Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical promise of next-generation complement therapeutics

Abstract

The complement system plays a key role in pathogen immunosurveillance and tissue homeostasis. However, subversion of its tight regulatory control can fuel a vicious cycle of inflammatory damage that exacerbates pathology. The clinical merit of targeting the complement system has been established for rare clinical disorders such as paroxysmal nocturnal haemoglobinuria and atypical haemolytic uraemic syndrome. Evidence from preclinical studies and human genome-wide analyses, supported by new molecular and structural insights, has revealed new pathomechanisms and unmet clinical needs that have thrust a new generation of complement inhibitors into clinical development for a variety of indications. This review critically discusses recent clinical milestones in complement drug discovery, providing an updated translational perspective that may guide optimal target selection and disease-tailored complement intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simplified scheme of the complement cascade with disease-relevant effector functions and major drug target classes.
Fig. 2: Examples of acute or transient complement-mediated disorders with currently evaluated treatment strategies.
Fig. 3: Examples of chronic complement-mediated disorders with currently evaluated treatment strategies.

Similar content being viewed by others

References

  1. Ricklin, D., Reis, E. S. & Lambris, J. D. Complement in disease: a defence system turning offensive. Nat. Rev. Nephrol. 12, 383–401 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rankin, L. C. & Artis, D. Beyond host defense: emerging functions of the immune system in regulating complex tissue physiology. Cell 173, 554–567 (2018).

    CAS  PubMed  Google Scholar 

  3. Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010). This article provides an introductory overview of the mechanisms and functions of complement in tissue homeostasis and host immunosurveillance.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hajishengallis, G., Reis, E. S., Mastellos, D. C., Ricklin, D. & Lambris, J. D. Novel mechanisms and functions of complement. Nat. Immunol. 18, 1288–1298 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Ricklin, D. & Lambris, J. D. Preformed mediators of defense — gatekeepers enter the spotlight. Immunol. Rev. 274, 5–8 (2016).

    CAS  PubMed  Google Scholar 

  6. Merle, N. S., Church, S. E., Fremeaux-Bacchi, V. & Roumenina, L. T. Complement system part I — molecular mechanisms of activation and regulation. Front. Immunol. 6, 262 (2015).

    PubMed  PubMed Central  Google Scholar 

  7. Forneris, F. et al. Structures of C3b in complex with factors B and D give insight into complement convertase formation. Science 330, 1816–1820 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Carroll, M. C. & Isenman, D. E. Regulation of humoral immunity by complement. Immunity 37, 199–207 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Reis, E. S., Mastellos, D. C., Hajishengallis, G. & Lambris, J. D. New insights into the immune functions of complement. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-019-0168-x (2019). This review discusses new insights on how complement-triggered pathways shape innate and adaptive immune responses in convergence with other pattern recognition systems.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ekdahl, K. N., Soveri, I., Hilborn, J., Fellstrom, B. & Nilsson, B. Cardiovascular disease in haemodialysis: role of the intravascular innate immune system. Nat. Rev. Nephrol. 13, 285–296 (2017).

    CAS  PubMed  Google Scholar 

  11. Ricklin, D. & Lambris, J. D. Complement in immune and inflammatory disorders: therapeutic interventions. J. Immunol. 190, 3839–3847 (2013).

    CAS  PubMed  Google Scholar 

  12. Schmidt, C. Q., Lambris, J. D. & Ricklin, D. Protection of host cells by complement regulators. Immunol. Rev. 274, 152–171 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Stephan, A. H., Barres, B. A. & Stevens, B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu. Rev. Neurosci. 35, 369–389 (2012). This article provides a comprehensive review of the multifaceted role of complement in shaping central nervous system development and synaptic networks in both health and disease.

    CAS  PubMed  Google Scholar 

  14. Hajishengallis, G. et al. Complement inhibition in pre-clinical models of periodontitis and prospects for clinical application. Semin. Immunol. 28, 285–291 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. van Lookeren, C. M., Strauss, E. C. & Yaspan, B. L. Age-related macular degeneration: complement in action. Immunobiology 221, 733–739 (2016).

    Google Scholar 

  16. Morgan, B. P. & Harris, C. L. Complement, a target for therapy in inflammatory and degenerative diseases. Nat. Rev. Drug Discov. 14, 857–877 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Ricklin, D. & Lambris, J. D. Complement therapeutics. Semin. Immunol. 28, 205–207 (2016).

    PubMed  Google Scholar 

  18. Ricklin, D., Mastellos, D. C., Reis, E. S. & Lambris, J. D. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14, 26–47 (2018).

    CAS  PubMed  Google Scholar 

  19. Mastellos, D. C. et al. From orphan drugs to adopted therapies: advancing C3-targeted intervention to the clinical stage. Immunobiology 221, 1046–1057 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rother, R. P., Rollins, S. A., Mojcik, C. F., Brodsky, R. A. & Bell, L. Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria. Nat. Biotechnol. 25, 1256–1264 (2007).

    CAS  PubMed  Google Scholar 

  21. Frei, Y., Lambris, J. D. & Stockinger, B. Generation of a monoclonal antibody to mouse C5 application in an ELISA assay for detection of anti-C5 antibodies. Mol. Cell. Probes 1, 141–149 (1987). This article describes the generation and characterization of the first mouse anti-C5 monoclonal antibodies that formed the basis for the clinical development and subsequent approval of the anti-C5 mAb, eculizumab.

    CAS  PubMed  Google Scholar 

  22. Wang, Y., Rollins, S. A., Madri, J. A. & Matis, L. A. Anti-C5 monoclonal antibody therapy prevents collagen-induced arthritis and ameliorates established disease. Proc. Natl Acad. Sci. USA 92, 8955–8959 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zuber, J., Fakhouri, F., Roumenina, L. T., Loirat, C. & Fremeaux-Bacchi, V. Use of eculizumab for atypical haemolytic uraemic syndrome and C3 glomerulopathies. Nat. Rev. Nephrol. 8, 643–657 (2012).

    CAS  PubMed  Google Scholar 

  24. Howard, J. F. et al. Safety and efficacy of eculizumab in anti-acetylcholine receptor antibody-positive refractory generalised myasthenia gravis (REGAIN): a phase 3, randomised, double-blind, placebo-controlled, multicentre study. Lancet Neurol. 16, 976–986 (2017).

    CAS  PubMed  Google Scholar 

  25. Varga, L. & Farkas, H. rhC1INH: a new drug for the treatment of attacks in hereditary angioedema caused by C1-inhibitor deficiency. Expert Rev. Clin. Immunol. 7, 143–153 (2011).

    CAS  PubMed  Google Scholar 

  26. Gros, P., Milder, F. J. & Janssen, B. J. Complement driven by conformational changes. Nat. Rev. Immunol. 8, 48–58 (2008).

    CAS  PubMed  Google Scholar 

  27. Holz, F. G. et al. Efficacy and safety of lampalizumab for geographic atrophy due to age-related macular degeneration: Chroma and Spectri phase 3 randomized clinical trials. JAMA Ophthalmol. 136, 666–677 (2018). This article presents the results from the two multicentre phase III trials that evaluated the efficacy of the FD-targeting antibody lampalizumab in GA patients.

    PubMed  PubMed Central  Google Scholar 

  28. US Food & Drug Administration. FDA approves ravulizumab-cwvz for paroxysmal nocturnal hemoglobinuria. FDA.gov https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-ravulizumab-cwvz-paroxysmal-nocturnal-hemoglobinuria (2018).

  29. Lee, J. W. et al. Ravulizumab (ALXN1210) versus eculizumab in adult patients with PNH naive to complement inhibitors: the 301 study. Blood 133, 530–539 (2018).

    PubMed  Google Scholar 

  30. Kulasekararaj, A. G. et al. Ravulizumab (ALXN1210) versus eculizumab in C5-inhibitor-experienced adult patients with PNH: the 302 study. Blood 133, 540–549 (2018). This clinical study showed that patients with PNH can effectively switch from eculizumab-based therapy to a more patient-compliant, long-acting version of this anti-C5 therapeutic, ravulizumab.

    PubMed  Google Scholar 

  31. Ricklin, D. & Lambris, J. D. New milestones ahead in complement-targeted therapy. Semin. Immunol. 28, 208–222 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sacks, S. H. & Zhou, W. The role of complement in the early immune response to transplantation. Nat. Rev. Immunol. 12, 431–442 (2012).

    CAS  PubMed  Google Scholar 

  33. Mastellos, D. C. et al. Taming hemodialysis-induced inflammation: are complement C3 inhibitors a viable option? Clin. Immunol. 198, 102–105 (2019).

    CAS  PubMed  Google Scholar 

  34. Jager, N. M., Poppelaars, F., Daha, M. R. & Seelen, M. A. Complement in renal transplantation: the road to translation. Mol. Immunol. 89, 22–35 (2017).

    CAS  PubMed  Google Scholar 

  35. Farrar, C. A. et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J. Clin. Invest. 126, 1911–1925 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Nauser, C. L., Howard, M. C., Fanelli, G., Farrar, C. A. & Sacks, S. Collectin-11 (CL-11) is a major sentinel at epithelial surfaces and key pattern recognition molecule in complement-mediated ischaemic injury. Front. Immunol. 9, 2023 (2018).

    PubMed  PubMed Central  Google Scholar 

  37. Elvington, A. et al. The alternative complement pathway propagates inflammation and injury in murine ischemic stroke. J. Immunol. 189, 4640–4647 (2012).

    CAS  PubMed  Google Scholar 

  38. Dobó, J. et al. MASP-3 is the exclusive pro-factor D activator in resting blood: the lectin and the alternative complement pathways are fundamentally linked. Sci. Rep. 6, 31877 (2016). This article describes a fundamental mechanism by which the AP and LP of complement converge and signifies the importance of ‘bypass’ complement activation modes in health and disease.

    PubMed  PubMed Central  Google Scholar 

  39. Chan, R. K. et al. IgM binding to injured tissue precedes complement activation during skeletal muscle ischemia-reperfusion. J. Surg. Res. 122, 29–35 (2004).

    CAS  PubMed  Google Scholar 

  40. Castellano, G. et al. Therapeutic targeting of classical and lectin pathways of complement protects from ischemia-reperfusion-induced renal damage. Am. J. Pathol. 176, 1648–1659 (2010).

    PubMed  PubMed Central  Google Scholar 

  41. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02134314 (2018).

  42. Lazar, H. L. et al. Soluble human complement receptor 1 limits ischemic damage in cardiac surgery patients at high risk requiring cardiopulmonary bypass. Circulation 110, II274–II279 (2004).

    PubMed  Google Scholar 

  43. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00082121 (2007).

  44. Li, J. S., Jaggers, J. & Anderson, P. A. The use of TP10, soluble complement receptor 1, in cardiopulmonary bypass. Expert Rev. Cardiovasc. Ther. 4, 649–654 (2006).

    CAS  PubMed  Google Scholar 

  45. Lazar, H. L. et al. Beneficial effects of complement inhibition with soluble complement receptor 1 (TP10) during cardiac surgery: is there a gender difference? Circulation 116, I83–I88 (2007).

    CAS  PubMed  Google Scholar 

  46. Dodd, I. et al. Overexpression in Escherichia coli, folding, purification, and characterization of the first three short consensus repeat modules of human complement receptor type 1. Protein Expr. Purif. 6, 727–736 (1995).

    CAS  PubMed  Google Scholar 

  47. Kassimatis, T. et al. A double-blind randomised controlled investigation into the efficacy of mirococept (APT070) for preventing ischaemia reperfusion injury in the kidney allograft (EMPIRIKAL): study protocol for a randomised controlled trial. Trials 18, 255 (2017).

    PubMed  PubMed Central  Google Scholar 

  48. Alawieh, A. & Tomlinson, S. Injury site-specific targeting of complement inhibitors for treating stroke. Immunol. Rev. 274, 270–280 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Holers, V. M., Rohrer, B. & Tomlinson, S. CR2-mediated targeting of complement inhibitors: bench-to-bedside using a novel strategy for site-specific complement modulation. Adv. Exp. Med. Biol. 735, 137–154 (2013).

    CAS  PubMed  Google Scholar 

  50. Alawieh, A. et al. Modulation of post-stroke degenerative and regenerative processes and subacute protection by site-targeted inhibition of the alternative pathway of complement. J. Neuroinflamm. 12, 247 (2015).

    Google Scholar 

  51. Crunkhorn, S. Stroke: opening the therapeutic window. Nat. Rev. Drug Discov. 17, 467 (2018).

    CAS  PubMed  Google Scholar 

  52. Alawieh, A., Langley, E. F. & Tomlinson, S. Targeted complement inhibition salvages stressed neurons and inhibits neuroinflammation after stroke in mice. Sci. Transl Med. 10, eaao6459 (2018). This study underscores the translational potential of targeted complement inhibition in ischaemic stroke.

    PubMed  PubMed Central  Google Scholar 

  53. Orsini, F. et al. Mannan binding lectin-associated serine protease-2 (MASP-2) critically contributes to post-ischemic brain injury independent of MASP-1. J. Neuroinflamm. 13, 213 (2016).

    Google Scholar 

  54. Omeros Corporation. FDA grants breakthrough therapy designation to Omeros’ MASP-2 inhibitor OMS721 for the treatment of IgA nephropathy. Business Wire https://www.businesswire.com/news/home/20170613005978/en/FDA-Grants-Breakthrough-Therapy-Designation-Omeros’-MASP-2 (2019).

  55. Loupy, A. & Lefaucheur, C. Antibody-mediated rejection of solid-organ allografts. N. Engl. J. Med. 379, 1150–1160 (2018).

    CAS  PubMed  Google Scholar 

  56. Biglarnia, A.-R., Huber-Lang, M., Mohlin, C., Ekdahl, K. N. & Nilsson, B. The multifaceted role of complement in kidney transplantation. Nat. Rev. Nephrol. 14, 767–781 (2018).

  57. Stegall, M. D., Chedid, M. F. & Cornell, L. D. The role of complement in antibody-mediated rejection in kidney transplantation. Nat. Rev. Nephrol. 8, 670–678 (2012).

    CAS  PubMed  Google Scholar 

  58. Montgomery, R. A., Tatapudi, V. S., Leffell, M. S. & Zachary, A. A. HLA in transplantation. Nat. Rev. Nephrol. 14, 558–570 (2018).

    CAS  PubMed  Google Scholar 

  59. Tatapudi, V. S. & Montgomery, R. A. Pharmacologic complement inhibition in clinical transplantation. Curr. Transplant. Rep. 4, 91–100 (2017).

    PubMed  PubMed Central  Google Scholar 

  60. Lefaucheur, C. et al. Complement-activating anti-HLA antibodies in kidney transplantation: allograft gene expression profiling and response to treatment. J. Am. Soc. Nephrol. 29, 620–635 (2018).

    CAS  PubMed  Google Scholar 

  61. Stegall, M. D. et al. Terminal complement inhibition decreases antibody-mediated rejection in sensitized renal transplant recipients. Am. J. Transplant. 11, 2405–2413 (2011).

    CAS  PubMed  Google Scholar 

  62. Montgomery, R. A. et al. Plasma-derived C1 esterase inhibitor for acute antibody-mediated rejection following kidney transplantation: results of a randomized double-blind placebo-controlled pilot study. Am. J. Transplant. 16, 3468–3478 (2016).

    CAS  PubMed  Google Scholar 

  63. Viglietti, D. et al. C1 inhibitor in acute antibody-mediated rejection nonresponsive to conventional therapy in kidney transplant recipients: a pilot study. Am. J. Transplant. 16, 1596–1603 (2016).

    CAS  PubMed  Google Scholar 

  64. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02547220 (2019).

  65. Ricklin, D. & Lambris, J. D. Therapeutic control of complement activation at the level of the central component C3. Immunobiology 221, 740–746 (2016).

    CAS  PubMed  Google Scholar 

  66. Amyndas Pharmaceuticals. Our focus. Amyndas Pharmaceuticals http://amyndas.com/research-focus/ (2019).

  67. Bosmann, M. & Ward, P. A. The inflammatory response in sepsis. Trends Immunol. 34, 129–136 (2013).

    CAS  PubMed  Google Scholar 

  68. Halbgebauer, R., Schmidt, C. Q., Karsten, C. M., Ignatius, A. & Huber-Lang, M. Janus face of complement-driven neutrophil activation during sepsis. Semin. Immunol. 37, 12–20 (2018).

    CAS  PubMed  Google Scholar 

  69. van Griensven, M. et al. Protective effects of the complement inhibitor compstatin Cp40 in hemorrhagic shock. J. Immunol. 51, 78–87 (2018).

    Google Scholar 

  70. Silasi-Mansat, R. et al. Complement inhibition decreases the procoagulant response and confers organ protection in a baboon model of Escherichia coli sepsis. Blood 116, 1002–1010 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Brekke, O. L. et al. The effects of selective complement and CD14 inhibition on the E. coli-induced tissue factor mRNA upregulation, monocyte tissue factor expression, and tissue factor functional activity in human whole blood. Adv. Exp. Med. Biol. 735, 123–136 (2013).

    CAS  PubMed  Google Scholar 

  72. Huber-Lang, M. et al. Double blockade of CD14 and complement C5 abolishes the cytokine storm and improves morbidity and survival in polymicrobial sepsis in mice. J. Immunol. 192, 5324–5331 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Keshari, R. S. et al. Inhibition of complement C5 protects against organ failure and reduces mortality in a baboon model of Escherichia coli sepsis. Proc. Natl Acad. Sci. USA 114, E6390–E6399 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02246595 (2016).

  75. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03487276 (2018).

  76. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01766414 (2014).

  77. Aridis Pharmaceuticals. AR-101 (AerumabTM): fully human mAb against Pseudomonas aeruginosa LPS serotype O11. Aridis Pharmaceuticals https://aridispharma.com/ar-101/ (2019).

  78. Poppelaars, F. et al. The complement system in dialysis: a forgotten story? Front. Immunol. 9, 71 (2018).

    PubMed  PubMed Central  Google Scholar 

  79. Deangelis, R. A., Reis, E. S., Ricklin, D. & Lambris, J. D. Targeted complement inhibition as a promising strategy for preventing inflammatory complications in hemodialysis. Immunobiology 217, 1097–1105 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Santoro, D. et al. Pain in end-stage renal disease: a frequent and neglected clinical problem. Clin. Nephrol. 79 (Suppl. 1), 2–11 (2013).

    Google Scholar 

  81. Poppelaars, F. et al. Intradialytic complement activation precedes the development of cardiovascular events in hemodialysis patients. Front. Immunol. 9, 2070 (2018). This study links HD-induced complement activation with an increased risk of cardiovascular events in HD patients.

    PubMed  PubMed Central  Google Scholar 

  82. Reis, E. S. et al. Therapeutic C3 inhibitor Cp40 abrogates complement activation induced by modern hemodialysis filters. Immunobiology 220, 476–482 (2015).

    CAS  PubMed  Google Scholar 

  83. Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).

    CAS  PubMed  Google Scholar 

  84. Bray, B. L. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov. 2, 587–593 (2003). This article points to the potential for more affordable biological therapies exploiting the large-scale chemical synthesis of therapeutic peptides.

    CAS  PubMed  Google Scholar 

  85. Lamont, R. J., Koo, H. & Hajishengallis, G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 16, 745–759 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Eke, P. I., Dye, B. A., Wei, L., Thornton-Evans, G. O. & Genco, R. J. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res. 91, 914–920 (2012).

    CAS  PubMed  Google Scholar 

  87. Hajishengallis, G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat. Rev. Immunol. 15, 30–44 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Hajishengallis, G. & Lambris, J. D. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 31, 154–163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Maekawa, T. et al. Inhibition of pre-existing natural periodontitis in non-human primates by a locally administered peptide inhibitor of complement C3. J. Clin. Periodontol. 43, 238–249 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kajikawa, T. et al. Safety and efficacy of the complement inhibitor AMY-101 in a natural model of periodontitis in non-human primates. Mol. Ther. Methods Clin. Dev. 6, 207–215 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Mastellos, D. C., Ricklin, D., Yancopoulou, D., Risitano, A. & Lambris, J. D. Complement in paroxysmal nocturnal hemoglobinuria: exploiting our current knowledge to improve the treatment landscape. Expert Rev. Hematol. 7, 583–598 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Risitano, A. M. & Marotta, S. Toward complement inhibition 2.0: next generation anticomplement agents for paroxysmal nocturnal hemoglobinuria. Am. J. Hematol. 93, 564–577 (2018).

    PubMed  Google Scholar 

  93. Nishimura, J. et al. Genetic variants in C5 and poor response to eculizumab. N. Engl. J. Med. 370, 632–639 (2014).

    CAS  PubMed  Google Scholar 

  94. Armstrong, M. Samsung joins Soliris biosimilar quest. Evaluate http://www.evaluate.com/vantage/articles/news/snippets/samsung-joins-soliris-biosimilar-quest (2019).

  95. Mastellos, D. C., Reis, E. S., Yancopoulou, D., Risitano, A. M. & Lambris, J. D. Expanding complement therapeutics for the treatment of paroxysmal nocturnal hemoglobinuria. Semin. Hematol. 55, 167–175 (2018).

    PubMed  PubMed Central  Google Scholar 

  96. Reis, E. S., Mastellos, D. C., Ricklin, D., Mantovani, A. & Lambris, J. D. Complement in cancer: untangling an intricate relationship. Nat. Rev. Immunol. 18, 5–18 (2018).

    CAS  PubMed  Google Scholar 

  97. Morgan, B. P. The role of complement in neurological and neuropsychiatric diseases. Expert Rev. Clin. Immunol. 11, 1109–1119 (2015).

    CAS  PubMed  Google Scholar 

  98. Smith, R. J. H. et al. C3 glomerulopathy — understanding a rare complement-driven renal disease. Nat. Rev. Nephrol. 15, 129–143 (2019). A comprehensive review discussing pathophysiological aspects, patient stratification criteria and therapeutic options for the complement-mediated renal disorder C3G.

    PubMed  PubMed Central  Google Scholar 

  99. Jodele, S. Complement in pathophysiology and treatment of transplant-associated thrombotic microangiopathies. Semin. Hematol. 55, 159–166 (2018).

    PubMed  Google Scholar 

  100. Hillmen, P. et al. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N. Engl. J. Med. 355, 1233–1243 (2006).

    CAS  PubMed  Google Scholar 

  101. Hillmen, P. et al. Long-term safety and efficacy of sustained eculizumab treatment in patients with paroxysmal nocturnal haemoglobinuria. Br. J. Haematol. 162, 62–73 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Risitano, A. M. et al. Complement fraction 3 binding on erythrocytes as additional mechanism of disease in paroxysmal nocturnal hemoglobinuria patients treated by eculizumab. Blood 113, 4094–4100 (2009).

    CAS  PubMed  Google Scholar 

  103. Harder, M. J. et al. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation. Blood 129, 970–980 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Elgin, B., Bloomfield, D. & Chen, C. When the patient is a gold mine: the trouble with rare-disease drugs. Bloomberg https://www.bloomberg.com/news/features/2017-05-24/when-the-patient-is-a-gold-mine-the-trouble-with-rare-disease-drugs (2019). This is a popular article highlighting the significant economic burden associated with the currently approved complement-based therapy in the clinic.

  105. America’s Health Insurance Plans. High-priced drugs: estimates of annual per-patient expenditures for 150 specialty medications. AHIP https://www.ahip.org/report-high-priced-drugs-expenditures/ (2016).

  106. Sheridan, D. et al. Design and preclinical characterization of ALXN1210: a next generation anti-C5 monoclonal antibody with improved pharmacokinetics and duration of action. Immunobiology 221, 1158 (2016).

    Google Scholar 

  107. Röth, A. et al. Ravulizumab (ALXN1210) in patients with paroxysmal nocturnal hemoglobinuria: results of 2 phase 1b/2 studies. Blood Adv. 2, 2176–2185 (2018).

    PubMed  PubMed Central  Google Scholar 

  108. Fukuzawa, T. et al. Long lasting neutralization of C5 by SKY59, a novel recycling antibody, is a potential therapy for complement-mediated diseases. Sci. Rep. 7, 1080 (2017).

    PubMed  PubMed Central  Google Scholar 

  109. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02534909 (2019).

  110. Adis Insight. Pozelimab — Regeneron Pharmaceuticals. Adis Insight http://adisinsight.springer.com/drugs/800049599 (2018).

  111. Hill, A., Weston-Davies, W. H., Nunn, M., Robak, T. & Windyga, J. Coversin, a novel C5 complement inhibitor, is safe and effective in the treatment of PNH: results of a phase II clinical trial. Blood 130, 4747 (2017).

    Google Scholar 

  112. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03427060 (2018).

  113. Morrison, C. Constrained peptides’ time to shine? Nat. Rev. Drug Discov. 17, 531–533 (2018).

    CAS  PubMed  Google Scholar 

  114. Ricardo, A. et al. Preclinical evaluation of RA101495, a potent cyclic peptide inhibitor of C5 for the treatment of paroxysmal nocturnal hemoglobinuria. Blood 126, 939 (2015).

    Google Scholar 

  115. Johnston, J. M. et al. Phase 1 multiple-dose clinical study of RA101495, a subcutaneously administered synthetic macrocyclic peptide inhibitor of complement C5 for treatment of paroxysmal nocturnal hemoglobinuria [abstract LB2249]. Haematologica 101 (Suppl. 1), 415 (2016).

    Google Scholar 

  116. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03078582 (2018).

  117. Hill, A. et al. A subcutaneously administered investigational RNAi therapeutic (ALN-CC5) targeting complement C5 for treatment of PNH and complement-mediated diseases: preliminary phase 1/2 study results in patients with PNH. Blood 128, 3891 (2016).

    Google Scholar 

  118. Mastellos, D. C. et al. Compstatin: a C3-targeted complement inhibitor reaching its prime for bedside intervention. Eur. J. Clin. Invest. 45, 423–440 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Ricklin, D. & Lambris, J. D. Compstatin: a complement inhibitor on its way to clinical application. Adv. Exp. Med. Biol. 632, 273–292 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Janssen, B. J., Halff, E. F., Lambris, J. D. & Gros, P. Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition. J. Biol. Chem. 282, 29241–29247 (2007).

    CAS  PubMed  Google Scholar 

  121. Risitano, A. M. et al. Peptide inhibitors of C3 activation as a novel strategy of complement inhibition for the treatment of paroxysmal nocturnal hemoglobinuria. Blood 123, 2094–2101 (2014). This is the first study demonstrating proof of efficacy and translational potential for the C3 inhibitory peptides, termed compstatins, in treating PNH.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Apellis Pharmaceuticals. Our focus. Apellis Pharmaceuticals http://apellis.com/focus-science.html (2019).

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02264639 (2018).

  124. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02588833 (2019).

  125. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03500549 (2019).

  126. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03531255 (2018).

  127. Amyndas Pharmaceuticals. Clinical trials. Amyndas Pharmaceuticals http://amyndas.com/clinical-trials/ (2019).

  128. Berger, N. et al. New analogs of the complement C3 inhibitor compstatin with increased solubility and improved pharmacokinetic profile. J. Med. Chem. 61, 6153–6162 (2018).

    CAS  PubMed  Google Scholar 

  129. Harris, C. L., Pouw, R. B., Kavanagh, D., Sun, R. & Ricklin, D. Developments in anti-complement therapy; from disease to clinical trial. Mol. Immunol. 102, 89–119 (2018). This review discusses the pathophysiological basis of complement-mediated diseases, presenting a detailed description of ongoing clinical trials in various indications.

    CAS  PubMed  Google Scholar 

  130. Schubart, A. et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc. Natl Acad. Sci. USA 116, 7926–7931 (2019). This study describes the rational design and preclinical evaluation of an orally available FB inhibitor with clinical potential for the treatment of PNH and other AP-mediated complement disorders.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03439839 (2019).

  132. Yuan, X. et al. Small-molecule factor D inhibitors selectively block the alternative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical hemolytic uremic syndrome. Haematologica 102, 466–475 (2017). This study indicates the efficacy and clinical potential of orally available FD inhibitors for the treatment of PNH and other AP-mediated complement disorders.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03053102 (2018).

  134. Achillion Pharmaceuticals. Achillion reports positive interim data for ACH-4471 phase 2 trials and provides clinical development strategy update. GlobeNewswire https://globenewswire.com/news-release/2018/12/17/1668298/0/en/Achillion-Reports-Positive-Interim-Data-for-ACH-4471-Phase-2-Trials-and-Provides-Clinical-Development-Strategy-Update.html (2019).

  135. Lambris, J. D., Qu, H. & Ricklin, D. Compstatin analogs with improved pharmacokinetic properties. US Patent 9630992B2 (2019).

  136. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03347422 (2019).

  137. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03347396 (2019).

  138. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03226678 (2019).

  139. Wang, R. H., Phillips, G., Medof, M. E. & Mold, C. Activation of the alternative complement pathway by exposure of phosphatidylethanolamine and phosphatidylserine on erythrocytes from sickle cell disease patients. J. Clin. Invest. 92, 1326–1335 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Merle, N. S. et al. Intravascular hemolysis activates complement via cell-free heme and heme-loaded microvesicles. JCI Insight 3, 96910 (2018). This study revealed the complement-activating properties of cell-free haem and points to a new mechanism that amplifies complement-mediated injury during intravascular haemolysis.

    PubMed  Google Scholar 

  141. Chonat, S. et al. Contribution of alternative complement pathway to delayed hemolytic transfusion reaction in sickle cell disease. Haematologica 103, e483–e485 (2018).

    PubMed  PubMed Central  Google Scholar 

  142. Lombardi, E. et al. Factor H interfers with the adhesion of sickle red cells to vascular endothelium: a novel disease modulating molecule. Haematologica 104, 919–928 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Biryukov, S. & Stoute, J. A. Complement activation in malaria: friend or foe? Trends Mol. Med. 20, 293–301 (2014).

    CAS  PubMed  Google Scholar 

  144. Lindorfer, M. A. et al. Compstatin Cp40 blocks hematin-mediated deposition of C3b fragments on erythrocytes: implications for treatment of malarial anemia. Clin. Immunol. 171, 32–35 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Merle, N. S. et al. P-selectin drives complement attack on endothelium during intravascular hemolysis in TLR-4/heme-dependent manner. Proc. Natl Acad. Sci. USA 116, 6280–6285 (2019). This study illustrates the therapeutic potential of targeting P-selectin on endothelial surfaces as a means of blocking complement deposition and attenuating tissue injury in various haemolytic disorders.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Jourde-Chiche, N. et al. Endothelium structure and function in kidney health and disease. Nat. Rev. Nephrol. 15, 87–108 (2019).

    PubMed  Google Scholar 

  147. Xiao, X., Pickering, M. C. & Smith, R. J. C3 glomerulopathy: the genetic and clinical findings in dense deposit disease and C3 glomerulonephritis. Semin. Thromb. Hemost. 40, 465–471 (2014).

    CAS  PubMed  Google Scholar 

  148. Durey, M. A., Sinha, A., Togarsimalemath, S. K. & Bagga, A. Anti-complement-factor H-associated glomerulopathies. Nat. Rev. Nephrol. 12, 563–578 (2016).

    CAS  PubMed  Google Scholar 

  149. Sethi, S. & Fervenza, F. C. Pathology of renal diseases associated with dysfunction of the alternative pathway of complement: C3 glomerulopathy and atypical hemolytic uremic syndrome (aHUS). Semin. Thromb. Hemost. 40, 416–421 (2014).

    CAS  PubMed  Google Scholar 

  150. Bu, F. et al. Genetic analysis of 400 patients refines understanding and implicates a new gene in atypical hemolytic uremic syndrome. J. Am. Soc. Nephrol. 29, 2809–2819 (2018).

    PubMed  PubMed Central  Google Scholar 

  151. Frimat, M. et al. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood 122, 282–292 (2013).

    CAS  PubMed  Google Scholar 

  152. Huerta, A. et al. A retrospective study of pregnancy-associated atypical hemolytic uremic syndrome. Kidney Int. 93, 450–459 (2018).

    PubMed  Google Scholar 

  153. Legendre, C. M. et al. Terminal complement inhibitor eculizumab in atypical hemolytic-uremic syndrome. N. Engl. J. Med. 368, 2169–2181 (2013).

    CAS  PubMed  Google Scholar 

  154. Rathbone, J. et al. A systematic review of eculizumab for atypical haemolytic uraemic syndrome (aHUS). BMJ Open 3, e003573 (2013).

    PubMed  PubMed Central  Google Scholar 

  155. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03131219 (2018).

  156. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02949128 (2019).

  157. Alexion Pharmaceuticals. Alexion announces positive top-line results from phase 3 study of ULTOMIRIS™ (Ravulizumab-Cwvz) in complement inhibitor-naïve patients with atypical hemolytic uremic syndrome (aHUS). Alexion Newsroom https://news.alexion.com/press-release/product-news/alexion-announces-positive-top-line-results-phase-3-study-ultomiris-ravul (2019).

  158. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02464891 (2017).

  159. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03205995 (2018).

  160. Vaught, A. J. et al. Germline mutations in the alternative pathway of complement predispose to HELLP syndrome. JCI Insight 3, 99128 (2018).

    PubMed  Google Scholar 

  161. Qi, J. et al. Plasma levels of complement activation fragments C3b and sC5b-9 significantly increased in patients with thrombotic microangiopathy after allogeneic stem cell transplantation. Ann. Hematol. 96, 1849–1855 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Rotz, S. J. et al. In vitro evidence of complement activation in transplantation-associated thrombotic microangiopathy. Blood Adv. 1, 1632–1634 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03518203 (2019).

  164. Goodship, T. H. J. et al. Use of the complement inhibitor Coversin to treat HSCT-associated TMA. Blood Adv. 1, 1254–1258 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02222545 (2019).

  166. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02355782 (2015).

  167. Pickering, M. C. et al. C3 glomerulopathy: consensus report. Kidney Int. 84, 1079–1089 (2013).

    PubMed  PubMed Central  Google Scholar 

  168. Sethi, S. et al. C3 glomerulonephritis: clinicopathological findings, complement abnormalities, glomerular proteomic profile, treatment, and follow-up. Kidney Int. 82, 465–473 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Servais, A. et al. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 82, 454–464 (2012).

    CAS  PubMed  Google Scholar 

  170. Gale, D. P. et al. Identification of a mutation in complement factor H-related protein 5 in patients of Cypriot origin with glomerulonephritis. Lancet 376, 794–801 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Bu, F. et al. High-throughput genetic testing for thrombotic microangiopathies and C3 glomerulopathies. J. Am. Soc. Nephrol. 27, 1245–1253 (2016).

    CAS  PubMed  Google Scholar 

  172. Nester, C. M. & Smith, R. J. Complement inhibition in C3 glomerulopathy. Semin. Immunol. 28, 241–249 (2016).

    CAS  PubMed  Google Scholar 

  173. Bomback, A. S. et al. Eculizumab for dense deposit disease and C3 glomerulonephritis. Clin. J. Am. Soc. Nephrol. 7, 748–756 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  174. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03301467 (2018).

  175. Jayne, D. R. W. et al. Randomized trial of C5a receptor inhibitor avacopan in ANCA-associated vasculitis. J. Am. Soc. Nephrol. 28, 2756–2767 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  176. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01363388 (2013).

  177. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02682407 (2018).

  178. Achillion Pharmaceuticals. Advancing factor D inhibition into late-stage clinical development. Achillion Pharmaceuticals http://www.achillion.com/pipeline/ (2019).

  179. Mastellos, D. C., Reis, E. S., Ricklin, D., Smith, R. J. & Lambris, J. D. Complement C3-targeted therapy: replacing long-held assertions with evidence-based discovery. Trends Immunol. 38, 383–394 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Apellis Pharmaceuticals. Apellis Pharmaceuticals’ APL-2 receives orphan drug designation from the FDA for the treatment of C3 glomerulopathy. Apellis Pharmaceuticals http://investors.apellis.com/news-releases/news-release-details/apellis-pharmaceuticals-apl-2-receives-orphan-drug-designation (2019).

  181. Amyndas Pharmaceuticals. Press release: Amyndas’ lead candidate AMY-101 receives orphan drug status from the FDA and the EMA for the treatment of C3 glomerulopathy. Amyndas Pharmaceuticals http://amyndas.com/press-release-amyndas-lead-candidate-amy-101-receives-orphan-drug-status-from-the-fda-and-the-ema-for-the-treatment-of-c3-glomerulopathy/ (2019).

  182. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03453619 (2019).

  183. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03316521 (2018).

  184. Noris, M. & Remuzzi, G. Genetics of immune-mediated glomerular diseases: focus on complement. Semin. Nephrol. 37, 447–463 (2017).

    CAS  PubMed  Google Scholar 

  185. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03608033 (2019).

  186. Mohlin, C., Sandholm, K., Ekdahl, K. N. & Nilsson, B. The link between morphology and complement in ocular disease. Mol. Immunol. 89, 84–99 (2017).

    CAS  PubMed  Google Scholar 

  187. Hageman, G. S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl Acad. Sci. USA 102, 7227–7232 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    CAS  PubMed  Google Scholar 

  189. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Schramm, E. C. et al. Genetic variants in the complement system predisposing to age-related macular degeneration: a review. Mol. Immunol. 61, 118–125 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Katschke Jr., K. J. et al. Inhibiting alternative pathway complement activation by targeting the factor D exosite. J. Biol. Chem. 287, 12886–12892 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Yaspan, B. L. et al. Targeting factor D of the alternative complement pathway reduces geographic atrophy progression secondary to age-related macular degeneration. Sci. Transl Med. 9, eaaf1443 (2017).

    PubMed  Google Scholar 

  193. Irmscher, S. et al. Kallikrein cleaves C3 and activates complement. J. Innate Immun. 10, 94–105 (2017).

    PubMed  PubMed Central  Google Scholar 

  194. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01603043 (2014).

  195. Chi, Z. L., Yoshida, T., Lambris, J. D. & Iwata, T. Suppression of drusen formation by compstatin, a peptide inhibitor of complement C3 activation, on cynomolgus monkey with early-onset macular degeneration. Adv. Exp. Med. Biol. 703, 127–135 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Apellis Pharmaceuticals. Apellis Pharmaceuticals announces 18-month results of phase 2 study (FILLY) of APL-2 in geographic atrophy. Apellis Pharmaceuticals http://investors.apellis.com/news-releases/news-release-details/apellis-pharmaceuticals-announces-18-month-results-phase-2-study (2019).

  197. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03525613 (2018).

  198. Baumann, A., Tuerck, D., Prabhu, S., Dickmann, L. & Sims, J. Pharmacokinetics, metabolism and distribution of PEGs and PEGylated proteins: quo vadis? Drug Discov. Today 19, 1623–1631 (2014).

    CAS  PubMed  Google Scholar 

  199. Lyzogubov, V. V., Tytarenko, R. G., Liu, J., Bora, N. S. & Bora, P. S. Polyethylene glycol (PEG)-induced mouse model of choroidal neovascularization. J. Biol. Chem. 286, 16229–16237 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Ruan, C.-C. et al. Complement-mediated macrophage polarization in perivascular adipose tissue contributes to vascular injury in deoxycorticosterone acetate-salt mice. Arterioscler. Thromb. Vasc. Biol. 35, 598–606 (2015).

    CAS  PubMed  Google Scholar 

  201. Cao, X. et al. Macrophage polarization in the maculae of age-related macular degeneration: a pilot study. Pathol. Int. 61, 528–535 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Qu, H. et al. New analogs of the clinical complement inhibitor compstatin with subnanomolar affinity and enhanced pharmacokinetic properties. Immunobiology 218, 496–505 (2013).

    CAS  PubMed  Google Scholar 

  203. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03446144 (2018).

  204. Grossman, T. R. et al. Reduction in ocular complement factor B protein in mice and monkeys by systemic administration of factor B antisense oligonucleotide. Mol. Vis. 23, 561–571 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. Schnabolk, G. et al. Local production of the alternative pathway component factor B is sufficient to promote laser-induced choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 56, 1850–1863 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Katschke, K. J. et al. Classical and alternative complement activation on photoreceptor outer segments drives monocyte-dependent retinal atrophy. Sci. Rep. 8, 7348 (2018).

    PubMed  PubMed Central  Google Scholar 

  207. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00935883 (2017).

  208. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01527500 (2019).

  209. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02686658 (2018).

  210. Botto, M. et al. Complement in human diseases: lessons from complement deficiencies. Mol. Immunol. 46, 2774–2783 (2009).

    CAS  PubMed  Google Scholar 

  211. Reis, E. S. et al. Safety profile after prolonged C3 inhibition. Clin. Immunol. 197, 96–106 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Konar, M. & Granoff, D. M. Eculizumab treatment and impaired opsonophagocytic killing of meningococci by whole blood from immunized adults. Blood 130, 891–899 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Harris, C. L., Heurich, M., Rodriguez de, C. S. & Morgan, B. P. The complotype: dictating risk for inflammation and infection. Trends Immunol. 33, 513–521 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Gaya da Costa, M. et al. Age and sex-associated changes of complement activity and complement levels in a healthy Caucasian population. Front. Immunol. 9, 2664 (2018). This study illustrates the importance of assessing the impact of gender-specific and age-specific differences on complement activity and protein levels among healthy individuals.

    PubMed  PubMed Central  Google Scholar 

  215. Kotimaa, J. et al. Sex matters: systemic complement activity of female C57BL/6J and BALB/cJ mice is limited by serum terminal pathway components. Mol. Immunol. 76, 13–21 (2016).

    CAS  PubMed  Google Scholar 

  216. Nilsson, B. & Ekdahl, K. N. Complement diagnostics: concepts, indications, and practical guidelines. Clin. Dev. Immunol. 2012, 962702 (2012).

    PubMed  PubMed Central  Google Scholar 

  217. Prohaszka, Z., Nilsson, B., Frazer-Abel, A. & Kirschfink, M. Complement analysis 2016: clinical indications, laboratory diagnostics and quality control. Immunobiology 221, 1247–1258 (2016).

    CAS  PubMed  Google Scholar 

  218. Kim, A. H. J. et al. Association of blood concentrations of complement split product iC3b and serum C3 with systemic lupus erythematosus disease activity. Arthritis Rheumatol. 71, 420–430 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  219. Wilson, H. R. et al. Glomerular membrane attack complex is not a reliable marker of ongoing C5 activation in lupus nephritis. Kidney Int. 95, 655–665 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  220. Thielen, A. J. F. et al. CRISPR/Cas9 generated human CD46, CD55 and CD59 knockout cell lines as a tool for complement research. J. Immunol. Methods 456, 15–22 (2018).

    CAS  PubMed  Google Scholar 

  221. Neu, K. E., Tang, Q., Wilson, P. C. & Khan, A. A. Single-cell genomics: approaches and utility in immunology. Trends Immunol. 38, 140–149 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Ugurlar, D. et al. Structures of C1-IgG1 provide insights into how danger pattern recognition activates complement. Science 359, 794–797 (2018).

    CAS  PubMed  Google Scholar 

  223. Wang, Q. et al. Identification of a central role for complement in osteoarthritis. Nat. Med. 17, 1674–1679 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  224. Wang, G. et al. Molecular basis of assembly and activation of complement component C1 in complex with immunoglobulin G1 and antigen. Mol. Cell 63, 135–145 (2016).

    CAS  PubMed  Google Scholar 

  225. Mortensen, S. A. et al. Structure and activation of C1, the complex initiating the classical pathway of the complement cascade. Proc. Natl Acad. Sci. USA 114, 986–991 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  226. Diebolder, C. A. et al. Complement is activated by IgG hexamers assembled at the cell surface. Science 343, 1260–1263 (2014). This study revealed the structural basis of C1q-mediated classical pathway activation on antibody-targeted surfaces and paved the way for the clinical development of HexaBodies.

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Cook, E. M. et al. Antibodies that efficiently form hexamers upon antigen binding can induce complement-dependent cytotoxicity under complement-limiting conditions. J. Immunol. 197, 1762–1775 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  228. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03576131 (2019).

  229. Woodruff, T. M., Nandakumar, K. S. & Tedesco, F. Inhibiting the C5-C5a receptor axis. Mol. Immunol. 48, 1631–1642 (2011).

    CAS  PubMed  Google Scholar 

  230. Liu, H. et al. Orthosteric and allosteric action of the C5a receptor antagonists. Nat. Struct. Mol. Biol. 25, 472–481 (2018).

    CAS  PubMed  Google Scholar 

  231. Liszewski, M. K. et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 39, 1143–1157 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  232. Freeley, S., Kemper, C. & Le, F. G. The ‘ins and outs’ of complement-driven immune responses. Immunol. Rev. 274, 16–32 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Amann, R. I. et al. Toward unrestricted use of public genomic data. Science 363, 350–352 (2019).

    CAS  PubMed  Google Scholar 

  234. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  235. Ajona, D., Ortiz-Espinosa, S. & Pio, R. Complement anaphylatoxins C3a and C5a: emerging roles in cancer progression and treatment. Semin. Cell Dev. Biol. 85, 153–163 (2019).

    CAS  PubMed  Google Scholar 

  236. Markiewski, M. M. et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9, 1225–1235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  237. Medler, T. R. et al. Complement C5a fosters squamous carcinogenesis and limits T cell response to chemotherapy. Cancer Cell 34, 561–578 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  238. Ajona, D. et al. A combined PD-1/C5a blockade synergistically protects against lung cancer growth and metastasis. Cancer Discov. 7, 694–703 (2017). This study highlights the translational potential of combining targeted complement C5aR1 inhibition with other immunomodulatory therapies in cancer.

    CAS  PubMed  Google Scholar 

  239. Zha, H. et al. Blocking C5aR signaling promotes the anti-tumor efficacy of PD-1/PD-L1 blockade. Oncoimmunology 6, e1349587 (2017).

    PubMed  PubMed Central  Google Scholar 

  240. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03665129 (2019).

  241. Singel, K. L. et al. Mature neutrophils suppress T cell immunity in ovarian cancer microenvironment. JCI Insight 4, e122311 (2019).

    PubMed Central  Google Scholar 

  242. Shi, Q. et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci. Transl Med. 9, eaaf6295 (2017).

    PubMed  PubMed Central  Google Scholar 

  243. Dejanovic, B. et al. Changes in the synaptic proteome in tauopathy and rescue of tau-induced synapse loss by C1q antibodies. Neuron 100, 1322–1336 (2018).

    CAS  PubMed  Google Scholar 

  244. Nytrova, P. et al. Complement activation in patients with neuromyelitis optica. J. Neuroimmunol. 274, 185–191 (2014).

    CAS  PubMed  Google Scholar 

  245. Ramaglia, V. et al. C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc. Natl Acad. Sci. USA 109, 965–970 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  246. Fonseca, M. I. et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J. Immunol. 183, 1375–1383 (2009).

    CAS  PubMed  Google Scholar 

  247. Lee, J. D. et al. Pharmacological inhibition of complement C5a-C5a1 receptor signalling ameliorates disease pathology in the hSOD1G93A mouse model of amyotrophic lateral sclerosis. Br. J. Pharmacol. 174, 689–699 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Woodruff, T. M. et al. The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. J. Immunol. 181, 8727–8734 (2008).

    CAS  PubMed  Google Scholar 

  249. Pittock, S. J. et al. Eculizumab in AQP4-IgG-positive relapsing neuromyelitis optica spectrum disorders: an open-label pilot study. Lancet Neurol. 12, 554–562 (2013).

    CAS  PubMed  Google Scholar 

  250. Rahpeymai, Y. et al. Complement: a novel factor in basal and ischemia-induced neurogenesis. EMBO J. 25, 1364–1374 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Coulthard, L. G., Hawksworth, O. A. & Woodruff, T. M. Complement: the emerging architect of the developing brain. Trends Neurosci. 41, 373–384 (2018).

    CAS  PubMed  Google Scholar 

  252. Orphanet. About rare diseases. Orphanet https://www.orpha.net/consor/cgi-bin/Education_AboutRareDiseases.php (2012).

  253. Luzzatto, L. et al. Outrageous prices of orphan drugs: a call for collaboration. Lancet 392, 791–794 (2018). This opinion article raises awareness about the exuberant costs of orphan drugs in clinical practice and points to the adoption of new guidelines and regulations for orphan drug development.

    PubMed  Google Scholar 

  254. Hughes-Wilson, W., Palma, A., Schuurman, A. & Simoens, S. Paying for the orphan drug system: break or bend? Is it time for a new evaluation system for payers in Europe to take account of new rare disease treatments? Orphanet J. Rare Dis. 7, 74 (2012).

    PubMed  PubMed Central  Google Scholar 

  255. Luzzatto, L. et al. Rare diseases and effective treatments: are we delivering? Lancet 385, 750–752 (2015).

    PubMed  Google Scholar 

  256. Avorn, J. The $2.6 billion pill — methodologic and policy considerations. N. Engl. J. Med. 372, 1877–1879 (2015).

    CAS  PubMed  Google Scholar 

  257. Shaughnessy, A. F. Monoclonal antibodies: magic bullets with a hefty price tag. BMJ 345, e8346 (2012).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank D. McClellan for editorial assistance. J.D.L. also thanks R. and S. Weaver for the generous endowment of his professorship. Given the broad scope of this review, we often refer to specialized review articles rather than primary literature, and we have only been able to include selected examples of the breadth of the transformative work in the field; we therefore want to thank all our colleagues who are not specifically cited for both their contributions and their understanding. We thank A. Sfyroera (National and Kapodistrian University of Athens) for selecting the ancient Greek quote about targeted therapies. This work was supported by grants from the US National Institutes of Health (AI068730; to J.D.L.) and from the Swiss National Science Foundation (31003A_176104; to D.R.). D.C.M. acknowledges support from project MIS 5002559, which is implemented under the “Action for the Strategic Development on the Research and Technological Sector”, funded by the Operational Programme “Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched the data for the article, contributed to discussions of the content, wrote the text, and reviewed or edited the article before submission.

Corresponding author

Correspondence to John D. Lambris.

Ethics declarations

Competing interests

J.D.L. is the founder of Amyndas Pharmaceuticals, which is developing complement inhibitors for therapeutic purposes. J.D.L. and D.R. are inventors of patents or patent applications that describe the use of complement inhibitors for therapeutic purposes, some of which are developed by Amyndas Pharmaceuticals. J.D.L. is also the inventor of the compstatin technology licensed to Apellis Pharmaceuticals (that is, 4(1MeW)7W/POT-4/APL-1 and PEGylated derivatives). D.C.M. declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Pattern recognition receptors

A wide spectrum of soluble or membrane-bound proteins present on cells of the innate immune system that specifically recognize molecular signatures derived from the surface or interior of microbial cells, termed pathogen-associated molecular patterns, or distinct structures on artificial surfaces or altered host cells, termed damage-associated molecular patterns, to trigger a proinflammatory response that aims to respectively contain the microbial challenge or a maladaptive inflammatory response that may lead to tissue damage.

Constrained peptides

A new class of peptide molecules whose supramolecular structure is constrained into a particular conformation via intramolecular covalent bonds that endow these peptides with biochemical and/or physicochemical properties amenable to drug development.

RNA aptamers

Single-stranded RNA-based biopolymer sequences selected from a large, random sequence pool by virtue of their ability to bind a molecular target with high selectivity.

Biosimilars

Biomedical products, such as a therapeutic antibody, that share a high degree of structural and functional similarity with a product that is already clinically approved. Similar to small-molecule generic drugs, biosimilars are typically introduced once the patent protecting the original medicinal product expires.

Breakthrough haemolysis

The transient increase of markers of intravascular haemolysis (that is, elevated lactate dehydrogenase levels and decreased haemoglobin) in patients receiving treatment designed to abrogate intravascular haemolysis. Typically, breakthrough haemolysis is attributed either to pharmacokinetic or pharmacodynamic issues.

HexaBodies

Engineered therapeutic antibodies with strong complement-mediated cytotoxic potential due to their increased propensity to form hexameric clusters on target surfaces such as cancer cells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastellos, D.C., Ricklin, D. & Lambris, J.D. Clinical promise of next-generation complement therapeutics. Nat Rev Drug Discov 18, 707–729 (2019). https://doi.org/10.1038/s41573-019-0031-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41573-019-0031-6

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research