Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Hyperinsulinaemia in cancer

Abstract

Elevated circulating insulin levels are frequently observed in the setting of obesity and early type 2 diabetes, as a result of insensitivity of metabolic tissues to the effects of insulin. Higher levels of circulating insulin have been associated with increased cancer risk and progression in epidemiology studies. Elevated circulating insulin is believed to be a major factor linking obesity, diabetes and cancer. With the development of targeted cancer therapies, insulin signalling has emerged as a mechanism of therapeutic resistance. Although metabolic tissues become insensitive to insulin in the setting of obesity, a number of mechanisms allow cancer cells to maintain their ability to respond to insulin. Significant progress has been made in the past decade in understanding the insulin receptor and its signalling pathways in cancer, and a number of lessons have been learnt from therapeutic failures. These discoveries have led to numerous clinical trials that have aimed to reduce the levels of circulating insulin and to abrogate insulin signalling in cancer cells. With the rising prevalence of obesity and diabetes worldwide, and the realization that hyperinsulinaemia may contribute to therapeutic failures, it is essential to understand how insulin and insulin receptor signalling promote cancer progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanisms of insulin resistance and hyperinsulinaemia development.
Fig. 2: Insulin receptor and insulin-like growth factor 1 receptor dimers, ligands and signalling pathways.
Fig. 3: Preclinical in vivo models linking hyperinsulinaemia, insulin receptor signalling and cancer progression.
Fig. 4: Mechanisms through which insulin-like growth factor 1 receptor targeting of monoclonal antibodies results in hyperinsulinaemia.
Fig. 5: Mechanisms of hyperinsulinaemia in response to PI3K inhibition in cancer therapy.

Similar content being viewed by others

References

  1. Lauby-Secretan, B. et al. Body fatness and cancer — viewpoint of the IARC Working Group. N. Engl. J. Med. 375, 794–798 (2016). This statement from the IARC Working Group discusses the relative risks of cancer with obesity.

    PubMed  PubMed Central  Google Scholar 

  2. Tsilidis, K. K., Kasimis, J. C., Lopez, D. S., Ntzani, E. E. & Ioannidis, J. P. Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350, g7607 (2015).

    PubMed  Google Scholar 

  3. Pearson-Stuttard, J. et al. Worldwide burden of cancer attributable to diabetes and high body-mass index: a comparative risk assessment. Lancet Diabetes Endocrinol. 6, e6–e15 (2018).

    PubMed  PubMed Central  Google Scholar 

  4. Morales Camacho, W. J. et al. Childhood obesity: aetiology, comorbidities, and treatment. Diabetes Metab. Res. Rev. 35, e3203 (2019).

    PubMed  Google Scholar 

  5. Zhang, F. F. et al. Preventable cancer burden associated with poor diet in the United States. JNCI Cancer Spectr. 3, pkz034 (2019).

    PubMed  PubMed Central  Google Scholar 

  6. Gleeson, M. W. Interplay of liver disease and gut microbiota in the development of colorectal neoplasia. Curr. Treat. Options Gastroenterol. 17, 378–393 (2019).

    PubMed  Google Scholar 

  7. Shanik, M. H. et al. Insulin resistance and hyperinsulinemia: is hyperinsulinemia the cart or the horse? Diabetes Care 31, S262–S268 (2008).

    CAS  Google Scholar 

  8. Reaven, G. M. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37, 1595–1607 (1988).

    CAS  PubMed  Google Scholar 

  9. Alberti, K. G. et al. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120, 1640–1645 (2009).

    CAS  PubMed  Google Scholar 

  10. Misra, A. Ethnic-specific criteria for classification of body mass index: a perspective for Asian Indians and American diabetes association position statement. Diabetes Technol. Ther. 17, 667–671 (2015).

    PubMed  PubMed Central  Google Scholar 

  11. Michaud, A. et al. Abdominal adipocyte populations in women with visceral obesity. Eur. J. Endocrinol. 174, 227–239 (2016).

    CAS  PubMed  Google Scholar 

  12. Tchernof, A. & Despres, J. P. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93, 359–404 (2013).

    CAS  PubMed  Google Scholar 

  13. Ghaben, A. L. & Scherer, P. E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20, 242–258 (2019).

    CAS  PubMed  Google Scholar 

  14. Funcke, J. B. & Scherer, P. E. Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication. J. Lipid Res. 60, 1648–1684 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Stern, J. H., Rutkowski, J. M. & Scherer, P. E. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 23, 770–784 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Shulman, G. I. Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131–1141 (2014).

    PubMed  Google Scholar 

  17. Stears, A., O’Rahilly, S., Semple, R. K. & Savage, D. B. Metabolic insights from extreme human insulin resistance phenotypes. Best Pract. Res. Clin. Endocrinol. Metab. 26, 145–157 (2012).

    CAS  PubMed  Google Scholar 

  18. Mezza, T. et al. β-cell fate in human insulin resistance and type 2 diabetes: a perspective on Islet plasticity. Diabetes 68, 1121–1129 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Aguayo-Mazzucato, C. & Bonner-Weir, S. Pancreatic beta cell regeneration as a possible therapy for diabetes. Cell Metab. 27, 57–67 (2018).

    CAS  PubMed  Google Scholar 

  20. Bojsen-Moller, K. N., Lundsgaard, A. M., Madsbad, S., Kiens, B. & Holst, J. J. Hepatic insulin clearance in regulation of systemic insulin concentrations-role of carbohydrate and energy availability. Diabetes 67, 2129–2136 (2018).

    PubMed  Google Scholar 

  21. Trico, D., Natali, A., Arslanian, S., Mari, A. & Ferrannini, E. Identification, pathophysiology, and clinical implications of primary insulin hypersecretion in nondiabetic adults and adolescents. JCI Insight 3, e124912 (2018). This study examines the role of primary hyperinsulinaemia in the development of insulin resistance.

    PubMed Central  Google Scholar 

  22. Pfutzner, A. et al. Intact and total proinsulin: new aspects for diagnosis and treatment of type 2 diabetes mellitus and insulin resistance. Clin. Lab. 50, 567–573 (2004).

    PubMed  Google Scholar 

  23. Steiner, D. F., Park, S. Y., Stoy, J., Philipson, L. H. & Bell, G. I. A brief perspective on insulin production. Diabetes Obes. Metab. 11, 189–196 (2009).

    CAS  PubMed  Google Scholar 

  24. McDonald, T. J. et al. EDTA improves stability of whole blood C-peptide and insulin to over 24 hours at room temperature. PLoS ONE 7, e42084 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kitabchi, A. E. Proinsulin and C-peptide: a review. Metabolism 26, 547–587 (1977).

    CAS  PubMed  Google Scholar 

  26. Wallace, T. M., Levy, J. C. & Matthews, D. R. Use and abuse of HOMA modeling. Diabetes Care 27, 1487–1495 (2004).

    Google Scholar 

  27. Jenab, M. et al. Serum C-peptide, IGFBP-1 and IGFBP-2 and risk of colon and rectal cancers in the European prospective investigation into cancer and nutrition. Int. J. Cancer 121, 368–376 (2007).

    CAS  PubMed  Google Scholar 

  28. Ma, J. et al. A prospective study of plasma C-peptide and colorectal cancer risk in men. J. Natl Cancer Inst. 96, 546–553 (2004).

    CAS  PubMed  Google Scholar 

  29. Hvidtfeldt, U. A. et al. Quantifying mediating effects of endogenous estrogen and insulin in the relation between obesity, alcohol consumption, and breast cancer. Cancer Epidemiol. Biomarkers Prev. 21, 1203–1212 (2012).

    CAS  PubMed  Google Scholar 

  30. Dossus, L. et al. Hormonal, metabolic, and inflammatory profiles and endometrial cancer risk within the EPIC cohort–a factor analysis. Am. J. Epidemiol. 177, 787–799 (2013).

    PubMed  Google Scholar 

  31. Loftfield, E. et al. Higher glucose and insulin levels are associated with risk of liver cancer and chronic liver disease mortality among men without a history of diabetes. Cancer Prev. Res. 9, 866–874 (2016).

    CAS  Google Scholar 

  32. Michaud, D. S. et al. Prediagnostic plasma C-peptide and pancreatic cancer risk in men and women. Cancer Epidemiol. Biomarkers Prev. 16, 2101–2109 (2007).

    CAS  PubMed  Google Scholar 

  33. Otokozawa, S. et al. Associations of serum isoflavone, adiponectin and insulin levels with risk for epithelial ovarian cancer: results of a case-control study. Asian Pac. J. Cancer Prev. 16, 4987–4991 (2015).

    PubMed  Google Scholar 

  34. Hidaka, A. et al. Plasma insulin, C-peptide and blood glucose and the risk of gastric cancer: the Japan Public Health Center-based prospective study. Int. J. Cancer 136, 1402–1410 (2015).

    CAS  PubMed  Google Scholar 

  35. Murphy, N. et al. A nested case-control study of metabolically defined body size phenotypes and risk of colorectal cancer in the European prospective investigation into cancer and nutrition (EPIC). PLoS Med. 13, e1001988 (2016).

    PubMed  PubMed Central  Google Scholar 

  36. Gunter, M. J. et al. Breast cancer risk in metabolically healthy but overweight postmenopausal women. Cancer Res. 75, 270–274 (2015). This epidemiology study reports the importance of metabolic health, rather than body weight in the risk of breast cancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan, S. et al. Is type 2 diabetes mellitus causally associated with cancer risk? Evidence from a two-sample Mendelian randomisation study. Diabetes 69, 1588–1596 (2020). This Mendelian randomization study examines the link between genetic determinants of insulin concentrations and cancer risk.

    PubMed  PubMed Central  Google Scholar 

  38. Tsujimoto, T., Kajio, H. & Sugiyama, T. Association between hyperinsulinemia and increased risk of cancer death in nonobese and obese people: a population-based observational study. Int. J. Cancer 141, 102–111 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pan, K. et al. Insulin resistance and cancer-specific and all-cause mortality in postmenopausal women: the women’s health initiative. J. Natl Cancer. Inst. 112, 170–178 (2019).

    PubMed Central  Google Scholar 

  40. Balkau, B. et al. Hyperinsulinemia predicts fatal liver cancer but is inversely associated with fatal cancer at some other sites: the Paris Prospective Study. Diabetes Care 24, 843–849 (2001).

    CAS  PubMed  Google Scholar 

  41. Irwin, M. L. et al. Fasting C-peptide levels and death resulting from all causes and breast cancer: the health, eating, activity, and lifestyle study. J. Clin. Oncol. 29, 47–53 (2011).

    CAS  PubMed  Google Scholar 

  42. Goodwin, P. J. et al. Fasting insulin and outcome in early-stage breast cancer: results of a prospective cohort study. J. Clin. Oncol. 20, 42–51 (2002).

    CAS  Google Scholar 

  43. Walraven, I. et al. Fasting proinsulin levels are significantly associated with 20 year cancer mortality rates. The Hoorn Study. Diabetologia 56, 1148–1154 (2013).

    CAS  PubMed  Google Scholar 

  44. Dev, R., Bruera, E. & Dalal, S. Insulin resistance and body composition in cancer patients. Ann. Oncol. 29, ii18–ii26 (2018).

    CAS  PubMed  Google Scholar 

  45. Okumura, S. et al. Visceral adiposity and sarcopenic visceral obesity are associated with poor prognosis after resection of pancreatic cancer. Ann. Surg. Oncol. 24, 3732–3740 (2017).

    PubMed  Google Scholar 

  46. De Meyts, P. The insulin receptor: a prototype for dimeric, allosteric membrane receptors? Trends Biochem. Sci. 33, 376–384 (2008).

    PubMed  Google Scholar 

  47. Tatulian, S. A. Structural dynamics of insulin receptor and transmembrane signaling. Biochemistry 54, 5523–5532 (2015).

    CAS  PubMed  Google Scholar 

  48. Belfiore, A. et al. Insulin receptor isoforms in physiology and disease: an updated view. Endocr. Rev. 38, 379–431 (2017). This study is a review of insulin receptor isoforms in physiology and pathophysiology.

    PubMed  PubMed Central  Google Scholar 

  49. Moller, D. E., Yokota, A., Caro, J. F. & Flier, J. S. Tissue-specific expression of two alternatively spliced insulin receptor mRNAs in man. Mol. Endocrinol. 3, 1263–1269 (1989).

    CAS  PubMed  Google Scholar 

  50. Bailyes, E. M. et al. Insulin receptor/IGF-I receptor hybrids are widely distributed in mammalian tissues: quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem. J. 327, 209–215 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mosthaf, L. et al. Functionally distinct insulin receptors generated by tissue-specific alternative splicing. EMBO J. 9, 2409–2413 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Malaguarnera, R. et al. Proinsulin binds with high affinity the insulin receptor isoform A and predominantly activates the mitogenic pathway. Endocrinology 153, 2152–2163 (2012).

    CAS  PubMed  Google Scholar 

  53. Slaaby, R. Specific insulin/IGF1 hybrid receptor activation assay reveals IGF1 as a more potent ligand than insulin. Sci. Rep. 5, 7911 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Thorpe, L. M., Yuzugullu, H. & Zhao, J. J. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat. Rev. Cancer 15, 7–24 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hakuno, F. & Takahashi, S. I. IGF1 receptor signaling pathways. J. Mol. Endocrinol. 61, T69–T86 (2018).

    CAS  PubMed  Google Scholar 

  56. Haeusler, R. A., McGraw, T. E. & Accili, D. Biochemical and cellular properties of insulin receptor signalling. Nat. Rev. Mol. Cell Biol. 19, 31–44 (2018).

    CAS  PubMed  Google Scholar 

  57. Boucher, J., Kleinridders, A. & Kahn, C. R. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb. Perspect. Biol. 6, a009191 (2014).

    PubMed  PubMed Central  Google Scholar 

  58. Liu, B. A. et al. SRC homology 2 domain binding sites in insulin, IGF-1 and FGF receptor mediated signaling networks reveal an extensive potential interactome. Cell Commun. Signal. 10, 27 (2012).

    PubMed  PubMed Central  Google Scholar 

  59. Carpentier, J. L., Hamer, I., Gilbert, A. & Paccaud, J. P. Molecular and cellular mechanisms governing the ligand-specific and non-specific steps of insulin receptor internalization. Z. Gastroenterol. 34, 73–75 (1996).

    CAS  PubMed  Google Scholar 

  60. Wong, K. Y., Hawley, D., Vigneri, R. & Goldfine, I. D. Comparison of solubilized and purified plasma membrane and nuclear insulin receptors. Biochemistry 27, 375–379 (1988).

    CAS  PubMed  Google Scholar 

  61. Wu, A., Chen, J. & Baserga, R. Nuclear insulin receptor substrate-1 activates promoters of cell cycle progression genes. Oncogene 27, 397–403 (2008).

    CAS  PubMed  Google Scholar 

  62. Aleksic, T. et al. Nuclear IGF1R Interacts with regulatory regions of chromatin to promote RNA polymerase II recruitment and gene expression associated with advanced tumor stage. Cancer Res. 78, 3497–3509 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Gletsu, N., Dixon, W. & Clandinin, M. T. Insulin receptor at the mouse hepatocyte nucleus after a glucose meal induces dephosphorylation of a 30-kDa transcription factor and a concomitant increase in malic enzyme gene expression. J. Nutr. 129, 2154–2161 (1999).

    CAS  PubMed  Google Scholar 

  64. Torlakovic, E. E. et al. Standardization of negative controls in diagnostic immunohistochemistry: recommendations from the international ad hoc expert panel. Appl. Immunohistochem. Mol. Morphol. 22, 241–252 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Hancock, M. L. et al. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell 177, 722–736 e722 (2019). This study examines the effects of nuclear insulin receptor on regulating gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Amaya, M. J. et al. The insulin receptor translocates to the nucleus to regulate cell proliferation in liver. Hepatology 59, 274–283 (2014).

    CAS  PubMed  Google Scholar 

  67. Webster, N. J. et al. Repression of the insulin receptor promoter by the tumor suppressor gene product p53: a possible mechanism for receptor overexpression in breast cancer. Cancer Res. 56, 2781–2788 (1996).

    CAS  PubMed  Google Scholar 

  68. Werner, H. & Maor, S. The insulin-like growth factor-I receptor gene: a downstream target for oncogene and tumor suppressor action. Trends Endocrinol. Metab. 17, 236–242 (2006).

    CAS  PubMed  Google Scholar 

  69. Wang, Y., Hu, L., Zheng, Y. & Guo, L. HMGA1 in cancer: cancer classification by location. J. Cell Mol. Med. 23, 2293–2302 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Beishline, K. & Azizkhan-Clifford, J. Sp1 and the ‘hallmarks of cancer’. FEBS J. 282, 224–258 (2015).

    CAS  PubMed  Google Scholar 

  71. Aiello, A. et al. HMGA1 protein is a positive regulator of the insulin-like growth factor-I receptor gene. Eur. J. Cancer 46, 1919–1926 (2010).

    CAS  PubMed  Google Scholar 

  72. Ulanet, D. B., Ludwig, D. L., Kahn, C. R. & Hanahan, D. Insulin receptor functionally enhances multistage tumor progression and conveys intrinsic resistance to IGF-1R targeted therapy. Proc. Natl Acad. Sci. USA 107, 10791–10798 (2010).

    CAS  PubMed  Google Scholar 

  73. Jung, H. J. & Suh, Y. Regulation of IGF-1 signaling by microRNAs. Front. Genet. 5, 472 (2014).

    PubMed  Google Scholar 

  74. Sen, S., Langiewicz, M., Jumaa, H. & Webster, N. J. Deletion of serine/arginine-rich splicing factor 3 in hepatocytes predisposes to hepatocellular carcinoma in mice. Hepatology 61, 171–183 (2015).

    CAS  PubMed  Google Scholar 

  75. Wang, Y. et al. The splicing factor RBM4 controls apoptosis, proliferation, and migration to suppress tumor progression. Cancer Cell 26, 374–389 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chettouh, H. et al. Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors. Cancer Res. 73, 3974–3986 (2013).

    CAS  PubMed  Google Scholar 

  77. Farabaugh, S. M., Boone, D. N. & Lee, A. V. Role of IGF1R in breast cancer subtypes, stemness, and lineage differentiation. Front. Endocrinol. 6, 59 (2015).

    Google Scholar 

  78. Jiang, L. et al. Increased IR-A/IR-B ratio in non-small cell lung cancers associates with lower epithelial–mesenchymal transition signature and longer survival in squamous cell lung carcinoma. BMC Cancer 14, 131 (2014).

    PubMed  PubMed Central  Google Scholar 

  79. Forest, A. et al. Intrinsic resistance to cixutumumab is conferred by distinct isoforms of the insulin receptor. Mol. Cancer Res. 13, 1615–1626 (2015). This study reports the importance of insulin receptor isoforms in conferring resistance to IGF1R-targeted therapy.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Lkhagvadorj, S. et al. Insulin receptor expression in clear cell renal cell carcinoma and its relation to prognosis. Yonsei Med. J. 55, 861–870 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim, J. S. et al. Prognostic impact of insulin receptor expression on survival of patients with nonsmall cell lung cancer. Cancer 118, 2454–2465 (2012).

    CAS  PubMed  Google Scholar 

  82. Law, J. H. et al. Phosphorylated insulin-like growth factor-I/insulin receptor is present in all breast cancer subtypes and is related to poor survival. Cancer Res. 68, 10238–10246 (2008).

    CAS  PubMed  Google Scholar 

  83. Mulligan, A. M., O’Malley, F. P., Ennis, M., Fantus, I. G. & Goodwin, P. J. Insulin receptor is an independent predictor of a favorable outcome in early stage breast cancer. Breast Cancer Res. Treat. 106, 39–47 (2007).

    CAS  PubMed  Google Scholar 

  84. Harrington, S. C. et al. Quantifying insulin receptor isoform expression in FFPE breast tumors. Growth Horm. IGF Res. 22, 108–115 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ahearn, T. U. et al. Expression of IGF/insulin receptor in prostate cancer tissue and progression to lethal disease. Carcinogenesis 39, 1431–1437 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Aleksic, T. et al. IGF-1R associates with adverse outcomes after radical radiotherapy for prostate cancer. Br. J. Cancer 117, 1600–1606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Cox, M. E. et al. Insulin receptor expression by human prostate cancers. Prostate 69, 33–40 (2009).

    CAS  PubMed  Google Scholar 

  88. Nevado, C., Valverde, A. M. & Benito, M. Role of insulin receptor in the regulation of glucose uptake in neonatal hepatocytes. Endocrinology 147, 3709–3718 (2006).

    CAS  PubMed  Google Scholar 

  89. Ferguson, R. D. et al. Hyperinsulinemia enhances c-Myc-mediated mammary tumor development and advances metastatic progression to the lung in a mouse model of type 2 diabetes. Breast Cancer Res. 14, R8 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Heni, M. et al. Insulin receptor isoforms A and B as well as insulin receptor substrates-1 and -2 are differentially expressed in prostate cancer. PLoS ONE 7, e50953 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, C. F. et al. Overexpression of the insulin receptor isoform A promotes endometrial carcinoma cell growth. PLoS ONE 8, e69001 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Takahashi, M. et al. Inverse relationship between insulin receptor expression and progression in renal cell carcinoma. Oncol. Rep. 37, 2929–2941 (2017).

    CAS  PubMed  Google Scholar 

  93. Madsen, R. R., Vanhaesebroeck, B. & Semple, R. K. Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol. Med. 24, 856–870 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Fernandez-Medarde, A. & Santos, E. Ras in cancer and developmental diseases. Genes Cancer 2, 344–358 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Ruvolo, P. P. The broken “Off” switch in cancer signaling: PP2A as a regulator of tumorigenesis, drug resistance, and immune surveillance. BBA Clin. 6, 87–99 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Novosyadlyy, R. et al. Insulin-mediated acceleration of breast cancer development and progression in a nonobese model of type 2 diabetes. Cancer Res. 70, 741–751 (2010). This study reports an in vivo mouse model of breast cancer showing importance of hyperinsulinaemia in breast cancer progression and PI3K–AKT activation.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499–503 (2018). This study shows the importance of hyperinsulinaemia in mediating tumour resistance to PI3K inhibition and discusses strategies to lower circulating insulin levels in order to prevent hyperinsulinaemia-mediated cancer tumour growth.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Hintze, K. J., Benninghoff, A. D., Cho, C. E. & Ward, R. E. Modeling the western diet for preclinical investigations. Adv. Nutr. 9, 263–271 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Dunning, W. F., Curtis, M. R. & Maun, M. E. The effect of dietary fat and carbohydrate on diethylstilbestrol-induced mammary cancer in rats. Cancer Res. 9, 354–361 (1949).

    CAS  PubMed  Google Scholar 

  100. Tessitore, A. et al. Development of hepatocellular cancer induced by long term low fat-high carbohydrate diet in a NAFLD/NASH mouse model. Oncotarget 8, 53482–53494 (2017).

    PubMed  PubMed Central  Google Scholar 

  101. Tsuchida, T. et al. A simple diet- and chemical-induced murine NASH model with rapid progression of steatohepatitis, fibrosis and liver cancer. J. Hepatol. 69, 385–395 (2018).

    PubMed  PubMed Central  Google Scholar 

  102. Yakar, S. et al. Increased tumor growth in mice with diet-induced obesity: impact of ovarian hormones. Endocrinology 147, 5826–5834 (2006).

    CAS  PubMed  Google Scholar 

  103. O’Neill, A. M. et al. High-fat Western diet-induced obesity contributes to increased tumor growth in mouse models of human colon cancer. Nutr. Res. 36, 1325–1334 (2016).

    PubMed  Google Scholar 

  104. Llaverias, G. et al. A Western-type diet accelerates tumor progression in an autochthonous mouse model of prostate cancer. Am. J. Pathol. 177, 3180–3191 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Chang, H. H. et al. Incidence of pancreatic cancer is dramatically increased by a high fat, high calorie diet in KrasG12D mice. PLoS ONE 12, e0184455 (2017).

    PubMed  PubMed Central  Google Scholar 

  106. Sundaram, S. & Yan, L. High-fat diet enhances mammary tumorigenesis and pulmonary metastasis and alters inflammatory and angiogenic profiles in MMTV–PyMT mice. Anticancer. Res. 36, 6279–6287 (2016).

    CAS  PubMed  Google Scholar 

  107. Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl Med. 1, 6ra14 (2009).

    PubMed  PubMed Central  Google Scholar 

  108. Fernandez, A. M. et al. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev. 15, 1926–1934 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ben-Shmuel, S. et al. Ovariectomy is associated with metabolic impairments and enhanced mammary tumor growth in MKR mice. J. Endocrinol. 227, 143–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Camporez, J. P. et al. Cellular mechanism by which estradiol protects female ovariectomized mice from high-fat diet-induced hepatic and muscle insulin resistance. Endocrinology 154, 1021–1028 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Salpeter, S. R. et al. Meta-analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes. Metab. 8, 538–554 (2006).

    CAS  PubMed  Google Scholar 

  112. Ferguson, R. D. et al. Hyperinsulinemia promotes metastasis to the lung in a mouse model of Her2-mediated breast cancer. Endocr. Relat. Cancer 20, 391–401 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Shlomai, G. et al. OP449 inhibits breast cancer growth without adverse metabolic effects. Endocr. Relat. Cancer 24, 519–529 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Zelenko, Z. et al. EMT reversal in human cancer cells after IR knockdown in hyperinsulinemic mice. Endocr. Relat. Cancer 23, 747–758 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Arcidiacono, D. et al. Hyperinsulinemia promotes esophageal cancer development in a surgically-induced duodeno-esophageal reflux murine model. Int. J. Mol. Sci. 19, 1198 (2018).

    PubMed Central  Google Scholar 

  116. Gallagher, E. J. et al. Inhibiting PI3K reduces mammary tumor growth and induces hyperglycemia in a mouse model of insulin resistance and hyperinsulinemia. Oncogene 31, 3213–3222 (2012).

    CAS  PubMed  Google Scholar 

  117. Fierz, Y., Novosyadlyy, R., Vijayakumar, A., Yakar, S. & LeRoith, D. Mammalian target of rapamycin inhibition abrogates insulin-mediated mammary tumor progression in type 2 diabetes. Endocr. Relat. Cancer 17, 941–951 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Senapati, P. et al. Hyperinsulinemia promotes aberrant histone acetylation in triple-negative breast cancer. Epigenetics Chromatin 12, 44 (2019).

    PubMed  PubMed Central  Google Scholar 

  119. Sarkar, P. L. et al. Insulin enhances migration and invasion in prostate cancer cells by up-regulation of FOXC2. Front. Endocrinol. 10, 481 (2019).

    Google Scholar 

  120. Fierz, Y., Novosyadlyy, R., Vijayakumar, A., Yakar, S. & LeRoith, D. Insulin-sensitizing therapy attenuates type 2 diabetes-mediated mammary tumor progression. Diabetes 59, 686–693 (2010).

    CAS  PubMed  Google Scholar 

  121. Wang, Y. et al. Uncoupling hepatic oxidative phosphorylation reduces tumor growth in two murine models of colon cancer. Cell Rep. 24, 47–55 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Moitra, J. et al. Life without white fat: a transgenic mouse. Genes Dev. 12, 3168–3181 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Hursting, S. D., Nunez, N. P., Varticovski, L. & Vinson, C. The obesity-cancer link: lessons learned from a fatless mouse. Cancer Res. 67, 2391–2393 (2007).

    CAS  PubMed  Google Scholar 

  124. Zheng, Q. et al. Leptin deficiency suppresses MMTV–Wnt-1 mammary tumor growth in obese mice and abrogates tumor initiating cell survival. Endocr. Relat. Cancer 18, 491–503 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Brandon, E. L. et al. Obesity promotes melanoma tumor growth: role of leptin. Cancer Biol. Ther. 8, 1871–1879 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Ribeiro, A. M. et al. Prostate cancer cell proliferation and angiogenesis in different obese mice models. Int. J. Exp. Pathol. 91, 374–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Andersen, D. K. et al. Diabetes, pancreatogenic diabetes, and pancreatic cancer. Diabetes 66, 1103–1110 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Takahashi, M., Hori, M., Mutoh, M., Wakabayashi, K. & Nakagama, H. Experimental animal models of pancreatic carcinogenesis for prevention studies and their relevance to human disease. Cancers 3, 582–602 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Bell, R. H. Jr., Sayers, H. J., Pour, P. M., Ray, M. B. & McCullough, P. J. Importance of diabetes in inhibition of pancreatic cancer by streptozotocin. J. Surg. Res. 46, 515–519 (1989).

    CAS  PubMed  Google Scholar 

  130. Pour, P. M. & Kazakoff, K. Stimulation of islet cell proliferation enhances pancreatic ductal carcinogenesis in the hamster model. Am. J. Pathol. 149, 1017–1025 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bell, R. H. Jr. & Pour, P. M. Pancreatic carcinogenicity of N-nitrosobis(2-oxopropyl)-amine in diabetic and non-diabetic Chinese hamsters. Cancer Lett. 34, 221–230 (1987).

    CAS  PubMed  Google Scholar 

  132. Zhang, A. M. Y. et al. Endogenous hyperinsulinemia contributes to pancreatic cancer development. Cell Metab. 30, 403–404 (2019). This study examines the importance of hyperinsulinaemia in pancreatic cancer development.

    CAS  PubMed  Google Scholar 

  133. Dombrowski, F., Mathieu, C. & Evert, M. Hepatocellular neoplasms induced by low-number pancreatic islet transplants in autoimmune diabetic BB/Pfd rats. Cancer Res. 66, 1833–1843 (2006).

    CAS  PubMed  Google Scholar 

  134. Yamasaki, K., Hayashi, Y., Okamoto, S., Osanai, M. & Lee, G. H. Insulin-independent promotion of chemically induced hepatocellular tumor development in genetically diabetic mice. Cancer Sci. 101, 65–72 (2010).

    CAS  PubMed  Google Scholar 

  135. Gyurko, R. et al. Chronic hyperglycemia predisposes to exaggerated inflammatory response and leukocyte dysfunction in Akita mice. J. Immunol. 177, 7250–7256 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Zhang, H. et al. Inhibition of cancer cell proliferation and metastasis by insulin receptor downregulation. Oncogene 29, 2517–2527 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Santoro, M. A. et al. Obesity and intestinal epithelial deletion of the insulin receptor, but not the IGF 1 receptor, affect radiation-induced apoptosis in colon. Am. J. Physiol. Gastrointest. Liver Physiol. 309, G578–G589 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Rostoker, R. et al. Highly specific role of the insulin receptor in breast cancer progression. Endocr. Relat. Cancer 22, 145–157 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Sachdev, D. Regulation of breast cancer metastasis by IGF signaling. J. Mammary Gland. Biol. Neoplasia 13, 431–441 (2008).

    PubMed  Google Scholar 

  140. Favoni, R. E. et al. Expression and function of the insulin-like growth factor I system in human non-small-cell lung cancer and normal lung cell lines. Int. J. Cancer 56, 858–866 (1994).

    CAS  PubMed  Google Scholar 

  141. Pollak, M. Insulin and insulin-like growth factor signalling in neoplasia. Nat. Rev. Cancer 8, 915–928 (2008).

    CAS  PubMed  Google Scholar 

  142. Arteaga, C. L. et al. Blockade of the type I somatomedin receptor inhibits growth of human breast cancer cells in athymic mice. J. Clin. Invest. 84, 1418–1423 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. Sachdev, D. et al. A chimeric humanized single-chain antibody against the type I insulin-like growth factor (IGF) receptor renders breast cancer cells refractory to the mitogenic effects of IGF-I. Cancer Res. 63, 627–635 (2003).

    CAS  PubMed  Google Scholar 

  144. Burtrum, D. et al. A fully human monoclonal antibody to the insulin-like growth factor I receptor blocks ligand-dependent signaling and inhibits human tumor growth in vivo. Cancer Res. 63, 8912–8921 (2003).

    CAS  PubMed  Google Scholar 

  145. Sachdev, D. & Yee, D. Disrupting insulin-like growth factor signaling as a potential cancer therapy. Mol. Cancer Ther. 6, 1–12 (2007).

    CAS  PubMed  Google Scholar 

  146. Retraction. “Phase II study of the anti-insulin-like growth factor type 1 receptor antibody CP-751,871 in combination with paclitaxel and carboplatin in previously untreated, locally advanced, or metastatic non-small-cell lung cancer”. J. Clin. Oncol. 30, 4179 (2012).

    Google Scholar 

  147. Beckwith, H. & Yee, D. Minireview: were the IGF signaling inhibitors all bad? Mol. Endocrinol. 29, 1549–1557 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Yee, D. Insulin-like growth factor receptor inhibitors: baby or the bathwater? J. Natl Cancer Inst. 104, 975–981 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Rostoker, R., Bitton-Worms, K., Caspi, A., Shen-Orr, Z. & LeRoith, D. Investigating new therapeutic strategies targeting hyperinsulinemia’s mitogenic effects in a female mouse breast cancer model. Endocrinology 154, 1701–1710 (2013).

    CAS  PubMed  Google Scholar 

  150. Vienberg, S. G. et al. Receptor-isoform-selective insulin analogues give tissue-preferential effects. Biochem. J. 440, 301–308 (2011).

    CAS  PubMed  Google Scholar 

  151. Nair, K. S. & Cheson, B. The role of idelalisib in the treatment of relapsed and refractory chronic lymphocytic leukemia. Ther. Adv. Hematol. 7, 69–84 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Andre, F. et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N. Engl. J. Med. 380, 1929–1940 (2019).

    CAS  PubMed  Google Scholar 

  153. Cheson, B. D. et al. Optimal management of adverse events from copanlisib in the treatment of patients with non-Hodgkin lymphomas. Clin. Lymphoma Myeloma Leuk. 19, 135–141 (2019).

    PubMed  Google Scholar 

  154. Li, M. E. et al. Role of p110a subunit of PI3-kinase in skeletal muscle mitochondrial homeostasis and metabolism. Nat. Commun. 10, 3412 (2019).

    PubMed  PubMed Central  Google Scholar 

  155. Chattopadhyay, M., Selinger, E. S., Ballou, L. M. & Lin, R. Z. Ablation of PI3K p110-α prevents high-fat diet-induced liver steatosis. Diabetes 60, 1483–1492 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Nelson, V. L., Jiang, Y. P., Dickman, K. G., Ballou, L. M. & Lin, R. Z. Adipose tissue insulin resistance due to loss of PI3K p110α leads to decreased energy expenditure and obesity. Am. J. Physiol. Endocrinol. Metab. 306, E1205–E1216 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Ugi, S. et al. Protein phosphatase 2 A negatively regulates insulin’s metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol. Cell Biol. 24, 8778–8789 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Farrington, C. C. et al. Protein phosphatase 2A activation as a therapeutic strategy for managing MYC-driven cancers. J. Biol. Chem. 295, 757–770 (2019).

    PubMed  Google Scholar 

  159. Bozzetti, F. & Zupec-Kania, B. Toward a cancer-specific diet. Clin. Nutr. 35, 1188–1195 (2016).

    CAS  PubMed  Google Scholar 

  160. Harvie, M. et al. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women. Br. J. Nutr. 110, 1534–1547 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Harvie, M. N. & Howell, T. Could intermittent energy restriction and intermittent fasting reduce rates of cancer in obese, overweight, and normal-weight subjects? A summary of evidence. Adv. Nutr. 7, 690–705 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. Raffaghello, L. et al. Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc. Natl Acad. Sci. USA 105, 8215–8220 (2008).

    CAS  PubMed  Google Scholar 

  163. Lee, C. et al. Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res. 70, 1564–1572 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Safdie, F. et al. Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS ONE 7, e44603 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Bauersfeld, S. P. et al. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer 18, 476 (2018).

    PubMed  PubMed Central  Google Scholar 

  166. de Groot, S. et al. The effects of short-term fasting on tolerance to (neo) adjuvant chemotherapy in HER2-negative breast cancer patients: a randomized pilot study. BMC Cancer 15, 652 (2015).

    PubMed  PubMed Central  Google Scholar 

  167. de Groot, S., Pijl, H., van der Hoeven, J. J. M. & Kroep, J. R. Effects of short-term fasting on cancer treatment. J. Exp. Clin. Cancer Res. 38, 209 (2019).

    PubMed  PubMed Central  Google Scholar 

  168. Dorff, T. B. et al. Safety and feasibility of fasting in combination with platinum-based chemotherapy. BMC Cancer 16, 360 (2016).

    PubMed  PubMed Central  Google Scholar 

  169. Paoli, A., Rubini, A., Volek, J. S. & Grimaldi, K. A. Beyond weight loss: a review of the therapeutic uses of very-low-carbohydrate (ketogenic) diets. Eur. J. Clin. Nutr. 67, 789–796 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Klement, R. J. Beneficial effects of ketogenic diets for cancer patients: a realist review with focus on evidence and confirmation. Med. Oncol. 34, 132 (2017).

    PubMed  Google Scholar 

  171. Liskiewicz, A. D. et al. Long-term high fat ketogenic diet promotes renal tumor growth in a rat model of tuberous sclerosis. Sci. Rep. 6, 21807 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Xia, S. et al. Prevention of dietary-fat-fueled ketogenesis attenuates BRAF V600E tumor growth. Cell Metab. 25, 358–373 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Evans, J. M., Donnelly, L. A., Emslie-Smith, A. M., Alessi, D. R. & Morris, A. D. Metformin and reduced risk of cancer in diabetic patients. BMJ 330, 1304–1305 (2005).

    PubMed  PubMed Central  Google Scholar 

  174. Goodwin, P. J., Thompson, A. M. & Stambolic, V. Diabetes, metformin, and breast cancer: lilac time? J. Clin. Oncol. 30, 2812–2814 (2012).

    PubMed  Google Scholar 

  175. Chandel, N. S. et al. Are metformin doses used in murine cancer models clinically relevant? Cell Metab. 23, 569–570 (2016). This article discusses the issues with preclinical studies with metformin that hinder their translation to clinical studies.

    CAS  PubMed  Google Scholar 

  176. Kurelac, I., Umesh Ganesh, N., Iorio, M., Porcelli, A. M. & Gasparre, G. The multifaceted effects of metformin on tumor microenvironment. Semin. Cell Dev. Biol. 98, 90–97 (2019).

    PubMed  Google Scholar 

  177. Kordes, S. et al. Metformin in patients with advanced pancreatic cancer: a double-blind, randomised, placebo-controlled phase II trial. Lancet Oncol. 16, 839–847 (2015).

    CAS  PubMed  Google Scholar 

  178. Nanni, O. et al. Metformin plus chemotherapy versus chemotherapy alone in the first-line treatment of HER2-negative metastatic breast cancer. The MYME randomized, phase II clinical trial. Breast Cancer Res. Treat. 174, 433–442 (2019).

    CAS  Google Scholar 

  179. Chae, Y. K. et al. Repurposing metformin for cancer treatment: current clinical studies. Oncotarget 7, 40767–40780 (2016).

    PubMed  PubMed Central  Google Scholar 

  180. Abdul-Ghani, M. A., Norton, L. & Defronzo, R. A. Role of sodium–glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr. Rev. 32, 515–531 (2011).

    CAS  PubMed  Google Scholar 

  181. Lin, H. W. & Tseng, C. H. A review on the relationship between SGLT2 inhibitors and cancer. Int. J. Endocrinol. 2014, 719578 (2014).

    PubMed  PubMed Central  Google Scholar 

  182. Reilly, T. P. et al. Carcinogenicity risk assessment supports the chronic safety of dapagliflozin, an inhibitor of sodium–glucose co-transporter 2, in the treatment of type 2 diabetes mellitus. Diabetes Ther. 5, 73–96 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  183. De Jonghe, S. et al. Carcinogenicity in rats of the SGLT2 inhibitor canagliflozin. Chem. Biol. Interact. 224, 1–12 (2014).

    PubMed  Google Scholar 

  184. Agency, E. M. Assessment Report — Steglaro, Vol. 2020 (EMA, 2018).

  185. Bogdanffy, M. S. et al. Nonclinical safety of the sodium–glucose cotransporter 2 inhibitor empagliflozin. Int. J. Toxicol. 33, 436–449 (2014).

    PubMed  Google Scholar 

  186. Scafoglio, C. et al. Functional expression of sodium–glucose transporters in cancer. Proc. Natl Acad. Sci. USA 112, E4111–E4119 (2015).

    CAS  PubMed  Google Scholar 

  187. Villani, L. A. et al. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol. Metab. 5, 1048–1056 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Nasiri, A. R., Rodrigues, M. R., Li, Z., Leitner, B. P. & Perry, R. J. SGLT2 inhibition slows tumor growth in mice by reversing hyperinsulinemia. Cancer Metab. 7, 10 (2019). This study examines the potential benefit of SGLT2 inhibitors in reducing circulating insulin and cancer growth.

    PubMed  PubMed Central  Google Scholar 

  189. Hsieh, M. H. et al. p63 and SOX2 dictate glucose reliance and metabolic vulnerabilities in squamous cell carcinomas. Cell Rep. 28, 1860–1878 e1869 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Talukdar, I. et al. hnRNP A1 and hnRNP F modulate the alternative splicing of exon 11 of the insulin receptor gene. PLoS ONE 6, e27869 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Sen, S. et al. Muscleblind-like 1 (Mbnl1) promotes insulin receptor exon 11 inclusion via binding to a downstream evolutionarily conserved intronic enhancer. J. Biol. Chem. 285, 25426–25437 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Sen, S., Talukdar, I. & Webster, N. J. SRp20 and CUG-BP1 modulate insulin receptor exon 11 alternative splicing. Mol. Cell Biol. 29, 871–880 (2009).

    CAS  PubMed  Google Scholar 

  193. Lin, J. C. et al. RBM4 promotes pancreas cell differentiation and insulin expression. Mol. Cell Biol. 33, 319–327 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Villate, O. et al. Nova1 is a master regulator of alternative splicing in pancreatic beta cells. Nucleic Acids Res. 42, 11818–11830 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Blanquart, C., Achi, J. & Issad, T. Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochem. Pharmacol. 76, 873–883 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Emily J. Gallagher.

Ethics declarations

Competing interests

E.J.G. served on an advisory board for Novartis in 2019. D.L.R. served on the advisory boards for Mannkind and AstraZeneca in 2018–2019.

Additional information

Peer review information

Nature Reviews Cancer thanks A. Lee, C. Perks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Body mass index

(BMI). Calculated as weight (kg)/(height (m))2. Normal weight is defined as BMI of 18.5–24.9; overweight, as BMI of 25–29.9; and obese, as BMI ≥30.

Endogenous hyperinsulinaemia

The hyperinsulinaemia that results from insulin resistance. It is associated with metabolic syndrome and is to be distinguished from exogenous insulin therapies.

Metabolic syndrome

A syndrome that includes visceral adiposity, insulin resistance and the concomitant dysglycaemia, hypertension and dyslipidaemia.

Visceral adipose tissue

(VAT). Intra-abdominal fat bound by parietal peritoneum, or transversalis fascia, excluding the vertebral column and paraspinal muscles.

Subcutaneous adipose tissue

(SAT). Fat under the skin superficial to the muscles.

Heterogeneous nuclear ribonucleoproteins

(hnRNPs). RNA-binding proteins involved in splicing.

Nesidioblastosis

Hyperinsulinaemic hypoglycaemia caused by β-cell hyperplasia.

Streptozotocin

(STZ). An alkylating agent that damages DNA and destroys pancreatic β-cells, thus mimicking insulin-deficient diabetes. It can also damage other tissues, depending on the dose administered.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallagher, E.J., LeRoith, D. Hyperinsulinaemia in cancer. Nat Rev Cancer 20, 629–644 (2020). https://doi.org/10.1038/s41568-020-0295-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41568-020-0295-5

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer