. et al. A small molecule inhibitor of TRPC5 ion channels suppresses progressive kidney disease in animal models. Science 358, 1332–1336 (2017). This study provides a proof-of-principle that chemical inhibition of TRPC5 channel activity can provide a therapeutic benefit in a rodent model of focal segmental glomerulosclerosis (FSGS).

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Lin, B. L. et al. In vivo selective inhibition of TRPC6 by antagonist BI 749327 ameliorates fibrosis and dysfunction in cardiac and renal disease. Proc. Natl Acad. Sci. USA 116, 10156–10161 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Wang, L., Chang, J. H., Buckley, A. F. & Spurney, R. F. Knockout of TRPC6 promotes insulin resistance and exacerbates glomerular injury in Akita mice. Kidney Int. 95, 321–332 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Riehle, M. et al. TRPC6 G757D loss-of-function mutation associates with FSGS. J. Am. Soc. Nephrol. 27, 2771–2783 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Caterina, M. J. & Pang, Z. TRP channels in skin biology and pathophysiology. Pharmaceuticals 9, 77 (2016).

    PubMed Central  Google Scholar 

  215. Zhou, Y. et al. Transient receptor potential ankyrin 1 (TRPA1) positively regulates imiquimod-induced psoriasiform dermal inflammation in mice. J. Cell. Mol. Med. 23, 4819–4828 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Yoshioka, T. et al. Impact of the Gly573Ser substitution in TRPV3 on the development of allergic and pruritic dermatitis in mice. J. Invest. Dermatol. 129, 714–722 (2009).

    CAS  PubMed  Google Scholar 

  217. Kim, H. O. et al. Increased activity of TRPV3 in keratinocytes in hypertrophic burn scars with postburn pruritus. Wound Repair. Regen. 24, 841–850 (2016).

    PubMed  Google Scholar 

  218. Luo, J. et al. Transient receptor potential vanilloid 4-expressing macrophages and keratinocytes contribute differentially to allergic and non-allergic chronic itch. J. Allergy Clin. Immunol. 141, 608–619 (2018).

    CAS  PubMed  Google Scholar 

  219. Akiyama, T. et al. Involvement of TRPV4 in serotonin-evoked scrathcing. J. Invest. Dermatol. 136, 154–160 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Misery, L. et al. Real-life study of anti-itching effects of a cream containing menthoxypronaediol, a TRPM8 agonist, in atopic dermatitis patients. J. Eur. Acad. Dermatol. Venereol. 33, e67–e69 (2019).

    CAS  PubMed  Google Scholar 

  221. Lee, Y. W. et al. Efficacy and safety of PAC-14028 cream, a novel, topical, non-steroidal, selective TRPV1 antagonist in patients with mild- to moderate atopic dermatitis: a phase IIb randomized trial. Br. J. Dermatol. 180, 1030–1038 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Cohen, J. A. et al. Cutaneous TRPV1+ neurons trigger protective innate type 17 anticipatory immunity. Cell 178, 919–932 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Fialho, M. F. P. et al. Topical transient receptor potential ankyrin 1 antagonist treatment attenuates nociception and inflammation in ultraviolet B radiation-induced burn model in mice. J. Dermatol. Sci. 97, 135–142 (2020).

    CAS  PubMed  Google Scholar 

  224. Cheng, X. et al. TRP channel regulates EGFR signaling in hair morphogenesis and skin barrier formation. Cell 141, 331–343 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Asakawa, M. et al. Association of a mutation in TRPV3 with defective hair growth in rodents. J. Invest. Dermatol. 126, 2664–2672 (2006).

    CAS  PubMed  Google Scholar 

  226. Borbíró, I. et al. Activation of transient receptor potential vanilloid-3 inhibits human hair growth. J. Invest. Dermatol. 131, 1605–1614 (2011).

    PubMed  Google Scholar 

  227. Imura, K., Yoshioka, T., Hirasawa, T. & Sakata, T. Role of TRPV3 in immune response to development of dermatitis. J. Inflamm. 6, 17 (2009).

