Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Alcoholic liver disease

A Publisher Correction to this article was published on 28 August 2018

This article has been updated

Abstract

Alcoholic liver disease (ALD) is the most prevalent type of chronic liver disease worldwide. ALD can progress from alcoholic fatty liver (AFL) to alcoholic steatohepatitis (ASH), which is characterized by hepatic inflammation. Chronic ASH can eventually lead to fibrosis and cirrhosis and in some cases hepatocellular cancer (HCC). In addition, severe ASH (with or without cirrhosis) can lead to alcoholic hepatitis, which is an acute clinical presentation of ALD that is associated with liver failure and high mortality. Most individuals consuming >40 g of alcohol per day develop AFL; however, only a subset of individuals will develop more advanced disease. Genetic, epigenetic and non-genetic factors might explain the considerable interindividual variation in ALD phenotype. The pathogenesis of ALD includes hepatic steatosis, oxidative stress, acetaldehyde-mediated toxicity and cytokine and chemokine-induced inflammation. Diagnosis of ALD involves assessing patients for alcohol use disorder and signs of advanced liver disease. The degree of AFL and liver fibrosis can be determined by ultrasonography, transient elastography, MRI, measurement of serum biomarkers and liver biopsy histology. Alcohol abstinence achieved by psychosomatic intervention is the best treatment for all stages of ALD. In the case of advanced disease such as cirrhosis or HCC, liver transplantation may be required. Thus, new therapies are urgently needed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The natural disease course of alcoholic liver disease.
Fig. 2: Global total alcohol per capita consumption.
Fig. 3: Metabolic pathways related to alcohol.
Fig. 4: Mechanisms involved in alcoholic fatty liver.
Fig. 5: Mechanisms involved in alcoholic liver inflammation.
Fig. 6: Mechanisms involved in alcoholic liver fibrosis.
Fig. 7: Mechanisms of alcohol-mediated liver tumour initiation and promotion.
Fig. 8: Clinical interpretation of liver stiffness in alcoholic liver disease.
Fig. 9: Liver biopsy diagnosis of alcoholic liver disease.

Similar content being viewed by others

Change history

References

  1. Blachier, M., Leleu, H., Peck-Radosavljevic, M., Valla, D. C. & Roudot-Thoraval, F. The burden of liver disease in Europe: A review of available epidemiological data. J. Hepatol. 58, 593–608 (2013).

    Article  PubMed  Google Scholar 

  2. Pimpin, L. et al. Burden of liver disease in Europe: Epidemiology and analysis of risk factors to identify prevention policies. J. Hepatol. https://doi.org/10.1016/j.jhep.2018.05.011 (2018).

    Article  PubMed  Google Scholar 

  3. Rehm, J., Samokhvalov, A. V. & Shield, K. D. Global burden of alcoholic liver diseases. J. Hepatol. 59, 160–168 (2013).

    Article  PubMed  Google Scholar 

  4. Rehm, J. et al. Alcohol as a risk factor for liver cirrhosis: a systematic review and meta-analysis. Drug Alcohol Rev. 29, 437–445 (2010).

    Article  PubMed  Google Scholar 

  5. Bellentani, S. & Tiribelli, C. The spectrum of liver disease in the general population: lesson from the Dionysos study. J. Hepatol. 35, 531–537 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. O’Shea, R. S., Dasarathy, S. & McCullough, A. J. Alcoholic liver disease. Hepatology 51, 307–328 (2010).

    Article  PubMed  Google Scholar 

  7. European Association for the Study of the Liver. EASL Clinical Practice Guidelines: management of alcohol-related liver disease. J. Hepatol. 69, 154–181 (2018). This paper provides a complete overview of the latest developments in the management of ALD.

    Article  Google Scholar 

  8. Mathurin, P. et al. EASL clinical practical guidelines: Management of alcoholic liver disease. J. Hepatol. 57, 399–420 (2012).

    Article  Google Scholar 

  9. WHO. Global Status Report on Noncommunicable Diseases 2014 (World Health Organization, 2014).

  10. Shield, K. D., Rylett, M., Rehm, J. Public health successes and missed opportunities. trends in alcohol consumption and attributable mortality in the WHO European region, 1990–2014. (World Health Organization, 2016).

  11. EASL. HEPAHEALTH Project Report. Risk Factors and the Burden of Liver Disease in Europe and Selected Central Asian Countries. (EASL, 2018).

  12. Naghavi, M. et al. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390, 1151–1210 (2017).

    Article  Google Scholar 

  13. Akinyemiju, T. et al. The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level. JAMA Oncol. 3, 1683 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Sheron, N. Alcohol and liver disease in Europe - simple measures have the potential to prevent tens of thousands of premature deaths. J. Hepatol. 64, 957–967 (2016).

    Article  PubMed  Google Scholar 

  15. Sandahl, T. D., Jepsen, P., Thomsen, K. L. & Vilstrup, H. Incidence and mortality of alcoholic hepatitis in Denmark 1999-2008: a nationwide population based cohort study. J. Hepatol. 54, 760–764 (2011).

    Article  PubMed  Google Scholar 

  16. Liangpunsakul, S. Clinical characteristics and mortality of hospitalized alcoholic hepatitis patients in the United States. J. Clin. Gastroenterol. 45, 714–719 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mathurin, P. et al. Fibrosis progression occurs in a subgroup of heavy drinkers with typical histological features. Aliment. Pharmacol. Ther. 25, 1047–1054 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Goldberg, D. et al. Changes in the prevalence of hepatitis C virus infection, nonalcoholic steatohepatitis, and alcoholic liver disease among patients with cirrhosis or liver failure on the waitlist for liver transplantation. Gastroenterology 152, 1090–1099 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cholankeril, G. et al. Liver transplantation for nonalcoholic steatohepatitis in the US: temporal trends and outcomes. Dig. Dis. Sci. 62, 2915–2922 (2017).

    Article  PubMed  Google Scholar 

  20. European Liver and Intestine Transplant Association. European Liver Transplant Registry. ELITA http://www.eltr.org/ (2018).

  21. O’Grady, J. G. Liver transplantation alcohol related liver disease: (deliberately) stirring a hornet’s nest! Gut 55, 1529–1531 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lelbach, W. K. Cirrhosis in the alcoholic and its relation to the volume of alcohol abuse. Ann. NY Acad. Sci. 252, 85–105 (1975).

    Article  PubMed  CAS  Google Scholar 

  23. Becker, U. et al. Prediction of risk of liver disease by alcohol intake, sex, and age: a prospective population study. Hepatology 23, 1025–1029 (1996).

    Article  PubMed  CAS  Google Scholar 

  24. Shimizu, I., Kamochi, M., Yoshikawa, H. & Nakayama, Y. in Trends in Alcoholic Liver Disease Research. Clinical and Scientific Aspects (ed. Shimizu, I.) 23–40 (InTech, 2012).

  25. Strnad, P. et al. Heterozygous carriage of the alpha1-antitrypsin Z variant rs28929474 predisposes to the development of cirrhosis in the presence of alcohol misuse and non-alcohol-related fatty liver disease. J. Hepatol. 66, S177 (2017).

    Article  Google Scholar 

  26. Chen, C.-J. et al. Effects of hepatitis B virus, alcohol drinking, cigarette smoking and familial tendency on hepatocellular carcinoma. Hepatology 13, 398–406 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. Mueller, S., Millonig, G. & Seitz, H. K. Alcoholic liver disease and hepatitis C: a frequently underestimated combination. World J. Gastroenterol. 15, 3462–3471 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Fletcher, L. M. & Powell, L. W. Hemochromatosis and alcoholic liver disease. Alcohol 30, 131–136 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. Seitz, H. K., Mueller, S., Hellerbrand, C. & Liangpunsakul, S. Effect of chronic alcohol consumption on the development and progression of non-alcoholic fatty liver disease (NAFLD). Hepatobiliary Surg. Nutr. 4, 147–151 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Boyle, M., Masson, S. & Anstee, Q. M. The bidirectional impacts of alcohol consumption and the metabolic syndrome: cofactors for progressive fatty liver disease. J. Hepatol. 68, 251–267 (2017). This paper updates all current knowledge of an important issue — namely, the interaction between alcohol, obesity and metabolic syndrome.

    Article  PubMed  Google Scholar 

  31. Morgan, T. R., Mandayam, S. & Jamal, M. M. Alcohol and hepatocellular carcinoma. Gastroenterology 127, S87–S96 (2004).

    Article  PubMed  CAS  Google Scholar 

  32. Ascha, M. S. et al. The incidence and risk factors of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis. Hepatology 51, 1972–1978 (2010).

    Article  PubMed  Google Scholar 

  33. Naveau, S. et al. Excess weight is a risk factor for alcoholic liver disease. Hepatology 25, 108–111 (1997).

    Article  PubMed  CAS  Google Scholar 

  34. Seitz, H. K. & Mueller, S. Metabolism of alcohol and its consequences. Metabolism Drugs Other Xenobiot. 493–516 (2012).

  35. Hagström, H. Alcohol, smoking and the liver disease patient. Best Pract. Res. Clin. Gastroenterol. 31, 537–543 (2017).

    Article  PubMed  Google Scholar 

  36. Stickel, F., Moreno, C., Hampe, J. & Morgan, M. Y. The genetics of alcohol dependence and alcohol-related liver disease. J. Hepatol. 66, 195–211 (2017).

    Article  PubMed  CAS  Google Scholar 

  37. Hrubec, Z. & Omenn, G. S. Evidence of genetic predisposition to alcoholic cirrhosis and psychosis: twin concordances for alcoholism and its biological end points by zygosity among male veterans. Alcohol. Clin. Exp. Res. 5, 207–215 (1981).

    Article  PubMed  CAS  Google Scholar 

  38. Edenberg, H. J. & Foroud, T. Genetics of alcoholism. Handb. Clin. Neurol. 125, 561–571 (2014).

    Article  PubMed  Google Scholar 

  39. Salameh, H. et al. PNPLA3 gene polymorphism is associated with predisposition to and severity of alcoholic liver disease. Am. J. Gastroenterol. 110, 846–856 (2015).

    Article  PubMed  CAS  Google Scholar 

  40. Stickel, F. et al. Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians. Hepatology 53, 86–95 (2011).

    Article  PubMed  CAS  Google Scholar 

  41. Buch, S. et al. A genome-wide association study confirms PNPLA3 and identifies TM6SF2 and MBOAT7 as risk loci for alcohol-related cirrhosis. Nat. Genet. 47, 1443–1448 (2015). This paper presents probably the best genome-wide association study with respect to ALD, demonstrating three important gene loci for risk.

    Article  PubMed  CAS  Google Scholar 

  42. BasuRay, S., Smagris, E., Cohen, J. C. & Hobbs, H. H. The PNPLA3 variant associated with fatty liver disease (I148M) accumulates on lipid droplets by evading ubiquitylation. Hepatology 66, 1111–1124 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bataller, R., North, K. E. & Brenner, D. A. Genetic polymorphisms and the progression of liver fibrosis: a critical appraisal. Hepatology 37, 493–503 (2003).

    Article  PubMed  CAS  Google Scholar 

  44. Lieber, C. S., Rubin, E. & DeCarli, L. M. Hepatic microsomal ethanol oxidizing system (MEOS): differentiation from alcohol dehydrogenase and NADPH oxidase. Biochem. Biophys. Res. Commun. 40, 858–865 (1970).

    Article  PubMed  CAS  Google Scholar 

  45. Seitz, H. K. & Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nat. Rev. Cancer 7, 599–612 (2007). This article is an excellent overview on the various molecular mechanisms on alcohol and cancer including the liver.

    Article  PubMed  CAS  Google Scholar 

  46. Seitz, H. K. & Mueller, S. Alcoholic liver disease. Clin. Hepatol. 2, 1111–1151 (2010).

    Article  Google Scholar 

  47. Albano, E. et al. Role of cytochrome P4502E1-dependent formation of hydroxyethyl free radical in the development of liver damage in rats intragastrically fed with ethanol. Hepatology 23, 155–163 (1996).

    Article  PubMed  CAS  Google Scholar 

  48. Linhart, K., Bartsch, H. & Seitz, H. K. The role of reactive oxygen species (ROS) and cytochrome P-450 2E1 in the generation of carcinogenic etheno-DNA adducts. Redox Biol. 3, 56–62 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Wang, Y. et al. Ethanol-induced cytochrome P4502E1 causes carcinogenic etheno-DNA lesions in alcoholic liver disease. Hepatology 50, 453–461 (2009).

    Article  PubMed  CAS  Google Scholar 

  50. Mueller, S. et al. Carcinogenic etheno DNA adducts in alcoholic liver disease: correlation with cytochrome P-4502E1 and fibrosis. Alcohol. Clin. Exp. Res. 42, 252–259 (2018). This article shows for the first time a correlation between CYP2E1 and fibrosis in a large cohort of alcoholic patients with various severities of ALD.

    Article  PubMed  CAS  Google Scholar 

  51. Albano, E. Alcohol, oxidative stress and free radical damage. Proc. Nutr. Soc. 65, 278–290 (2006).

    Article  PubMed  CAS  Google Scholar 

  52. Leung, T. M. & Nieto, N. CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. J. Hepatol. 58, 395–398 (2013).

    Article  PubMed  CAS  Google Scholar 

  53. Bautista, A. P. Neutrophilic infiltration in alcoholic hepatitis. Alcohol 27, 17–21 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. Bailey, S. M. & Cunningham, C. C. Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic. Biol. Med. 32, 11–16 (2002).

    Article  PubMed  CAS  Google Scholar 

  55. García-Ruiz, C., Colell, a, París, R. & Fernández-Checa, J. C. Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release, and caspase activation. FASEB J. 14, 847–858 (2000).

    Article  PubMed  Google Scholar 

  56. Chamulitrat, W. & Spitzer, J. J. Nitric oxide and liver injury in alcohol-fed rats after lipopolysaccharide administration. Alcohol. Clin. Exp. Res. 20, 1065–1070 (1996).

    Article  PubMed  CAS  Google Scholar 

  57. Oneta, C. M. et al. Dynamics of cytochrome P4502E1 activity in man: Induction by ethanol and disappearance during withdrawal phase. J. Hepatol. 36, 47–52 (2002).

    Article  PubMed  CAS  Google Scholar 

  58. Lieber, C. S. et al. Role of medium-chain triglycerides in the alcohol-mediated cytochrome P450 2E1 induction of mitochondria. Alcohol. Clin. Exp. Res. 31, 1660–1668 (2007).

    Article  PubMed  CAS  Google Scholar 

  59. Harrison-Findik, D. D. et al. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J. Biol. Chem. 281, 22974–22982 (2006).

    Article  PubMed  CAS  Google Scholar 

  60. Butura, A. et al. The impact of CYP2E1 on the development of alcoholic liver disease as studied in a transgenic mouse model. J. Hepatol. 50, 572–583 (2009).

    Article  PubMed  CAS  Google Scholar 

  61. Morgan, K., French, S. W. & Morgan, T. R. Production of a cytochrome P450 2E1 transgenic mouse and initial evaluation of alcoholic liver damage. Hepatology 36, 122–134 (2002).

    Article  PubMed  CAS  Google Scholar 

  62. Lu, Y., Wu, D., Wang, X., Ward, S. C. & Cederbaum, A. I. Chronic alcohol-induced liver injury and oxidant stress are decreased in cytochrome P4502E1 knockout mice and restored in humanized cytochrome P4502E1 knock-in mice. Free Radic. Biol. Med. 49, 1406–1416 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Gouillon, Z. et al. Inhibition of ethanol-induced liver disease in the intragastric feeding rat model by chlormethiazole. Proc. Soc. Exp. Biol. Med. 224, 302–308 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. Ye, Q. et al. Cytochrome P450 2E1 inhibition prevents hepatic carcinogenesis induced by diethylnitrosamine in alcohol-fed rats. Hepatobiliary Surg. Nutr. 1, 5–18 (2012).

    PubMed  PubMed Central  Google Scholar 

  65. Seitz, H. K. & Stickel, F. Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biol. Chem. 387, 349–360 (2006).

    Article  PubMed  CAS  Google Scholar 

  66. Cederbaum, A. I. Nrf2 and antioxidant defense against CYP2E1 toxicity. Subcell. Biochem. 67, 105–130 (2013).

    Article  PubMed  CAS  Google Scholar 

  67. Szabo, G. & Satishchandran, A. MicroRNAs in alcoholic liver disease. Semin. Liver Dis. 35, 36–42 (2015).

    Article  PubMed  CAS  Google Scholar 

  68. Park, P.-H. Involvement of histone acetyltransferase (HAT) in ethanol-induced acetylation of histone H3 in hepatocytes: potential mechanism for gene expression. AJP Gastrointest. Liver Physiol. 289, G1124–G1136 (2005).

    Article  CAS  Google Scholar 

  69. You, M., Liang, X., Ajmo, J. M. & Ness, G. C. Involvement of mammalian sirtuin 1 in the action of ethanol in the liver. AJP Gastrointest. Liver Physiol. 294, G892–G898 (2008).

    Article  CAS  Google Scholar 

  70. Lu, S. C. et al. Changes in methionine adenosyltransferase and S-adenosylmethionine homeostasis in alcoholic rat liver. Am. J. Physiol. Gastrointest. Liver Physiol. 279, G178–G185 (2000).

    Article  PubMed  CAS  Google Scholar 

  71. Lippai, D., Bala, S., Catalano, D., Kodys, K. & Szabo, G. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol. Clin. Exp. Res. 38, 2217–2224 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Purohit, V., Gao, B. & Song, B.-J. Molecular mechanisms of alcoholic fatty liver. Alcohol. Clin. Exp. Res. 33, 191–205 (2009).

    Article  PubMed  CAS  Google Scholar 

  73. Baraona, E. & Lieber, C. S. Effects of ethanol on lipid metabolism. J. Lipid Res. 20, 289–315 (1979).

    PubMed  CAS  Google Scholar 

  74. You, M., Fischer, M., Deeg, M. A. & Crabb, D. W. Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J. Biol. Chem. 277, 29342–29347 (2002).

    Article  PubMed  CAS  Google Scholar 

  75. Galli, A., Pinaire, J., Fischer, M., Dorris, R. & Crabb, D. W. The transcriptional and DNA binding activity of peroxisome proliferator-activated receptor α is inhibited by ethanol metabolism. A novel mechanism for the development of ethanol-induced fatty liver. J. Biol. Chem. 276, 68–75 (2001).

    Article  PubMed  CAS  Google Scholar 

  76. You, M., Matsumoto, M., Pacold, C. M., Cho, W. K. & Crabb, D. W. The role of AMP-activated protein kinase in the action of ethanol in the liver. Gastroenterology 127, 1798–1808 (2004).

    Article  PubMed  CAS  Google Scholar 

  77. Zhong, W. et al. Chronic alcohol exposure stimulates adipose tissue lipolysis in mice: role of reverse triglyceride transport in the pathogenesis of alcoholic steatosis. Am. J. Pathol. 180, 998–1007 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Sebastian, B. M. et al. Identification of a cytochrome P4502E1/Bid/C1q-dependent axis mediating inflammation in adipose tissue after chronic ethanol feeding to mice. J. Biol. Chem. 286, 35989–35997 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Parker, R., Kim, S. J. & Gao, B. Alcohol, adipose tissue and liver disease: mechanistic links and clinical considerations. Nat. Rev. Gastroenterol. Hepatol. 15, 50–59 (2018).

    Article  PubMed  CAS  Google Scholar 

  80. Dolganiuc, A., Thomes, P. G., Ding, W. X., Lemasters, J. J. & Donohue, T. M. Autophagy in alcohol-induced liver diseases. Alcohol. Clin. Exp. Res. 36, 1301–1308 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ding, W. et al. Autophagy reduces acute ethanol-induced hepatotoxicity and steatosis in mice. Gastroenterology 139, 1740–1752 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pone, E. J. Toll-like receptors. Signal. Pathways Liver Diseases 1390, 149–159 (2016).

    Google Scholar 

  83. Iracheta-Vellve, A. et al. Inhibition of sterile danger signals, uric acid and ATP, prevents inflammasome activation and protects from alcoholic steatohepatitis in mice. J. Hepatol. 63, 1147–1155 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Petrasek, J. et al. Metabolic danger signals, uric acid and ATP, mediate inflammatory cross-talk between hepatocytes and immune cells in alcoholic liver disease. J. Leukoc. Biol. 98, 249–256 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Iracheta-Vellve, A. et al. Interleukin-1 inhibition facilitates recovery from liver injury and promotes regeneration of hepatocytes in alcoholic hepatitis in mice. Liver Int. 37, 968–973 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Negrin, K. A. et al. IL-1 signaling in obesity-induced hepatic lipogenesis and steatosis. PLOS One 9, e107265 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Petrasek, J. et al. IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J. Clin. Invest. 122, 3476–3489 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bukong, T. N. et al. Therapeutic benefits of spleen tyrosine kinase inhibitor administration on binge drinking-induced alcoholic liver injury, steatosis, and inflammation in mice. Alcohol. Clin. Exp. Res. 40, 1524–1530 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Mandrekar, P. Epigenetic regulation in alcoholic liver disease. World J. Gastroenterol. 17, 2456–2464 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Bala, S. et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis. J. Hepatol. 64, 1378–1387 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bala, S. et al. Alcohol-induced miR-155 and HDAC11 inhibit negative regulators of the TLR4 pathway and lead to increased LPS responsiveness of Kupffer cells in alcoholic liver disease. J. Leukoc. Biol. 102, 487–498 (2017).

    Article  PubMed  CAS  Google Scholar 

  92. Lippai, D., Bala, S., Csak, T., Kurt-Jones, E. A. & Szabo, G. Chronic alcohol-induced microRNA-155 contributes to neuroinflammation in a TLR4-dependent manner in mice. PLOS One 8, e70945 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Bala, S. et al. Circulating microRNAs in exosomes indicate hepatocyte injury and inflammation in alcoholic, drug-induced, and inflammatory liver diseases. Hepatology 56, 1946–1957 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Satishchandran, A. et al. MicroRNA 122, regulated by GRLH2, protects livers of mice and patients from ethanol-induced liver disease. Gastroenterology 154, 238–252 (2018).

    Article  PubMed  CAS  Google Scholar 

  95. Juskeviciute, E. et al. Inhibition of miR-21 rescues liver regeneration after partial hepatectomy in ethanol-fed rats. Am. J. Physiol. Gastrointest. Liver Physiol. 311, G794–G806 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dippold, R. P., Vadigepalli, R., Gonye, G. E., Patra, B. & Hoek, J. B. Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcohol. Clin. Exp. Res. 37, E59–E69 (2013).

    Article  PubMed  CAS  Google Scholar 

  97. French, S. W. & Bardag-Gorce, F. in Signaling Pathways in Liver Diseases (eds Dufour, J.-F. et al.) 377–389 (Springer, 2005).

  98. Wang, S., Pacher, P., De Lisle, R. C., Huang, H. & Ding, W. X. A. Mechanistic review of cell death in alcohol-induced liver injury. Alcohol. Clin. Exp. Res. 40, 1215–1223 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Petrasek, J. et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc. Natl Acad. Sci. USA 110, 16544–16549 (2013).

    Article  PubMed  Google Scholar 

  100. Iracheta-Vellve, A. et al. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J. Biol. Chem. 291, 26794–26805 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Nagy, L. E., Ding, W. X., Cresci, G., Saikia, P. & Shah, V. H. Linking pathogenic mechanisms of alcoholic liver disease with clinical phenotypes. Gastroenterology 150, 1756–1768 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Lackner, C. et al. Histological parameters and alcohol abstinence determine long-term prognosis in patients with alcoholic liver disease. J. Hepatol. 66, 610–618 (2017).

    Article  PubMed  Google Scholar 

  103. Tsuchida, T. & Friedman, S. L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol. 14, 397–411 (2017). This manuscript describes in detail the mechanisms of stellate cell activation leading to hepatic fibrosis.

    Article  PubMed  CAS  Google Scholar 

  104. Ge, X. High-mobility group box-1 (HMGB1) participates in the pathogenesis of alcoholic liver disease (ALD). Alcohol 48, 729 (2014).

    Article  Google Scholar 

  105. Kwon, H. J. et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology 60, 146–157 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Enomoto, N. et al. Kupffer cell sensitization by alcohol involves increased permeability to gut-derived endotoxin. Alcohol. Clin. Exp. Res. 25, 51S–54S (2001).

    Article  PubMed  CAS  Google Scholar 

  107. Paik, Y. H. et al. Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37, 1043–1055 (2003).

    Article  PubMed  CAS  Google Scholar 

  108. Radaeva, S. et al. Natural killer cells ameliorate liver fibrosis by killing activated stellate cells in NKG2D-dependent and tumor necrosis factor-related apoptosis-inducing ligand-dependent manners. Gastroenterology 130, 435–452 (2006).

    Article  PubMed  CAS  Google Scholar 

  109. Jeong, W. Il, Park, O. & Gao, B. Abrogation of the antifibrotic effects of natural killer cells/interferon-γ contributes to alcohol acceleration of liver fibrosis. Gastroenterology 134, 248–258 (2008).

    Article  PubMed  CAS  Google Scholar 

  110. Baan, R. et al. Carcinogenicity of alcoholic beverages. Lancet Oncol. 8, 292–293 (2007).

    Article  PubMed  Google Scholar 

  111. Yokoyama, A. et al. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis 19, 1383–1387 (1998).

    Article  PubMed  CAS  Google Scholar 

  112. Jin, S. et al. ALDH2(E487K) mutation increases protein turnover and promotes murine hepatocarcinogenesis. Proc. Natl Acad. Sci. USA 112, 9088–9093 (2015).

    Article  PubMed  CAS  Google Scholar 

  113. Theruvathu, J. A., Jaruga, P., Nath, R. G., Dizdaroglu, M. & Brooks, P. J. Polyamines stimulate the formation of mutagenic 1,N2/-propanodeoxyguanosine adducts from acetaldehyde. Nucleic Acids Res. 33, 3513–3520 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Mechilli, M., Schinoppi, A., Kobos, K., Natarajan, A. T. & Palitti, F. DNA repair deficiency and acetaldehyde-induced chromosomal alterations in CHO cells. Mutagenesis 23, 51–56 (2008).

    Article  PubMed  CAS  Google Scholar 

  115. Wilson, D. M., Tentler, J. J., Carney, J. P., Wilson, T. M. & Kelley, M. R. Acute ethanol exposure suppresses the repair of O6-methylguanine DNA lesions in castrated adult male rats. Alcohol. Clin. Exp. Res. 18, 1267–1271 (1994).

    Article  PubMed  CAS  Google Scholar 

  116. Tuma, D. J., Thiele, G. M., Xu, D., Klassen, L. W. & Sorrell, M. F. Acetaldehyde and malondialdehyde react together to generate distinct protein adducts in the liver during long-term ethanol administration. Hepatology 23, 872–880 (1996).

    Article  PubMed  CAS  Google Scholar 

  117. Garro, A. J., Seitz, H. K. & Lieber, C. S. Enhancement of dimethylnitrosamine metabolism and activation to a mutagen following chronic ethanol consumption. Cancer Res. 41, 120–124 (1981).

    PubMed  CAS  Google Scholar 

  118. Varela-Rey, M., Woodhoo, A., Martinez-Chantar, M.-L., Mato, J. M. & Lu, S. C. Alcohol, DNA methylation, and cancer. Alcohol Res. 35, 25–35 (2013).

    PubMed  PubMed Central  Google Scholar 

  119. Wilson, C. L. et al. NFκB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat. Commun. 6, 6618 (2015).

    Article  CAS  Google Scholar 

  120. Machida, K. et al. Toll-like receptor 4 mediates synergism between alcohol and HCV in hepatic oncogenesis involving stem cell marker Nanog. Proc. Natl Acad. Sci. USA 106, 1548–1553 (2009).

    Article  PubMed  Google Scholar 

  121. Chen, C. L. et al. Reciprocal regulation by TLR4 and TGF-β in tumor-initiating stem-like cells. J. Clin. Invest. 123, 2832–2849 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Coulouarn, C. & Clément, B. Stellate cells and the development of liver cancer: therapeutic potential of targeting the stroma. J. Hepatol. 60, 1306–1309 (2014).

    Article  PubMed  CAS  Google Scholar 

  123. Lai, K. K. Y. et al. Stearoyl-CoA desaturase promotes liver fibrosis and tumor development in mice via a Wnt Positive-signaling loop by stabilization of low-density lipoprotein-receptor-related proteins 5 and 6. Gastroenterology 152, 1477–1491 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Nieto, N., Friedman, S. L. & Cederbaum, A. I. Cytochrome P450 2E1-derived reactive oxygen species mediate paracrine stimulation of collagen I protein synthesis by hepatic stellate cells. J. Biol. Chem. 277, 9853–9864 (2002).

    Article  PubMed  CAS  Google Scholar 

  125. Seki, E. et al. TLR4 enhances TGF-beta signaling and hepatic fibrosis. Nat. Med. 13, 1324–1332 (2007).

    Article  PubMed  CAS  Google Scholar 

  126. Yoshimoto, S. et al. Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499, 97–101 (2013).

    Article  PubMed  CAS  Google Scholar 

  127. Mercer, K. E. et al. Alcohol consumption promotes diethylnitrosamine-induced hepatocarcinogenesis in male mice through activation of the Wnt/β-catenin signaling pathway. Cancer Prev. Res. 7, 675–685 (2014).

    Article  CAS  Google Scholar 

  128. Groll, N. et al. Coordinate regulation of Cyp2e1 by β-catenin- and hepatocyte nuclear factor 1α-dependent signaling. Toxicology 350–352, 40–48 (2016).

    Article  PubMed  CAS  Google Scholar 

  129. Yan, G. et al. Chronic alcohol consumption promotes diethylnitrosamine-induced hepatocarcinogenesis via immune disturbances. Sci. Rep. 7, 2567 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Ambade, A., Satishchandran, A. & Szabo, G. Alcoholic hepatitis accelerates early hepatobiliary cancer by increasing stemness and MIR-122-mediated HIF-1α activation. Sci. Rep. 6, 21340 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Mitchell, A. J., Meader, N., Bird, V. & Rizzo, M. Clinical recognition and recording of alcohol disorders by clinicians in primary and secondary care: meta-analysis. Br. J. Psychiatry 201, 93–100 (2012).

    Article  PubMed  Google Scholar 

  132. Tavakoli, H. R., Hull, M. & Michael Okasinski, L. Review of current clinical biomarkers for the detection of alcohol dependence. Innov. Clin. Neurosci. 8, 26–33 (2011).

    PubMed  PubMed Central  Google Scholar 

  133. American Psychiatric Association in Diagnostic and Statistical Manual of Mental Disorders 863–877 (American Psychiatric Association, 2014).

  134. Thiele, M. et al. Controlled attenuation parameter for the assessment of alcoholic hepatic steatosis: biopsy-controlled diagnostic accuracy and role of detoxification. J. Hepat 68, 1025–1032 (2018).

    Article  CAS  Google Scholar 

  135. Thiele, M. et al. Controlled attenuation parameter and alcoholic hepatic steatosis: diagnostic accuracy and role of alcohol detoxification. J. Hepatol. 68, 1025–1032 (2018).

    Article  PubMed  CAS  Google Scholar 

  136. Imajo, K. et al. Magnetic resonance imaging more accurately classifies steatosis and fibrosis in patients with nonalcoholic fatty liver disease than transient elastography. Gastroenterology 150, 626–637 (2016).

    Article  PubMed  Google Scholar 

  137. Dulai, P. S., Sirlin, C. B. & Loomba, R. MRI and MRE for non-invasive quantitative assessment of hepatic steatosis and fibrosis in NAFLD and NASH: clinical trials to clinical practice. J. Hepatol. 65, 1006–1016 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Mueller, S., Seitz, H. K. & Rausch, V. Non-invasive diagnosis of alcoholic liver disease. World J. Gastroenterol. 20, 14626–14641 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Anton, R. F., Lieber, C. & Tabakoff, B. Carbohydrate-deficient transferrin and gamma-glutamyltransferase for the detection and monitoring of alcohol use: results from a multisite study. Alcohol. Clin. Exp. Res. 26, 1215–1222 (2002).

    PubMed  CAS  Google Scholar 

  140. Bell, H. et al. Serum carbohydrate-deficient transferrin as a marker of alcohol consumption in patients with chronic liver diseases. Alcohol. Clin. Exp. Res. 17, 246–252 (1993).

    Article  PubMed  CAS  Google Scholar 

  141. Mukai, M., Ozasa, K., Hayashi, K. & Kawai, K. Various S-GOT/S-GPT ratios in nonviral liver disorders and related physical conditions and life-style. Dig. Dis. Sci. 47, 549–555 (2002).

    Article  PubMed  CAS  Google Scholar 

  142. Mueller, S. et al. Inflammation-adapted liver stiffness values for improved fibrosis staging in patients with hepatitis C virus and alcoholic liver disease. Liver Int. 35, 2514–2521 (2015).

    Article  PubMed  CAS  Google Scholar 

  143. Mueller, S. et al. Caspase-cleaved keratin-18 fragments increase during alcohol withdrawal and predict liver-related death in patients with alcoholic liver disease. Hepatology 66, 96–107 (2017).

    Article  PubMed  CAS  Google Scholar 

  144. Lucey, M. R., Mathurin, P. & Morgan, T. R. Alcoholic Hepatitis. N. Engl. J. Med. 360, 2758–2769 (2009).

    Article  PubMed  CAS  Google Scholar 

  145. Altamirano, J. et al. A histologic scoring system for prognosis of patients with alcoholic hepatitis. Gastroenterology 146, 1231–1239 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Crabb, D. W. et al. Standard definitions and common data elements for clinical trials in patients with alcoholic hepatitis: recommendation from the NIAAA Alcoholic Hepatitis Consortia. Gastroenterology 150, 785–790 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Bedossa, P. et al. Apolipoprotein A1 is a serum and tissue marker of liver fibrosis in alcoholic patients. Alcohol. Clin. Exp. Res. 13, 829–833 (1989).

    Article  PubMed  CAS  Google Scholar 

  148. Parés, A. et al. Serum hyaluronate reflects hepatic fibrogenesis in alcoholic liver disease and is useful as a marker of fibrosis. Hepatology 24, 1399–1403 (1996).

    Article  PubMed  Google Scholar 

  149. Oberti, F. et al. Noninvasive diagnosis of hepatic fibrosis or cirrhosis. Gastroenterology 113, 1609–1616 (1997).

    Article  PubMed  CAS  Google Scholar 

  150. Plevris, J. N. et al. Serum hyaluronan - a non-invasive test for diagnosing liver cirrhosis. Eur. J. Gastroenterol. Hepatol. 12, 1121–1127 (2000).

    Article  PubMed  CAS  Google Scholar 

  151. Croquet, V. et al. Prothrombin index is an indirect marker of severe liver fibrosis. Eur. J. Gastroenterol. Hepatol. 14, 1133–1141 (2002).

    Article  PubMed  CAS  Google Scholar 

  152. Nøjgaard, C. et al. Serum levels of YKL-40 and PIIINP as prognostic markers in patients with alcoholic liver disease. J. Hepatol. 39, 179–186 (2003).

    Article  PubMed  CAS  Google Scholar 

  153. Stickel, F. et al. Serum hyaluronate correlates with histological progression in alcoholic liver disease. Eur. J. Gastroenterol. Hepatol. 15, 945–950 (2003).

    Article  PubMed  CAS  Google Scholar 

  154. Rosenberg, W. M. C. et al. Serum markers detect the presence of liver fibrosis: a cohort study. Gastroenterology 127, 1704–1713 (2004).

    Article  PubMed  Google Scholar 

  155. Stickel, F. et al. Serum collagen type VI and XIV and hyaluronic acid as early indicators for altered connective tissue turnover in alcoholic liver disease. Dig. Dis. Sci. 46, 2025–2032 (2001).

    Article  PubMed  CAS  Google Scholar 

  156. Naveau, S. et al. Diagnostic and prognostic values of noninvasive biomarkers of fibrosis in patients with alcoholic liver disease. Hepatology 49, 97–105 (2009).

    Article  PubMed  Google Scholar 

  157. Stickel, F., Datz, C., Hampe, J. & Bataller, R. Pathophysiology and management of alcoholic liver disease: update 2016. Gut Liver 11, 173–188 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Joshi, K., Kohli, A., Manch, R. & Gish, R. Alcoholic liver disease: high risk or low risk for developing hepatocellular carcinoma? Clin. Liver Dis. 20, 563–580 (2016).

    Article  PubMed  Google Scholar 

  159. Trojan, J., Zangos, S. & Schnitzbauer, A. A. Diagnostics and treatment of hepatocellular carcinoma in 2016: standards and developments. Visc. Med. 32, 116–120 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Filingeri, V. et al. A retrospective analysis of 1.011 percutaneous liver biopsies performed in patients with liver transplantation or liver disease: ultrasonography can reduce complications? Eur. Rev. Med. Pharmacol. Sci. 20, 3609–3617 (2016).

    PubMed  CAS  Google Scholar 

  161. Mathurin, P. & Bataller, R. Trends in the management and burden of alcoholic liver disease. J. Hepatol. 62, S38–S46 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Mookerjee, R. P. et al. The role of liver biopsy in the diagnosis and prognosis of patients with acute deterioration of alcoholic cirrhosis. J. Hepatol. 55, 1103–1111 (2011).

    Article  PubMed  Google Scholar 

  163. Hardy, T. et al. White cell count and platelet count associate with histological alcoholic hepatitis in jaundiced harmful drinkers. BMC Gastroenterol. 13, 55 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  164. Bissonnette, J. et al. A prospective study of the utility of plasma biomarkers to diagnose alcoholic hepatitis. Hepatology 66, 555–563 (2017).

    Article  PubMed  CAS  Google Scholar 

  165. Levin, D. M., Baker, A. L., Riddell, R. H., Rochman, H. & Boyer, J. L. Nonalcoholic liver disease. Am. J. Med. 66, 429–434 (1979).

    Article  PubMed  CAS  Google Scholar 

  166. Louvet, A. & Mathurin, P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat. Rev. Gastroenterol. Hepatol. 12, 231–242 (2015).

    Article  PubMed  Google Scholar 

  167. Yip, W. W. & Burt, A. D. Alcoholic liver disease. Semin. Diagn. Pathol. 23, 149–160 (2006).

    Article  PubMed  Google Scholar 

  168. [No authors listed.]. Alcoholic liver disease: morphological manifestations. Review by an international group. Lancet 1, 707–711 (1981).

    Google Scholar 

  169. Katoonizadeh, A. et al. Early features of acute-on-chronic alcoholic liver failure: A prospective cohort study. Gut 59, 1561–1569 (2010).

    Article  PubMed  Google Scholar 

  170. Desmet, V. J. & Roskams, T. Cirrhosis reversal: a duel between dogma and myth. J. Hepatol. 40, 860–867 (2004).

    Article  PubMed  Google Scholar 

  171. Bohn, M. J., Babor, T. F. & Kranzler, H. R. The alcohol use disorders identification test (AUDIT): validation of a screening instrument for use in medical settings. J. Stud. Alcohol 56, 423–432 (1995).

    Article  PubMed  CAS  Google Scholar 

  172. Bush, K., Kivlahan, D. R., McDonell, M. B., Fihn, S. D. & Bradley, K. A. The AUDIT alcohol consumption questions (AUDIT-C): An effective brief screening test for problem drinking. Arch. Intern. Med. 158, 1789–1795 (1998).

    Article  PubMed  CAS  Google Scholar 

  173. Casswell, S. & Thamarangsi, T. Reducing harm from alcohol: call to action. Lancet 373, 2247–2257 (2009).

    Article  PubMed  Google Scholar 

  174. Anderson, P., Chisholm, D. & Fuhr, D. C. Effectiveness and cost-effectiveness of policies and programmes to reduce the harm caused by alcohol. Lancet 373, 2234–2246 (2009).

    Article  PubMed  Google Scholar 

  175. Mueller, S. Does pressure cause liver cirrhosis? The sinusoidal pressure hypothesis. World J. Gastroenterol. 22, 10482–10501 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Mueller, S. et al. Increased liver stiffness in alcoholic liver disease: differentiating fibrosis from steatohepatitis. World J. Gastroenterol. 16, 966–972 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Parkes, J. et al. Enhanced liver fibrosis test can predict clinical outcomes in patients with chronic liver disease. Gut 59, 1245–1251 (2010).

    Article  PubMed  CAS  Google Scholar 

  178. Anton, R. F. et al. Combined pharmacotherapies and behavioral interventions for alcohol dependence. JAMA 295, 2003 (2006).

    Article  PubMed  CAS  Google Scholar 

  179. Nahler, G. Dictionary of Pharmaceutical Medicine. 69 (Springer, Vienna, 2009).

    Book  Google Scholar 

  180. Sobell, L. C., Brown, J., Leo, G. I. & Sobell, M. B. The reliability of the alcohol timeline followback when administered by telephone and by computer. Drug Alcohol Depend. 42, 49–54 (1996).

    Article  PubMed  CAS  Google Scholar 

  181. Addolorato, G., Mirijello, A., Barrio, P. & Gual, A. Treatment of alcohol use disorders in patients with alcoholic liver disease. J. Hepatol. 65, 618–630 (2016).

    Article  PubMed  Google Scholar 

  182. Stephens, J. R. et al. Who needs inpatient detox? Development and implementation of a hospitalist protocol for the evaluation of patients for alcohol detoxification. J. Gen. Intern. Med. 29, 587–593 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Bird, R. D. & Makela, E. H. Alcohol withdrawal: what is the benzodiazepine of choice? Ann. Pharmacother. 28, 67–71 (1994).

    Article  PubMed  CAS  Google Scholar 

  184. Chedid, A. et al. Prognostic factors in alcoholic liver disease. VA Cooperative Study Group. Am. J. Gastroenterol. 86, 210–216 (1991).

    PubMed  CAS  Google Scholar 

  185. Jepsen, P., Ott, P., Andersen, P. K., Sørensen, H. T. & Vilstrup, H. Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology 51, 1675–1682 (2010).

    Article  PubMed  Google Scholar 

  186. Parés, A., Caballería, J., Bruguera, M., Torres, M. & Rodés, J. Histological course of alcoholic hepatitis. Influence of abstinence, sex and extent of hepatic damage. J. Hepatol. 2, 33–42 (1986).

    Article  PubMed  Google Scholar 

  187. Maddrey, W. C. et al. Corticosteroid therapy of alcoholic hepatitis. Gastroenterology 75, 193–199 (1978).

    PubMed  CAS  Google Scholar 

  188. Carithers, R. L. et al. Methylprednisolone therapy in patients with severe alcoholic hepatitis: a randomized multicenter trial. Ann. Intern. Med. 110, 685–691 (1989).

    Article  PubMed  Google Scholar 

  189. Dunn, W. et al. MELD accurately predicts mortality in patients with alcoholic hepatitis. Hepatology 41, 353–358 (2005).

    Article  PubMed  Google Scholar 

  190. Dominguez, M. et al. A new scoring system for prognostic stratification of patients with alcoholic hepatitis. Am. J. Gastroenterol. 103, 2747–2756 (2008).

    Article  PubMed  Google Scholar 

  191. Forrest, E. H. et al. Analysis of factors predictive of mortality in alcoholic hepatitis and derivation and validation of the Glasgow alcoholic hepatitis score. Gut 54, 1174–1179 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Louvet, A. et al. The Lille model: a new tool for therapeutic strategy in patients with severe alcoholic hepatitis treated with steroids. Hepatology 45, 1348–1354 (2007). This study is important in predicting response to therapy and prognosis of alcoholic hepatitis.

    Article  PubMed  CAS  Google Scholar 

  193. Mathurin, P. et al. Corticosteroids improve short-term survival in patients with severe alcoholic hepatitis: meta-analysis of individual patient data. Gut 60, 255–260 (2011).

    Article  PubMed  CAS  Google Scholar 

  194. Louvet, A. et al. Combining data from liver disease scoring systems better predicts outcomes of patients with alcoholic hepatitis. Gastroenterology 149, 398–406 (2015).

    Article  PubMed  Google Scholar 

  195. Thursz, M. R. et al. Prednisolone or pentoxifylline for alcoholic hepatitis. N. Engl. J. Med. 372, 1619–1628 (2015).

    Article  PubMed  CAS  Google Scholar 

  196. Singh, S. et al. Comparative effectiveness of pharmacological interventions for severe alcoholic hepatitis: a systematic review and network meta-analysis. Gastroenterology 149, 958–970 (2015).

    Article  PubMed  CAS  Google Scholar 

  197. Mathurin, P. et al. Prednisolone with vs without pentoxifylline and survival of patients with severe alcoholic hepatitis. JAMA 310, 1033 (2013).

    Article  PubMed  CAS  Google Scholar 

  198. Nguyen-Khac, E. et al. Glucocorticoids plus N-acetylcysteine in severe alcoholic hepatitis. N. Engl. J. Med. 365, 1781–1789 (2011). This study shows a better short-term survival of patients with severe alcoholic hepatitis receiving steroids plus N -acetyl cysteine, which is important because it adds another drug to the potential therapies.

    Article  PubMed  CAS  Google Scholar 

  199. Louvet, A. et al. Infection in patients with severe alcoholic hepatitis treated with steroids: early response to therapy is the key factor. Gastroenterology 137, 541–548 (2009).

    Article  PubMed  CAS  Google Scholar 

  200. Vergis, N. et al. In patients with severe alcoholic hepatitis, prednisolone increases susceptibility to infection and infection-related mortality, and is associated with high circulating levels of bacterial DNA. Gastroenterology 152, 1068–1077.e4 (2017).

    Article  PubMed  CAS  Google Scholar 

  201. Mathurin, P. et al. Early liver transplantation for severe alcoholic hepatitis. N. Engl. J. Med. 365, 1790–1800 (2011). This paper presents a pioneer study on liver transplantation in severe alcoholic hepatitis.

    Article  PubMed  CAS  Google Scholar 

  202. Im, G. Y. et al. Early liver transplantation for severe alcoholic hepatitis in the United States-a single-center experience. Am. J. Transplant. 16, 841–849 (2016).

    Article  PubMed  CAS  Google Scholar 

  203. Lee, B. P. et al. Three-year results of a pilot program in early liver transplantation for severe alcoholic hepatitis. Ann. Surg. 265, 20–29 (2017).

    Article  PubMed  Google Scholar 

  204. Stroh, G., Rosell, T., Dong, F. & Forster, J. Early liver transplantation for patients with acute alcoholic hepatitis: public views and the effects on organ donation. Am. J. Transplant. 15, 1598–1604 (2015).

    Article  PubMed  CAS  Google Scholar 

  205. Ge, P. S. & Runyon, B. A. Treatment of patients with cirrhosis. N. Engl. J. Med. 375, 767–777 (2016).

    Article  PubMed  CAS  Google Scholar 

  206. Galle, P. R. et al. EASL clinical practice guidelines: management of hepatocellular carcinoma. J. Hepatol. 69, 182–236 (2018).

    Article  Google Scholar 

  207. Beresford, T. P. & Lucey, M. R. Towards standardizing the alcoholism evaluation of potential liver transplant recipients. Alcohol Alcohol. 53, 135–144 (2018).

    Article  PubMed  Google Scholar 

  208. Kumar, S. et al. Orthotopic liver transplantation for alcoholic liver disease. Hepatology 11, 159–164 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Seitz, H. K. Commentary: alcohol and alcoholism special issue on ‘alcohol and liver transplantation’. Alcohol Alcohol. 53, 133–134 (2018).

    Article  PubMed  Google Scholar 

  210. Foster, P. F. et al. Prediction of abstinence from ethanol in alcoholic recipients following liver transplantation. Hepatology 25, 1469–1477 (1997).

    Article  PubMed  CAS  Google Scholar 

  211. Schütte, K. et al. Delayed diagnosis of HCC with chronic alcoholic liver disease. Liver Cancer 1, 257–266 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Heimbach, J. K. et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 67, 358–380 (2018).

    Article  PubMed  Google Scholar 

  213. Vaughn-Sandler, V., Sherman, C., Aronsohn, A. & Volk, M. L. Consequences of perceived stigma among patients with cirrhosis. Dig. Dis. Sci. 59, 681–686 (2014).

    Article  PubMed  Google Scholar 

  214. Burra, P. et al. Liver transplantation for alcoholic liver disease in europe: a study from the ELTR (European Liver Transplant Registry). Am. J. Transplant. 10, 138–148 (2010).

    Article  PubMed  CAS  Google Scholar 

  215. Berlakovich, G. A. et al. General compliance after liver transplantation for alcoholic cirrhosis. Transpl. Int. 13, 129–135 (2000).

    PubMed  CAS  Google Scholar 

  216. Cowling, T. et al. Societal Reintegration After Liver Transplantation. Ann. Surg. 239, 93–98 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Ruppert, K., Kuo, S., DiMartini, A. & Balan, V. In a 12-year study, sustainability of quality of life benefits after liver transplantation varies with pretransplantation diagnosis. Gastroenterology 139, 1619–1629 (2010).

    Article  PubMed  Google Scholar 

  218. Anderson, P. & Baumberg, B. Alcohol in Europe A Public Health Perspective. (Institute of Alcohol Studies, 2006).

  219. Rehm, J. et al. Global burden of disease and injury and economic cost attributable to alcohol use and alcohol-use disorders. Lancet 373, 2223–2233 (2009).

    Article  PubMed  Google Scholar 

  220. Edwards, G. Alcohol policy and the public good. Addiction 92 (Suppl. 1), 73–79 (1997).

    Article  Google Scholar 

  221. Xu, M.-J., Zhou, Z., Parker, R. & Gao, B. Targeting inflammation for the treatment of alcoholic liver disease. Pharmacol. Ther. 180, 77–89 (2017).

    Article  PubMed  CAS  Google Scholar 

  222. Kong, X., Feng, D., Mathews, S. & Gao, B. Hepatoprotective and anti-fibrotic functions of interleukin-22: therapeutic potential for the treatment of alcoholic liver disease. J. Gastroenterol. Hepatol. 28, 56–60 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  223. Gao, B. & Shah, V. H. Combination therapy: new hope for alcoholic hepatitis? Clin. Res. Hepatol. Gastroenterol. 39, S7–S11 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Spahr, L. et al. Granulocyte-colony stimulating factor induces proliferation of hepatic progenitors in alcoholic steatohepatitis: A randomized trial. Hepatology 48, 221–229 (2008).

    Article  PubMed  CAS  Google Scholar 

  225. Singh, V. et al. Granulocyte colony-stimulating factor in severe alcoholic hepatitis: a randomized pilot study. Am. J. Gastroenterol. 109, 1417–1423 (2014).

    Article  PubMed  CAS  Google Scholar 

  226. Morgan, T. R. Is granulocyte colony stimulating factor a new treatment for alcoholic hepatitis? Clin. Gastroenterol. Hepatol. https://doi.org/10.1016/j.cgh.2018.06.013 (2018).

    Article  PubMed  Google Scholar 

  227. Spahr, L. et al. Autologous bone marrow mononuclear cell transplantation in patients with decompensated alcoholic liver disease: a randomized controlled trial. PLOS One 8, e53719 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Thompson, J. et al. Extracorporeal cellular therapy (ELAD) in severe alcoholic hepatitis: a multinational, prospective, controlled, randomized trial. Liver Transpl. 24, 380–393 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  229. WHO. Global status report on alcohol and health 2014. (WHO, 2016).

  230. Alatalo, P. I. et al. Effect of moderate alcohol consumption on liver enzymes increases with increasing body mass index. Am. J. Clin. Nutr. 88, 1097–1103 (2008).

    Article  PubMed  CAS  Google Scholar 

  231. Loomba, R., Bettencourt, R. & Barrett-Connor, E. Synergistic association between alcohol intake and body mass index with serum alanine and aspartate aminotransferase levels in older adults: the Rancho Bernardo Study. Aliment. Pharmacol. Ther. 30, 1137–1149 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Raynard, B. et al. Risk factors of fibrosis in alcohol-induced liver disease. Hepatology 35, 635–638 (2002).

    Article  PubMed  Google Scholar 

  233. Ekstedt, M. et al. Alcohol consumption is associated with progression of hepatic fibrosis in non-alcoholic fatty liver disease. Scand. J. Gastroenterol. 44, 366–374 (2009).

    Article  PubMed  CAS  Google Scholar 

  234. Ruhl, C. E. & Everhart, J. E. Joint effects of body weight and alcohol on elevated serum alanine aminotransferase in the United States population. Clin. Gastroenterol. Hepatol. 3, 1260–1268 (2005).

    Article  PubMed  CAS  Google Scholar 

  235. Kawamura, Y. et al. Effects of alcohol consumption on hepatocarcinogenesis in Japanese patients with fatty liver disease. Clin. Gastroenterol. Hepatol. 14, 597–605 (2016).

    Article  PubMed  CAS  Google Scholar 

  236. Liangpunsakul, S. & Chalasani, N. What should we recommend to our patients with NAFLD regarding alcohol use? Am. J. Gastroenterol. 107, 976–978 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Seitz, H. K. et al. Possible role of acetaldehyde in ethanol-related rectal cocarcinogenesis in the rat. Gastroenterology 98, 406–413 (1990).

    Article  PubMed  CAS  Google Scholar 

  238. Simanowski, U. A. et al. Increased rectal cell proliferation following alcohol abuse. Gut 49, 418–422 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  239. Basuroy, S., Sheth, P., Mansbach, C. M. & Rao, R. K. Acetaldehyde disrupts tight junctions and adherens junctions in human colonic mucosa: protection by EGF and L-glutamine. Am. J. Physiol. Gastrointest. Liver Physiol. 289, G367–375 (2005).

    Article  PubMed  CAS  Google Scholar 

  240. Hartmann, P., Seebauer, C. T. & Schnabl, B. Alcoholic liver disease: the gut microbiome and liver cross talk. Alcohol. Clin. Exp. Res. 39, 763–775 (2015). The paper describes in an excellent way the mechanisms by which gut microbiota contribute to the development of ALD.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Elamin, E., Masclee, A., Troost, F., Dekker, J. & Jonkers, D. Activation of the epithelial-to-mesenchymal transition factor snail mediates acetaldehyde-induced intestinal epithelial barrier disruption. Alcohol. Clin. Exp. Res. 38, 344–353 (2014).

    Article  PubMed  CAS  Google Scholar 

  242. Szabo, G. & Csak, T. Inflammasomes in liver diseases. J. Hepatol. 57, 642–654 (2012).

    Article  PubMed  CAS  Google Scholar 

  243. Adachi, Y., Bradford, B. U., Gao, W., Bojes, H. K. & Thurman, R. G. Inactivation of Kupffer cells prevents early alcohol-induced liver injury. Hepatology 20, 453–460 (1994).

    Article  PubMed  CAS  Google Scholar 

  244. Adachi, Y., Moore, L. E., Bradford, B. U., Gao, W. & Thurman, R. G. Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 108, 218–224 (1995).

    Article  PubMed  CAS  Google Scholar 

  245. Mookerjee, R. P. et al. Neutrophil dysfunction in alcoholic hepatitis superimposed on cirrhosis is reversible and predicts the outcome. Hepatology 46, 831–840 (2007).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank H. Engel for her help in managing administration, English language correction and the reference list during the writing of this article.

Reviewer information

Nature Reviews Disease Primers thanks H. Tilg, M. Neuman, A. Cederbaum, T. Morgan and R. Williams for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (H.K.S.); Epidemiology (H.K.S. and H.C.-P.); Mechanisms/pathophysiology (H.K.S., R.B., G.S. and H.T.); Diagnosis, screening and prevention (H.K.S., A.G., C.L. and S.M.); Management (R.B., A.G. and P.M.); Quality of life (H.C.-P.); Outlook (R.B. and B.G.); Overview of Primer (H.K.S.).

Corresponding author

Correspondence to Helmut K. Seitz.

Ethics declarations

Competing interests

H.K.S. has received lecture fees from the Falk Foundation and research grants from Octapharma. R.B. has no conflicts of interest. H.C.-P. has received lecture fees and advisory board fees from Genfit, Gilead Sciences, Intercept Pharmaceuticals and Merck. She is also the Policy Councillor for the European Association for the Study of the Liver. B.G. has no conflicts of interest. A.G. has received honoraria and grants for research from D&A Pharma SAS and Lundbeck Limited. He was also principal investigator in one of the nalmefene pivotal studies, investigator in the sodium oxybate trial and Spanish coordinator of the acamprosate trial (Adisa study). He is a past president of the European Federation of Addiction Societies and vice president of the International Network on Brief Interventions for Alcohol and Drugs. C.L. has no conflicts of interest. P.M. consults for Gilead Sciences and Verlyx Pharma. S.M. has previously been an adviser for Echosens. G.S. has received US NIH grant funding from the National Institute on Alcohol Abuse and Alcoholism, is employed by the University of Massachusetts Medical School and is the Editor-in-Chief of Hepatology Communications of the American Association for the Study of Liver Disease. H.T. has received grants and donations from EA Pharma, Gilead Sciences and Otsuka Pharmaceutical.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seitz, H.K., Bataller, R., Cortez-Pinto, H. et al. Alcoholic liver disease. Nat Rev Dis Primers 4, 16 (2018). https://doi.org/10.1038/s41572-018-0014-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1038/s41572-018-0014-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing