Abstract
The treatment goal for patients with early-stage lung cancer is cure. Multidisciplinary discussions of surgical resectability and medical operability determine the modality of definitive local treatment (surgery or radiotherapy) and the associated systemic therapies to further improve the likelihood of cure. Trial evidence supports cisplatin-based adjuvant therapy either after surgical resection or concurrently with radiotherapy. Consensus guidelines support neoadjuvant chemotherapy in lieu of adjuvant chemotherapy and carboplatin-based regimens for patients who are ineligible for cisplatin. The incorporation of newer agents, now standard for patients with stage IV lung cancer, into the curative therapy paradigm has lagged owing to inefficient trial designs, the lengthy follow-up needed to assess survival end points and a developmental focus on the advanced-stage disease setting. Surrogate end points, such as pathological response, are being studied and might shorten trial durations. In 2018, the anti-PD-L1 antibody durvalumab was approved for patients with stage III lung cancer after concurrent chemoradiotherapy. Since then, the study of targeted therapies and immunotherapies in patients with early-stage lung cancer has rapidly expanded. In this Review, we present the current considerations in the treatment of patients with early-stage lung cancer and explore the current and future state of clinical research to develop systemic therapies for non-metastatic lung cancer.
Key points
-
Cisplatin-based adjuvant chemotherapy remains the standard of care for patients with resected high-risk non-metastatic non-small-cell lung cancer (NSCLC).
-
Anti-PD-L1 therapy with durvalumab after concurrent chemotherapy and radiotherapy for unresectable or inoperable non-metastatic NSCLC improves overall survival.
-
Osimertinib for 3 years after standard adjuvant therapy improves disease-free survival in patients with NSCLC harbouring EGFR mutations.
-
Immunotherapy is being extensively studied in the preoperative and postoperative settings.
-
Novel clinical trial designs are needed to accelerate advances in the treatment of patients with curable NSCLC.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Shapiro, M. et al. Predictors of major morbidity and mortality after pneumonectomy utilizing the Society for Thoracic Surgeons General Thoracic Surgery Database. Ann. Thorac. Surg. 90, 927–934 (2010).
Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).
Bade, B. C. & Dela Cruz, C. S. Lung cancer 2020: epidemiology, etiology, and prevention. Clin. Chest Med. 41, 1–24 (2020).
Fischer, B. et al. Preoperative staging of lung cancer with combined PET-CT. N. Engl. J. Med. 361, 32–39 (2009).
Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).
Pagès, P. B. et al. Impact of video-assisted thoracic surgery approach on postoperative mortality after lobectomy in octogenarians. J. Thorac. Cardiovasc. Surg. 157, 1660–1667 (2019).
Hristov, B. et al. Minimally invasive lobectomy is associated with lower noncancer-specific mortality in elderly patients: a propensity score matched competing risks analysis. Ann. Surg. 270, 1161–1169 (2019).
Goldstraw, P. et al. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (Eighth) edition of the TNM classification for lung cancer. J. Thorac. Oncol. 11, 39–51 (2016).
Yang, C. F. et al. Use and outcomes of minimally invasive lobectomy for Stage I non-small cell lung cancer in the National Cancer Data Base. Ann. Thorac. Surg. 101, 1037–1042 (2016).
Chun, S. G. et al. Impact of intensity-modulated radiation therapy technique for locally advanced non-small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 Randomized Clinical Trial. J. Clin. Oncol. 35, 56–62 (2017).
National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): non-small cell lung cancer (NCCN, 2021).
Garon, E. B. et al. Five-year overall survival for patients with advanced nonsmall-cell lung cancer treated with pembrolizumab: results from the phase I KEYNOTE-001 study. J. Clin. Oncol. 37, 2518–2527 (2019).
Um, S. W. et al. Endobronchial ultrasound versus mediastinoscopy for mediastinal nodal staging of non-small-cell lung cancer. J. Thorac. Oncol. 10, 331–337 (2015).
Vansteenkiste, J. et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 24, vi89–vi98 (2013).
Planchard, D. et al. Metastatic non-small cell lung cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 29, iv192–iv237 (2018).
Curioni-Fontecedro, A. et al. Preoperative chemotherapy and radiotherapy concomitant to cetuximab in resectable stage IIIB NSCLC: a multicentre phase 2 trial (SAKK 16/08). Br. J. Cancer 120, 968–974 (2019).
Kocher, F. et al. Multicenter phase II study evaluating docetaxel and cisplatin as neoadjuvant induction regimen prior to surgery or radiochemotherapy with docetaxel, followed by adjuvant docetaxel therapy in chemonaive patients with NSCLC stage II, IIIA and IIIB (TAX-AT 1.203 Trial). Lung Cancer 85, 395–400 (2014).
Kearney, D. J., Lee, T. H., Reilly, J. J., DeCamp, M. M. & Sugarbaker, D. J. Assessment of operative risk in patients undergoing lung resection. Importance predicted pulmonary function. Chest 105, 753–759 (1994).
Wang, J., Olak, J. & Ferguson, M. K. Diffusing capacity predicts operative mortality but not long-term survival after resection for lung cancer. J. Thorac. Cardiovasc. Surg. 117, 581–586 (1999).
Bousamra, M. 2nd et al. Early and late morbidity in patients undergoing pulmonary resection with low diffusion capacity. Ann. Thorac. Surg. 62, 968–974 (1996).
Datta, D. & Lahiri, B. Preoperative evaluation of patients undergoing lung resection surgery. Chest 123, 2096–2103 (2003).
Burke, J. R., Duarte, I. G., Thourani, V. H. & Miller, J. I. Preoperative risk assessment for marginal patients requiring pulmonary resection. Ann. Thorac. Surg. 76, 1767–1773 (2003).
Timmerman, R. et al. Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303, 1070–1076 (2010).
Videtic, G. M. et al. A randomized phase 2 study comparing 2 stereotactic body radiation therapy schedules for medically inoperable patients with stage I peripheral non-small cell lung cancer: NRG oncology RTOG 0915 (NCCTG N0927). Int. J. Radiat. Oncol. Biol. Phys. 93, 757–764 (2015).
Ball, D. et al. Stereotactic ablative radiotherapy versus standard radiotherapy in stage 1 non-small-cell lung cancer (TROG 09.02 CHISEL): a phase 3, open-label, randomised controlled trial. Lancet Oncol. 20, 494–503 (2019).
Senthi, S., Lagerwaard, F. J., Haasbeek, C. J., Slotman, B. J. & Senan, S. Patterns of disease recurrence after stereotactic ablative radiotherapy for early stage non-small-cell lung cancer: a retrospective analysis. Lancet Oncol. 13, 802–809 (2012).
Leeman, J. E. et al. Histologic subtype in core lung biopsies of early-stage lung adenocarcinoma is a prognostic factor for treatment response and failure patterns after stereotactic body radiation therapy. Int. J. Radiat. Oncol. Biol Phys. 97, 138–145 (2017).
Kohutek, Z. A. et al. FDG-PET maximum standardized uptake value is prognostic for recurrence and survival after stereotactic body radiotherapy for non-small cell lung cancer. Lung Cancer 89, 115–120 (2015).
Cuaron, J. J. et al. Stereotactic body radiation therapy for primary lung cancers>3 centimeters. J. Thorac. Oncol. 8, 1396–1401 (2013).
Antonia, S. J. et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 377, 1919–1929 (2017).
Antonia, S. J. et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N. Engl. J. Med. 379, 2342–2350 (2018).
Bradley, J. D. et al. Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non-small-cell lung cancer. J. Clin. Oncol. 38, 706–714 (2020).
Vokes, E. E. et al. Induction chemotherapy followed by chemoradiotherapy compared with chemoradiotherapy alone for regionally advanced unresectable stage III Non-small-cell lung cancer: Cancer and Leukemia Group B. J. Clin. Oncol. 25, 1698–1704 (2007).
Hanna, N. et al. Phase III study of cisplatin, etoposide, and concurrent chest radiation with or without consolidation docetaxel in patients with inoperable stage III non-small-cell lung cancer: the Hoosier Oncology Group and U.S. Oncology. J. Clin. Oncol. 26, 5755–5760 (2008).
Tsujino, K. et al. Is consolidation chemotherapy after concurrent chemo-radiotherapy beneficial for patients with locally advanced non-small-cell lung cancer? A pooled analysis of the literature. J. Thorac. Oncol. 8, 1181–1189 (2013).
Bradley, J. D. et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial phase 3 study. Lancet Oncol. 16, 187–199 (2015).
Thor, M. et al. Modeling the impact of cardiopulmonary irradiation on overall survival in NRG oncology Trial RTOG 0617. Clin. Cancer Res. 26, 4643–4650 (2020).
Senan, S. et al. PROCLAIM: randomized phase III trial of pemetrexed-cisplatin or etoposide-cisplatin plus thoracic radiation therapy followed by consolidation chemotherapy in locally advanced nonsquamous non-small-cell lung cancer. J. Clin. Oncol. 34, 953–962 (2016).
Faivre-Finn, C. et al. LBA49 Durvalumab after chemoradiotherapy in stage III NSCLC: 4-year survival update from the phase III PACIFIC trial. Ann. Oncol. 31 (Suppl. 4), S1142–S1215 (2020).
Paz-Ares, L. et al. Outcomes with durvalumab by tumour PD-L1 expression in unresectable, stage III non-small-cell lung cancer in the PACIFIC trial. Ann. Oncol. 31, 798–806 (2020).
Raben, D. et al. Patterns of disease progression with durvalumab in stage III non-small cell lung cancer (PACIFIC). Int. J. Radiat. Oncol. 105, 683 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04214262 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03833154 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT00686166 (2018).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03519971 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04026412 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03693300 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03521154 (2020).
Marks, L. B. et al. Radiation dose-volume effects in the lung. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), S70–S76 (2010).
Thor, M. et al. Toward personalized dose-prescription in locally advanced non-small cell lung cancer: Validation of published normal tissue complication probability models. Radiother. Oncol. 138, 45–51 (2019).
Speirs, C. K. et al. Heart dose is an independent dosimetric predictor of overall survival in locally advanced non-small cell lung cancer. J. Thorac. Oncol. 12, 293–301 (2017).
Xue, J. et al. Validity of current stereotactic body radiation therapy dose constraints for aorta and major vessels. Semin. Radiat. Oncol. 26, 135–139 (2016).
Dehing-Oberije, C. et al. Development, external validation and clinical usefulness of a practical prediction model for radiation-induced dysphagia in lung cancer patients. Radiother. Oncol. 97, 455–461 (2010).
Werner-Wasik, M., Yorke, E., Deasy, J., Nam, J. & Marks, L. B. Radiation dose-volume effects in the esophagus. Int. J. Radiat. Oncol. Biol. Phys. 76 (Suppl. 3), S86–S93 (2010).
Sung, S., Son, S. H., Park, E. Y. & Kay, C. S. Prognosis of locally advanced rectal cancer can be predicted more accurately using pre- and post-chemoradiotherapy neutrophil-lymphocyte ratios in patients who received preoperative chemoradiotherapy. PLoS ONE 12, e0173955 (2017).
Scilla, K. A. et al. Neutrophil-lymphocyte ratio is a prognostic marker in patients with locally advanced (Stage IIIA and IIIB) non-small cell lung cancer treated with combined modality therapy. Oncologist 22, 737–742 (2017).
Thor, M. et al. Are unsatisfactory outcomes after concurrent chemoradiotherapy for locally advanced non-small cell lung cancer due to treatment-related immunosuppression? Radiother. Oncol. 143, 51–57 (2020).
Tang, C. et al. Lymphopenia association with gross tumor volume and lung v5 and its effects on non-small cell lung cancer patient outcomes. Int. J. Radiat. Oncol. Biol. Phys. 89, 1084–1091 (2014).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01993810 (2018).
Travis, W. D. et al. The IASLC lung cancer staging project: proposals for coding T categories for subsolid nodules and assessment of tumor size in part-solid tumors in the forthcoming eighth edition of the TNM classification of lung cancer. J. Thorac. Oncol. 11, 1204–1223 (2016).
Nicholson, A. G. et al. The International Association for the study of lung cancer lung cancer staging project: proposals for the revision of the clinical and pathologic staging of small cell lung cancer in the forthcoming eighth edition of the TNM classification for lung cancer. J. Thorac. Oncol. 11, 300–311 (2016).
Wu, Y. L. et al. Osimertinib in resected EGFR-mutated non-small-cell lung cancer. N. Engl. J. Med. 383, 1711–1723 (2020).
Bradbury, P. et al. Postoperative adjuvant systemic therapy in completely resected non-small-cell lung cancer: a systematic review. Clin. Lung Cancer 18, 259–273.e258 (2017).
Pignon, J. P. et al. Lung adjuvant cisplatin evaluation: a pooled analysis by the LACE Collaborative Group. J. Clin. Oncol. 26, 3552–3559 (2008).
Hamada, C. et al. Meta-analysis of postoperative adjuvant chemotherapy with tegafur-uracil in non-small-cell lung cancer. J. Clin. Oncol. 23, 4999–5006 (2005).
Scagliotti, G. V. et al. Randomized study of adjuvant chemotherapy for completely resected stage I, II, or IIIA non-small-cell Lung cancer. J. Natl Cancer Inst. 95, 1453–1461 (2003).
Winton, T. et al. Vinorelbine plus cisplatin vs. observation in resected non-small-cell lung cancer. N. Engl. J. Med. 352, 2589–2597 (2005).
Arriagada, R. et al. Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet 375, 1267–1277 (2010).
Le Pechoux, C. et al. LBA3_PR An international randomized trial, comparing post-operative conformal radiotherapy (PORT) to no PORT, in patients with completely resected non-small cell lung cancer (NSCLC) and mediastinal N2 involvement: primary end-point analysis of LungART (IFCT-0503, UK NCRI, SAKK) NCT00410683. Ann. Oncol. 31, (Suppl. 4) S1178 (2020).
Nsclc Meta-analysis Collaborative Group. Preoperative chemotherapy for non-small-cell lung cancer: a systematic review and meta-analysis of individual participant data. Lancet 383, 1561–1571 (2014).
Kato, H. et al. A randomized trial of adjuvant chemotherapy with uracil-tegafur for adenocarcinoma of the lung. N. Engl. J. Med. 350, 1713–1721 (2004).
Hamada, C. et al. Effect of postoperative adjuvant chemotherapy with tegafur-uracil on survival in patients with stage IA non-small cell lung cancer: an exploratory analysis from a meta-analysis of six randomized controlled trials. J. Thorac. Oncol. 4, 1511–1516 (2009).
Petrelli, F. & Barni, S. Non-cancer-related mortality after cisplatin-based adjuvant chemotherapy for non-small cell lung cancer: a study-level meta-analysis of 16 randomized trials. Med. Oncol. 30, 641 (2013).
Wakelee, H. A. et al. Adjuvant chemotherapy with or without bevacizumab in patients with resected non-small-cell lung cancer (E1505): an open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 18, 1610–1623 (2017).
Douillard, J. Y. et al. Adjuvant cisplatin and vinorelbine for completely resected non-small cell lung cancer: subgroup analysis of the lung adjuvant cisplatin evaluation. J. Thorac. Oncol. 5, 220–228 (2010).
Pepe, C. et al. Adjuvant vinorelbine and cisplatin in elderly patients: National Cancer Institute of Canada and Intergroup Study JBR.10. J. Clin. Oncol. 25, 1553–1561 (2007).
Kenmotsu, H. et al. Randomized phase III study of pemetrexed plus cisplatin versus vinorelbine plus cisplatin for completely resected stage II to IIIA nonsquamous non-small-cell lung cancer. J. Clin. Oncol. 38, 2187–2196 (2020).
Kris, M. G. et al. Adjuvant systemic therapy and adjuvant radiation therapy for stage I to IIIA completely resected non-small-cell lung cancers: American Society of Clinical Oncology/Cancer Care Ontario Clinical Practice Guideline Update. J. Clin. Oncol. 35, 2960–2974 (2017).
Vansteenkiste, J. F. et al. Efficacy of the MAGE-A3 cancer immunotherapeutic as adjuvant therapy in patients with resected MAGE-A3-positive non-small-cell lung cancer (MAGRIT): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 17, 822–835 (2016).
Chan, B. A. & Hughes, B. G. M. Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl. Lung Cancer Res. 4, 36–54 (2015).
Reck, M. et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N. Engl. J. Med. 375, 1823–1833 (2016).
Zhong, W. Z. et al. Gefitinib versus vinorelbine plus cisplatin as adjuvant treatment for stage II-IIIA (N1-N2) EGFR-mutant NSCLC (ADJUVANT/CTONG1104): a randomised, open-label, phase 3 study. Lancet Oncol. 19, 139–148 (2018).
Arriagada, R. et al. Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N. Engl. J. Med. 350, 351–360 (2004).
Felip, E. et al. Preoperative chemotherapy plus surgery versus surgery plus adjuvant chemotherapy versus surgery alone in early-stage non-small-cell lung cancer. J. Clin. Oncol. 28, 3138–3145 (2010).
Betticher, D. C. et al. Mediastinal lymph node clearance after docetaxel-cisplatin neoadjuvant chemotherapy is prognostic of survival in patients with stage IIIA pN2 non-small-cell lung cancer: a multicenter phase II trial. J. Clin. Oncol. 21, 1752–1759 (2003).
Blumenthal, G. M. et al. Current status and future perspectives on neoadjuvant therapy in lung cancer. J. Thorac. Oncol. 13, 1818–1831 (2018).
Chaft, J. E. et al. Adaptive neoadjuvant chemotherapy guided by 18F-FDG PET in resectable non-small cell lung cancers: the NEOSCAN trial. J. Thorac. Oncol. 11, 537–544 (2016).
Blakely, C. M. & McCoach, C. E. Role of MPR as an early signal for efficacy in neoadjuvant studies. Clin. Cancer Res. 26, 3499–3500 (2020).
Chiang, A. C. & Herbst, R. S. Frontline immunotherapy for NSCLC — the tale of the tail. Nat. Rev. Clin. Oncol. 17, 73–74 (2020).
Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).
McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).
Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02927301 (2020).
Kwiatkowski, D. J. et al. Neoadjuvant atezolizumab in resectable non-small cell lung cancer (NSCLC): Interim analysis and biomarker data from a multicenter study (LCMC3). J. Clin. Oncol. 37 (Suppl. 15), 8503 (2019).
Gao, S. et al. Neoadjuvant PD-1 inhibitor (Sintilimab) in NSCLC. J. Thorac. Oncol. 15, 816–826 (2020).
Cascone, T. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nat. Med. 27, 504–514 (2021).
Herbst, R. S. & Sznol, M. Diminished but not dead: chemotherapy for the treatment of NSCLC. Lancet Oncol. 17, 1464–1465 (2016).
Parra, E. R. et al. Effect of neoadjuvant chemotherapy on the immune microenvironment in non-small cell lung carcinomas as determined by multiplex immunofluorescence and image analysis approaches. J. Immunother. Cancer 6, 48 (2018).
Gadgeel, S. et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non–small-cell lung cancer. J. Clin. Oncol. 38, 1505–1517 (2020).
Paz-Ares, L. et al. A randomized, placebo-controlled trial of pembrolizumab plus chemotherapy in patients with metastatic squamous NSCLC: protocol-specified final analysis of KEYNOTE-407. J. Thorac. Oncol. 15, 1657–1669 (2020).
Reck, M. et al. Atezolizumab plus bevacizumab and chemotherapy in non-small-cell lung cancer (IMpower150): key subgroup analyses of patients with EGFR mutations or baseline liver metastases in a randomised, open-label phase 3 trial. Lancet Respir. Med. 7, 387–401 (2019).
Shu, C. A. et al. Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 786–795 (2020).
Provencio, M. et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 1413–1422 (2020).
Rothschild, S. et al. SAKK 16/14: Anti-PD-L1 antibody durvalumab in addition to neoadjuvant chemotherapy in patients with stage IIIA(N2) non-small cell lung cancer (NSCLC) — A multicenter single-arm phase II trial. J. Clin. Oncol. 38, 9016–9016 (2020).
Bristol Myers Squibb. Opdivo (nivolumab) plus chemotherapy shows statistically significant improvement in pathologic complete response as neoadjuvant treatment of resectable non-small cell lung cancer in phase 3 CheckMate -816 trial. Businesswire https://www.businesswire.com/news/home/20201007005273/en/ (2020).
Mayekar, M. K. & Bivona, T. G. Current landscape of targeted therapy in lung cancer. Clin. Pharmacol. Ther. 102, 757–764 (2017).
Zhong, W. Z. et al. Erlotinib versus gemcitabine plus cisplatin as neoadjuvant treatment of stage IIIA-N2 EGFR-mutant non-small-cell lung cancer (EMERGING-CTONG 1103): a randomized phase II study. J. Clin. Oncol. 37, 2235–2245 (2019).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04351555 (2020).
Rusch, V. W. et al. Induction chemoradiation and surgical resection for non-small cell lung carcinomas of the superior sulcus: initial results of Southwest Oncology Group Trial 9416 (Intergroup Trial 0160). J. Thorac. Cardiovasc. Surg. 121, 472–483 (2001).
Rusch, V. W. et al. Induction chemoradiation and surgical resection for superior sulcus non-small-cell lung carcinomas: long-term results of Southwest Oncology Group Trial 9416 (Intergroup Trial 0160). J. Clin. Oncol. 25, 313–318 (2007).
Robinson, L. A. et al. Induction chemoradiotherapy versus chemotherapy alone for superior sulcus lung cancer. Lung Cancer 122, 206–213 (2018).
Thomas, M. et al. Effect of preoperative chemoradiation in addition to preoperative chemotherapy: a randomised trial in stage III non-small-cell lung cancer. Lancet Oncol. 9, 636–648 (2008).
Pless, M. et al. Induction chemoradiation in stage IIIA/N2 non-small-cell lung cancer: a phase 3 randomised trial. Lancet 386, 1049–1056 (2015).
Billiet, C. et al. Modern post-operative radiotherapy for stage III non-small cell lung cancer may improve local control and survival: a meta-analysis. Radiother. Oncol. 110, 3–8 (2014).
Mikell, J. L. et al. Postoperative radiotherapy is associated with better survival in non-small cell lung cancer with involved N2 lymph nodes: results of an analysis of the National Cancer Data Base. J. Thorac. Oncol. 10, 462–471 (2015).
Corso, C. D. et al. Re-evaluation of the role of postoperative radiotherapy and the impact of radiation dose for non-small-cell lung cancer using the National Cancer Database. J. Thorac. Oncol. 10, 148–155 (2015).
Robinson, C. G. et al. Postoperative radiotherapy for pathologic N2 non-small-cell lung cancer treated with adjuvant chemotherapy: a review of the National Cancer Data Base. J. Clin. Oncol. 33, 870–876 (2015).
Govindan, R. et al. ALCHEMIST trials: a golden opportunity to transform outcomes in early-stage non-small cell lung cancer. Clin. Cancer Res. 21, 5439–5444 (2015).
Johnson, J. R., Williams, G. & Pazdur, R. End points and United States Food and Drug Administration approval of oncology drugs. J. Clin. Oncol. 21, 1404–1411 (2003).
Mauguen, A. et al. Surrogate endpoints for overall survival in chemotherapy and radiotherapy trials in operable and locally advanced lung cancer: a re-analysis of meta-analyses of individual patients’ data. Lancet Oncol. 14, 619–626 (2013).
Pataer, A. et al. Histopathologic response criteria predict survival of patients with resected lung cancer after neoadjuvant chemotherapy. J. Thorac. Oncol. 7, 825–832 (2012).
Cascone, T. et al. Induction cisplatin docetaxel followed by surgery and erlotinib in non-small cell lung cancer. Ann. Thorac. Surg. 105, 418–424 (2018).
Chaft, J. E. et al. Phase II trial of neoadjuvant bevacizumab plus chemotherapy and adjuvant bevacizumab in patients with resectable nonsquamous non-small-cell lung cancers. J. Thorac. Oncol. 8, 1084–1090 (2013).
Cascone, T. et al. A phase I/II study of neoadjuvant cisplatin, docetaxel, and nintedanib for resectable non-small cell lung cancer. Clin. Cancer Res. 26, 3525–3536 (2020).
Hellmann, M. D. et al. Pathological response after neoadjuvant chemotherapy in resectable non-small-cell lung cancers: proposal for the use of major pathological response as a surrogate endpoint. Lancet Oncol. 15, e42–e50 (2014).
Travis, W. D. et al. IASLC multidisciplinary recommendations for pathologic assessment of lung cancer resection specimens after neoadjuvant therapy. J. Thorac. Oncol. 15, 709–740 (2020).
Chaudhuri, A. A. et al. Early detection of molecular residual disease in localized lung cancer by circulating tumor DNA profiling. Cancer Discov. 7, 1394–1403 (2017).
Li, B. T. et al. Liquid biopsy for ctDNA to revolutionize the care of patients with early stage lung cancers. Ann. Transl. Med. 5, 479 (2017).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT04385368 (2020).
Howlader, N. et al. The effect of advances in lung-cancer treatment on population mortality. N. Engl. J. Med. 383, 640–649 (2020).
Song, W.-A. et al. Survival benefit of neoadjuvant chemotherapy in non-small cell lung cancer: an updated meta-analysis of 13 randomized control trials. J. Thorac. Oncol. 5, 510–516 (2010).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02201992 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02193282 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02595944 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02504372 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02486718 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02273375 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03447769 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03800134 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03456063 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT03425643 (2020).
US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT02998528 (2020).
Acknowledgements
We would like to thank C. Wilhelm for critically reading the manuscript and for editorial contributions and A. F. Shepherd for contributions to Fig. 2. The work of the authors is supported in part by an NIH grant P30 CA008748 to Memorial Sloan Kettering Cancer Center. T.C. is the recipient of an ASCO Career Development Award and her work is partially supported by the NIH grant P30 CA016672 to the University of Texas MD Anderson Cancer Center.
Author information
Authors and Affiliations
Contributions
All authors researched data for the article, made substantial contributions to discussions of content, wrote the manuscript, and reviewed and edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
J.E.C. reports consulting fees from AstraZeneca, Bristol–Myers Squibb, Flame Biosciences, Genentech, Merck, and Novartis and clinical research funding to Memorial Sloan Kettering Cancer Center from AstraZeneca, Bristol–Myers Squibb, Genentech and Merck. A.R. reports grants from Boehringer Ingelheim, Pfizer, and Varian Medical Systems, grants and personal fees from AstraZeneca and Merck, personal fees from Cybrexa, More Health and Research to Practice, and non-financial support from Philips–Elekta, outside the submitted work. W.W. reports advisory board and speaker fees from AstraZeneca as well as teaching grant and speaker fees from Covidien–Medtronic. M.G.K. reports personal fees from AstraZeneca, Daiichi–Sankyo, Pfizer and Regeneron from outside the submitted work and honoraria for participation in educational programmes from AstraZeneca, AXIS, Carvive Systems, Creative Educational Concepts, i3 Health, Intellisphere, OncLive, Paradigm Medical Communications, Peerview, Physicians Education Resources, Prime Oncology, Research to Practice and WebMD. Funds for travel and lodging as well as food and beverage have been provided by AstraZeneca, Genentech, Pfizer and Regeneron. M.G.K. is an employee of Memorial Sloan Kettering. Memorial Sloan Kettering has received research funding from Genentech Roche, the Lung Cancer Research Foundation, the US National Cancer Institute and PUMA Biotechnology for research conducted by M.G.K. Memorial Sloan Kettering has licensed testing for EGFR T790M to MolecularMD. T.C. reports consulting fees from Bristol–Myers Squibb and MedImmune–AstraZeneca, advisory role fees from Bristol–Myers Squibb and EMD Serono, and clinical research funding to MD Anderson Cancer Center from Boehringer Ingelheim, Bristol–Myers Squibb, EMD Serono, and MedImmune–AstraZeneca. C.G.A. declares no competing interests.
Additional information
Peer review information
Nature Reviews Clinical Oncology thanks P. Forde, S. Ramalingam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Chaft, J.E., Rimner, A., Weder, W. et al. Evolution of systemic therapy for stages I–III non-metastatic non-small-cell lung cancer. Nat Rev Clin Oncol 18, 547–557 (2021). https://doi.org/10.1038/s41571-021-00501-4
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41571-021-00501-4