    Google Scholar 

  228. Szántó, M. et al. Activation of TRPV3 inhibits lipogenesis and stimulates production of inflammatory mediators in human sebocytes: a putative contributor to dry skin dermatoses. J. Invest. Dermatol. 139, 250–253 (2019).

    PubMed  Google Scholar 

  229. Zhou, Y. et al. TRPV1 mediates inflammation and hyperplasia in imiquimod (IMQ)-induced psoriasiform dermatitis (PsD) in mice. J. Dermatol. Sci. 92, 264–271 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  230. Chen, Y. et al. TRPV4 moves toward centerfold in rosacea pathogenesis. J. Invest. Dermatol. 137, 801–804 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  231. Wang, H. et al. Gain-of-function mutations in TRPM4 activation gate cause progressive symmetric erythrokeratodermia. J. Invest. Dermatol. 139, 1089–1097 (2019).

    CAS  PubMed  Google Scholar 

  232. Yang, J. M., Wei, E. T., Kim, S. J. & Yoon, K. C. TRPM8 channels and dry eye. Pharmaceuticals 11, 125 (2018).

    CAS  PubMed Central  Google Scholar 

  233. Okada, Y. et al. Loss of TRPV4 function suppresses inflammatory fibrosis induced by alkali-burning mouse corneas. PLoS ONE 11, e0167200 (2016).

    PubMed  PubMed Central  Google Scholar 

  234. Kwon, J. Y., Lee, H. S. & Joo, C.-K. TRPV1 antagonist suppresses allergic conjunctivitis in a murine model. Ocul. Immunol. Inflamm. 26, 440–448 (2018).

    CAS  PubMed  Google Scholar 

  235. Jang, Y. et al. Quantitative analysis of TRP channel genes in mouse organs. Arch. Pharm. Res. 35, 1823–1830 (2012).

    CAS  PubMed  Google Scholar 

  236. Shigetomi, E., Jackson-Weaver, O., Huckstepp, R. T., O’Dell, T. J. & Khakh, B. S. TRPA1 channels are regulators of astrocyte basal calcium levels and long term potentiation via constitutive D-serine release. J. Neurosci. 33, 10143–10153 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Kheradpezhouh, E., Tang, M. F., Mattingley, J. B. & Arabzadeh, E. Enhanced sensory coding in mouse vibrissal and visual cortex through TRPA1. Cell Rep. 32, 107935 (2020).

    CAS  PubMed  Google Scholar 

  238. Wagner Pires, P. & Earley, S. Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke. eLife 7, e35316 (2018). This paper shows that the TRPA1 agonist cinnamaldehyde reduced infarct in wild-type mice, whereas Trpa1 deletion in endothelial cells increased cerebral infarcts and eliminated the effects of cinnamaldehyde, revealing the therapeutic potential of TRPA1 activation to reduce ischaemic brain damage.

    Google Scholar 

  239. De Logu, F. et al. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat. Commun. 8, 1887 (2017).

    PubMed  PubMed Central  Google Scholar 

  240. Hamilton, N. B., Kolodziejczyk, K., Kougioumtzigou, E. & Attwell, D. Proton-gated Ca2+-permeable TRP channels damage myelin in conditions mimicking ischemia. Nature 529, 523–527 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Sághy, É. et al. TRPA1 deficiency is protective in cuprizone-induced demyelination — a new target against oligodendrocyte apoptosis. Glia 64, 2166–2180 (2016).

    PubMed  Google Scholar 

  242. Wetzels, S. et al. Methylglyoxal-derived advanced glycation endproducts accumulate in multiple sclerosis lesions. Front. Immunol. 10, 855 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  243. Herrmann, A. K. et al. Dimethyl fumarate alters intracellular Ca2+ handling in immune cells by redox-mediated pleiotropic effects. Free Radic. Biol. Med. 141, 338–347 (2019).

    CAS  PubMed  Google Scholar 

  244. Cavalcante de Moura, J. et al. The blockade of transient receptor potential ankyrin 1 (TRPA1) signalling mediates antidepressant and anxiolytic-like actions in mice. Br. J. Pharmacol. 171, 4289–4299 (2014).

    CAS  Google Scholar 

  245. Borbély, É., Payrits, M., Hunyady, Á., Mező, G. & Pintér, E. Important regulatory function of transient receptor potential ankyrin-1 receptors in age-related learning and memory alterations in mice. Geroscience 41, 643–654 (2019).

    PubMed  PubMed Central  Google Scholar 

  246. Lee, K. I., Lin, H. C., Lee, H. T., Tsai, F. C. & Lee, T. S. Loss of transient receptor potential ankyrin 1 channel deregulates emotion, learning and memory, cognition, and social behavior in mice. Mol. Neurobiol. 54, 3606–3617 (2017).

    CAS  PubMed  Google Scholar 

  247. US National Library of Medicine. Safety, tolerability, pharmacokinetic and pharmacodynamic effects of ODM-108: in healthy male volunteers (FIMTRIP). ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02432664 (2017).

  248. Payrits, M. et al. Genetic deletion of TRPA1 receptor attenuates amyloid beta-1-42 (Aβ1-42)-induced neurotoxicity in the mouse basal forebrain in vivo. Mech. Ageing Dev. 189, 111268 (2020).

    CAS  PubMed  Google Scholar 

  249. Sarycheva, T. et al. Antiepileptic drug use and the risk of stroke among community dwelling people with Alzheimer disease: a matched control study. J. Am. Heart Assoc. 7, e009742 (2018).

    PubMed  PubMed Central  Google Scholar 

  250. Kim, J. et al. Ca2+-permeable TRPV1 pain receptor knockout recuses memory deficits and reduces amyloid-β and tau in a mouse model of Alzheimer’s disease. Hum. Mol. Genet. 29, 228–237 (2020).

    CAS  PubMed  Google Scholar 

  251. Sakaguchi, R. & Mori, Y. Transient receptor potential (TRP) channels: biosensors for redox environmental stimuli anc cellular status. Free. Radic. Biol. Med. 146, 36–44 (2020).

    CAS  PubMed  Google Scholar 

  252. Zhan, K.-Y., Yu, P. L., Liu, C.-H., Luo, J. H. & Yang, W. Detrimental or beneficial: the role of TRPM2 in ischemia/reperfusion injury. Acta Pharmacol. Sin. 27, 4–12 (2016).

    Google Scholar 

  253. Fourgeaud, L. et al. Pharmacology of JNJ-28583113: a novel TRPM2 antagonist. Eur. J. Pharmacol. 853, 299–307 (2019).

    CAS  PubMed  Google Scholar 

  254. Dietz, R. M. et al. Reversal of global ischemia-induced cognitive dysfunction by delayed inhibition of TRPM2 ion channels. Transl. Stroke Res. 11, 254–266 (2020).

    PubMed  Google Scholar 

  255. Ko, S. Y. et al. Transient receptor potential melastatin 2 governs stress-induced depressive-like behaviors. Proc. Natl Acad. Sci. USA 116, 1770–1775 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  256. Xu, C. et al. Association of the putative susceptibility gene, transient receptor potential protein melastatin type 2, with bipolar disorder. Am. J. Med. Genet. B 141B, 36–43 (2006).

    CAS  Google Scholar 

  257. Jang, Y. et al. TRPM2, a susceptibility gene for bipolar disorder, regulates glycogen synthase kinase-3 activity in the brain. J. Neurosci. 35, 11811–11823 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  258. Krügel, U., Straub, I., Beckmann, H. & Schaefer, M. Primidone inhibits TRPM3 and attenuates thermal nociception in vivo. Pain 158, 856–867 (2017). This paper demonstrates that primidone, a drug used to treat essential tremor and seizures, blocks TRPM3 at clinically relevant doses.

    PubMed  PubMed Central  Google Scholar 

  259. Dyment, D. A. et al. De novo substitutions of TRPM3 causes intellectual disability and epilepsy. Eur. J. Hum. Genet. 27, 1611–1618 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  260. Earley, S., Waldron, B. J. & Brayden, J. E. Critical role of transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ. Res. 95, 922–929 (2004). This is the first paper to demonstrate that TRPM4 regulates constriction of cerebral arteries.

    CAS  PubMed  Google Scholar 

  261. Woo, S. K., Kwon, M. S., Ivanov, A., Gerzanich, V. & Simard, J. M. The sulfonylurea receptor 1 (Sur1)-transient receptor potential melastatin 4 (TRPM4) channel. J. Biol. Chem. 288, 3655–3667 (2013).

    CAS  PubMed  Google Scholar 

  262. Gerzanich, V. et al. De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat. Med. 15, 185–191 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  263. Loh, K. P. et al. TRPM4 inhibition promotes angiogenesis after ischemic stroke. Pflügers Arch. 466, 563–576 (2014).

    CAS  PubMed  Google Scholar 

  264. Vorasayan, P. et al. Intravenous glibenclamide reduces lesional water uptake in large hemisphere infarction. Stroke 50, 3021–3027 (2019).

    PubMed  PubMed Central  Google Scholar 

  265. US National Library of Medicine. Phase 3 study to evaluate the efficacy and safety of intravenous BIIB093 (Glibenclamide) for severe cerebral edema following large hemispheric infarction (CHARM). ClinicalTrials.gov https://www.clinicaltrials.gov/ct2/show/NCT02864953 (2021).

  266. Schattling, B. et al. TRPM4 cation channel mediates axonal and neuronal degeneration in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat. Med. 18, 1805–1811 (2012).

    CAS  PubMed  Google Scholar 

  267. Riccio, A. et al. Decreased anxiety-like behavior and Gαq/11-dependent responses in the amygdala of mice lacking TRPC4 channels. J. Neurosci. 34, 3653–3667 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  268. Riccio, A. et al. Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137, 761–772 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Just, S. et al. Treatment with HC-070, a potent inhibitor of TRPC4 and TRPC5, leads to anxiolytic and antidepressant effects in mice. PLoS ONE 13, e0191225 (2018). Riccio et al., Just et al. and Boehringer Ingelheim show that, as suggested by gene deletion studies, pharmacological inhibition of TRPC4 and TRPC5 channels is benefical in murine models of anxiety and antidepression.

    PubMed  PubMed Central  Google Scholar 

  270. Boehringer Ingelheim. Hydra Biosciences and Boehringer Ingelheim announce worldwide collaboration to develop small-molecule inhibitors for the treatment of central nervous system diseases and disorders. https://www.boehringer-ingelheim.pt/press-release/hydra-biosciences-and-boehringer-ingelheim-announce-worldwide-collaboration-develop (2021).

  271. Rasmus, K. C., O’Neill, C. E., Bachtell, R. K. & Cooper, D. C. Cocaine self-administration in rats lacking a functional trpc4 gene. F1000Research 2, 110 (2013).

    PubMed  PubMed Central  Google Scholar 

  272. Hong, C. et al. TRPC5 channel instability induced by depalmitoylation protects striatal neurons against oxidative stress in Huntington’s disease. Biochim. Biophys. Acta Mol. Cell. Res. 1867, 118620 (2020).

    CAS  PubMed  Google Scholar 

  273. Zeevi, D. A., Frumkin, A. & Bach, G. TRPML and lysosomal function. Biochim. Biophys. Acta 1772, 851–858 (2007).

    CAS  PubMed  Google Scholar 

  274. Sun, M. et al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9, 2471–2478 (2000).

    CAS  PubMed  Google Scholar 

  275. Wang, W. et al. Up-regulation of lysosomal TRPML1 channels is essential for lysosomal adaptation to nutrient starvation. Proc. Natl Acad. Sci. USA 112, E1373–E1381 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Cortes, C. J. & La Spada, A. R. TFEB dysregulation as a driver of autophagy dysfunction in neurodegenerative disease: molecular mechanisms, cellular processes, and emerging therapeutic options. Neurobiol. Dis. 122, 83–93 (2019).

    CAS  PubMed  Google Scholar 

  277. Song, J. X., Liu, J., Jiang, Y., Wang, Z. Y. & Li, M. Transciption factor EB: an emerging drug target for neurodegenerative disorders. Drug Discov. Today 26, 164–172 (2021).

    CAS  PubMed  Google Scholar 

  278. Tsunemi, T. et al. Increased lysosomal exocytosis induced by lysosomal Ca2+ channel agonists protects human dopaminergic neurons from α-synuclein toxicity. J. Neurosci. 39, 5760–5772 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Schmiege, P., Fine, M. & Li, X. The regulatory mechanism of mammalian TRPMLs revealed by Cryo-EM. FEBS J. 285, 2579–2585 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Chemical & Engineering News. Merck acquires Calporta Therapeutics for its autophagy-boosting molecules. https://cen.acs.org/business/mergers-&-acquisitions/Merck-acquires-Calporta-Therapeutics-autophagy/97/i45 (2018).

  281. Stock, K. et al. Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1. Nat. Med. 18, 1232–1238 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  282. Kiss, F., Pohóczky, K., Szallasi, A. & Helyesi, Z. Transient receptor potential (TRP) channels in head-and-neck squamous cell carcinomas: diagnostic, prognostic, and therapeutic potentials. Int. J. Mol. Sci. 21, E6374 (2020).

    PubMed  Google Scholar 

  283. Chamoun, E. et al. The relationship between single nucleotide polymorphisms in taste receptor genes, taste function and dietary intake in pre-school aged children and adults in the Guelph family health study. Nutrients 10, 990 (2018).

    PubMed Central  Google Scholar 

  284. Bray, M. Using capsaicin to lose weight: how it works. https://pepperscale.com/capsaicin-to-lose-weight/ (2019).

  285. Wang, Y., Tang, C., Tang, Y., Yin, H. & Liu, X. Capsaicin has an anti-obesity effect through alterations in gut microbiota populations and short-chain fatty acid concentrations. Food Nutr. Res. 64, https://doi.org/10.29219/fnr.v64.3525 (2020).

  286. Larsson, M. H., Håkansson, P., Jansen, F. P., Magnell, K. & Brodin, P. Ablation of TRPM5 in mice results in reduced body weight gain and improved glucose tolerance and protects from excessive consumption of sweet palatable food when fed high caloric diets. PLoS ONE 10, e0138373 (2015).

    PubMed  PubMed Central  Google Scholar 

  287. Blednov, Y. A. et al. Perception of sweet taste is important for voluntary alcohol consumption in mice. Genes. Brain Behav. 7, 1–13 (2008).

    CAS  PubMed  Google Scholar 

  288. Reimúndez, A. et al. Deletion of the cold thermoreceptor TRPM8 increases heat loss and food intake leading to reduced body temperature and obesity in mice. J. Neurosci. 38, 3643–3656 (2018).

    PubMed  PubMed Central  Google Scholar 

  289. Clemmensen, C. et al. Coordinated targeting of cold and nicotinic receptors synergistically improves obesity and type 2 diabetes. Nat. Commun. 9, 4304 (2018).

    PubMed  PubMed Central  Google Scholar 

  290. Gram, D. X., Holst, J. J. & Szallasi, A. TRPV1: a potential therapeutic target in type 2 diabetes and comorbidities? Trends Mol. Med. 23, 1002–1013 (2017).

    CAS  PubMed  Google Scholar 

  291. Gram, D. X. et al. TRPV1 antagonists as novel anti-diabetic agents: regulation of oral glucose tolerance and insulin secretion through reduction of low-grade inflammation? Med. Sci. 7, 82 (2019).

    CAS  Google Scholar 

  292. European Medicines Agency. A randomised, double-blind, placebo-controlled, parallel-group trial investigating the effect of 4 weeks bi-daily dosing of XEN-D0501 on blood glucose reduction as add-on to metformin in patients with diabetes type 2. EU Clinical Trials Register https://www.clinicaltrialsregister.eu/ctr-search/trial/2018-001880-22/LT (2021).

  293. Gaudet, R. A primer on ankyrin repeat function in TRP channels and beyond. Mol. Biosyst. 4, 372–379 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  294. Huang, Y., Fliegert, R., Guse, A. H., Lu, W. & Du, J. A structural overview of the ion channels of the TRPM family. Cell Calcium 85, 102111 (2020).

    CAS  PubMed  Google Scholar 

  295. Li, J. et al. The structure of TRPC ion channels. Cell Calcium 80, 25–28 (2019).

    CAS  PubMed  Google Scholar 

  296. Jin, P. et al. Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547, 118–122 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  297. Nahama, A., Ramachandran, R., Cisternas, A. F. & Ji, H. The role of afferent pulmonary innervation in ARDS associated with COVID-19 and potential use of resiniferatoxin to improve prognosis: a review. Med. Drug Discov. 5, 100033 (2020).

    PubMed  PubMed Central  Google Scholar 

  298. Chao, Y.-K., Chang, S.-Y. & Grimm, C. Endo-lysosomal cation channels and infectious diseases. Rev. Physiol. Biochem. Pharmacol. https://doi.org/10.1007/112_2020_31 (2020).

    Article  PubMed  Google Scholar 

  299. Thakore, P. et al. Brain endothelial TRPA1 channels initiate neurovascular coupling. Preprint at bioRxiv https://doi.org/10.1101/2020.09.14.295600 (2020).

    Article  Google Scholar 

  300. Tarantini, S. et al. Pharmacologically-induced neurovascular uncoupling is associated with cognitive impairment in mice. J. Cereb. Blood Flow. Metab. 35, 1871–1881 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  301. Diogo, D. et al. Phenome-wide association studies across large population cohorts support drug target validation. Nat. Commun. 9, 4285 (2018).

    PubMed  PubMed Central  Google Scholar 

  302. Oh, S. J. et al. Ultrasonic neuromodulation via astrocytic TRPA1. Curr. Biol. 29, 3386–3401 (2019).

    CAS  PubMed  Google Scholar 

  303. Rezayat, E. & Toostani, I. G. Review paper: a review on brain stimulation using low-intensity focused ultrasound. Basic Clin. Neurosci. 7, 187–194 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Huffer, K. E., Aleksandrova, A. A., Jara-Oseguera, A., Forrest, L. R. & Swartz, K. J. Global alignment and assessment of TRP transmembrane domain structures to explore functional mechanisms. Preprint at bioRxiv https://doi.org/10.1101/2020.05.14.096792v1 (2020). A recent comprehensive analysis of the structural similarities and differences of the transmembrane regions of TRP channels that reveals hot spots for interactions with modulatory chemical agents, including natural agonists, antagonists, tool compounds and drugs.

    Article  Google Scholar 

Download references

Acknowledgements

We thank N. Gavva (Takeda Pharma) for useful comments. This work was funded in part by NIH grant 1R21DC018497 (to R.G.).

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the article. A.S. outlined the content and reviewed and edited the manuscript before submission.

Corresponding author

Correspondence to Arpad Szallasi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Drug Discovery thanks Thomas Voets, Boyi Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Coincidence detector

A process by which a neuron can detect and converge separate signals into one input (such as an action potential).

Gustatory sweating

Perspiration in the head-and-neck area after eating hot spicy food.

Allosteric nexus

A substructure in a protein that serves as a shared regulatory site, binding to chemical ligands or responding to physiological stimuli, and resulting in changes in the shape and activity of the protein.

SUMOylation

Covalent modification by the small ubiquitin-related modifier peptide.

Brachyolmia type 3

A form of severe skeletal dysplasia characterized by an abnormal curve of the spine (kyphoscoliosis) and flattened cervical vertebrae.

Charcot−Marie−Tooth neuropathy type 2

A genetic defect that causes decreased heat, cold and touch sensations mostly in the hands and feet owing to axon damage.

Freund adjuvant-induced arthritic pain

A frequently used rodent model for screening analgesics against inflammatory pain induced by local injection of dead mycobacteria.

Chung model

A frequently used model for analgesic screening against neuropathic pain induced by unilateral spinal nerve ligation.

CRISPR/Cas9 editing

Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is a technology that allows genetic material to be added, removed or altered by creating a ‘guide’ RNA to target specific DNA sequences.

Carbamazepine-responsive cramp-fasciculation syndrome

Peripheral nerve hyperexcitability syndrome that presents with stiffness, muscle pain, cramps and exercise intolerance.

Familial episodic pain syndrome

(FEPS). Rare genetic peripheral neuropathy disorder characterized by recurrent, intense upper body or lower limb pain in response to fatigue, fasting, physical stress or cold exposure.

Cold allodynia

Paradoxical burning sensation when exposed to a cold surface.

Complex regional pain syndrome type I

Also known as reflex sympathetic dystrophy, this syndrome presents as continuous pain and sudomotor activity that is disproportionate to the initiating event.

Wet dog shakes

Rapid and alternating head rotation in rats, an animal model used to quantify central 5-HT2A activity.

Cold pressor test

Assessment of autonomic nervous system function, pain threshold and pain tolerance.

Olmsted disease

Also known as mutilating palmoplantar keratoderma with periorificial keratotic plaques, this is a rare congenital disorder caused by abnormal growth of the skin; it is associated with itching, pain, skin fissures and skin cancers.

Erythromelalgia

Also known as Mitchell disease, this is intense, burning pain (algia) associated with redness (erythro) that primarily affects the feet (mel).

Painful plantar keratoderma

Painful, symmetric callus formation on the pressure points of the soles.

SMAD

Downstream signal transducer for the receptors of the transforming growth factor β (TGFβ) superfamily.

Neurogenic bladder

Urinary condition caused by impaired neuronal control (for example, by spinal cord injury or multiple sclerosis) of bladder function.

Interstitial cystitis

Poorly understood clinical condition that predominantly affects young women and causes recurrent pain in the pelvic region associated with problems with urination.

Akita mice

Genetic mouse model of type 1 diabetes.

Optogenic mice

Genetically modified mice expressing light-sensitive ion channels in neurons; light is used to control neuronal function in vivo.

Psoriasis

Disease of the skin that causes red, flaky, crusty plaques.

Rosacea

A common skin condition that causes redness and visible blood vessels in the face; it may also affect the nose (rhinophyma) and the eyes (dry, irritated, swollen eyes).

Erythrokeratodermia

A group of keratinization disorders that manifest in erythema (redness) and hyperkeratosis (scaling); most cases are indolent with no effect on general health.

Multiple sclerosis

A neurological disease in which inflammation is thought to drive disease progress.

Phenome-wide association study

A study designed to test for associations between a specific genetic variant (such as single nucleotide polymorphism, SNP) and a wide range of phenotypes or disease risks in a large cohort of individuals.

Lithium

Mainstay pharmacotherapy for bipolar disorder for acute mood episodes, switch prophylaxis and suicide prevention.

Lysozomes

Intracellular organelles with a key role in cellular waste handling and recycling.

Mucolipidosis type 4

An autosomal recessive lysosomal storage disorder causing delayed mental and motor development and vision impairment that worsens with time; patients present with intellectual disability (absent speech), difficulty swallowing and weak muscle tone.

Non-invasive, low-intensity, low-frequency ultrasound

(LILFU). A promising transcranial approach to stimulating brain pathways.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koivisto, AP., Belvisi, M.G., Gaudet, R. et al. Advances in TRP channel drug discovery: from target validation to clinical studies. Nat Rev Drug Discov 21, 41–59 (2022). https://doi.org/10.1038/s41573-021-00268-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-021-00268-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing