Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β

Abstract

The progression of neurodegenerative disorders can lead to impaired neurotransmission; however, the role of pathogenic factors associated with these diseases and their impact on the structures and functions of neurotransmitters have not been clearly established. Here we report the discovery that conformational and functional changes of a native neuropeptide, somatostatin (SST), occur in the presence of copper ions, metal-free amyloid-β (Aβ) and metal-bound Aβ (metal–Aβ) found as pathological factors in the brains of patients with Alzheimer’s disease. These pathological elements induce the self-assembly of SST and, consequently, prevent it from binding to the receptor. In the reverse direction, SST notably modifies the aggregation profiles of Aβ species in the presence of metal ions, attenuating their cytotoxicity and interactions with cell membranes. Our work demonstrates a loss of normal function of SST as a neurotransmitter and a gain of its modulative function against metal–Aβ under pathological conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathogenic factors of AD and SST studied in this work.
Fig. 2: Conformational and functional changes of SST upon incubation with metal ions.
Fig. 3: Cu(II) coordination to SST and proposed mechanisms for the nucleation of Cu(II)(SST).
Fig. 4: Aβ-mediated aggregation of SST in the absence and presence of metal ions.
Fig. 5: Effects of SST on Aβ aggregation with and without metal ions.
Fig. 6: Influence of SST on the cytotoxicity induced by Aβ species in the absence and presence of metal ions.

Similar content being viewed by others

Data availability

All experimental details and data supporting the findings of this study are available within the paper and its Supplementary Information. The data are also available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Lemoine, D. et al. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem. Rev. 112, 6285–6318 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Ng, J., Papandreou, A., Heales, S. J. & Kurian, M. A. Monoamine neurotransmitter disorders—clinical advances and future perspectives. Nat. Rev. Neurol. 11, 567–584 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Jacob, T. C., Moss, S. J. & Jurd, R. GABAA receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat. Rev. Neurosci. 9, 331–343 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hyman, S. E. Neurotransmitters. Curr. Biol. 15, R154–R158 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Dorsam, R. T. & Gutkind, J. S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer 7, 79–94 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Xu, Y. et al. Neurotransmitter receptors and cognitive dysfunction in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol. 97, 1–13 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kepp, K. P. Bioinorganic chemistry of Alzheimer’s disease. Chem. Rev. 112, 5193–5239 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Savelieff, M. G. et al. Development of multifunctional molecules as potential therapeutic candidates for Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis in the last decade. Chem. Rev. 119, 1221–1322 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Kashyap, G. et al. Synapse loss and progress of Alzheimer’s disease—a network model. Sci. Rep. 9, 6555 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nam, E., Nam, G. & Lim, M. H. Synaptic copper, amyloid-β, and neurotransmitters in Alzheimer’s disease. Biochemistry 59, 15–17 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Forner, S., Baglietto-Vargas, D., Martini, A. C., Trujillo-Estrada, L. & LaFerla, F. M. Synaptic impairment in Alzheimer’s disease: a dysregulated symphony. Trends Neurosci. 40, 347–357 (2017).

    Article  CAS  PubMed  Google Scholar 

  12. Miller, L. M. et al. Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with β-amyloid deposits in Alzheimer’s disease. J. Struct. Biol. 155, 30–37 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Lee, S. J. C., Nam, E., Lee, H. J., Savelieff, M. G. & Lim, M. H. Towards an understanding of amyloid-β oligomers: characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev. 46, 310–323 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Larson, M. E. & Lesné, S. E. Soluble Aβ oligomer production and toxicity. J. Neurochem. 120, 125–139 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, Y. et al. Amyloid beta peptides block new synapse assembly by Nogo receptor-mediated inhibition of T-type calcium channels. Neuron 96, 355–372 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hung, Y. H., Bush, A. I. & Cherny, R. A. Copper in the brain and Alzheimer’s disease. J. Biol. Inorg. Chem. 15, 61–76 (2010).

    Article  CAS  PubMed  Google Scholar 

  17. Kepp, K. P. & Squitti, R. Copper imbalance in Alzheimer’s disease: convergence of the chemistry and the clinic. Coord. Chem. Rev. 397, 168–187 (2019).

    Article  CAS  Google Scholar 

  18. Faller, P. Copper and zinc binding to amyloid-β: coordination, dynamics, aggregation, reactivity and metal-ion transfer. ChemBioChem 10, 2837–2845 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Noy, D. et al. Zinc–amyloid β interactions on a millisecond time-scale stabilize non-fibrillar Alzheimer-related species. J. Am. Chem. Soc. 130, 1376–1383 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Faller, P., Hureau, C. & Berthoumieu, O. Role of metal ions in the self-assembly of the Alzheimer’s amyloid-β peptide. Inorg. Chem. 52, 12193–12206 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Kepp, K. P. Alzheimer’s disease: how metal ions define β-amyloid function. Coord. Chem. Rev. 351, 127–159 (2017).

    Article  CAS  Google Scholar 

  22. Han, J., Du, Z. & Lim, M. H. Mechanistic insight into the design of chemical tools to control multiple pathogenic features in Alzheimer’s disease. Acc. Chen. Res. 54, 3930–3940 (2021).

    Article  CAS  Google Scholar 

  23. Patel, Y. C., Liu, J., Galanopoulou, A. & Parachristou, C. N. Handbook of Physiology: Section 7: The Endocrine System (Oxford Univ. Press, 2001).

    Google Scholar 

  24. Willén, K., Sroka, A., Takahashi, R. H. & Gouras, G. K. Heterogeneous association of Alzheimer’s disease-linked amyloid-β and amyloid-β protein precursor with synapses. J. Alzheimers Dis. 60, 511–524 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Saiz-Sanchez, D., De la Rosa-Preito, C., Ubeda-Banon, I. & Martinez-Marcos, A. Interneurons, tau and amyloid-β in the piriform cortex in Alzheimer’s disease. Brain Struct. Funct. 220, 2011–2025 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. Weckbecker, G. et al. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat. Rev. Drug Discov. 2, 999–1017 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Song, Y.-H., Yoon, J. & Lee, S.-H. The role of neuropeptide somatostatin in the brain and its application in treating neurological disorders. Exp. Mol. Med. 53, 328–338 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jayasekharan, T., Gupta, S. L. & Dhiman, V. Binding of Cu+ and Cu2+ with peptides: peptides = oxytocin, Arg8-vasopressin, bradykinin, angiotensin-I, substance-P, somatostatin, and neurotensin. J. Mass Spectrom. 53, 296–313 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Wang, H. et al. Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. eLife 6, e28401 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Solarski, M., Wang, H., Wille, H. & Schmitt-Ulms, G. Somatostatin in Alzheimer’s disease: a new role for an old player. Prion 12, 1–8 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Saito, T. et al. Somatostatin regulates brain amyloid β peptide Aβ42 through modulation of proteolytic degradation. Nat. Med. 11, 434–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Anoop, A. et al. Elucidating the role of disulfide bond on amyloid formation and fibril reversibility of somatostatin-14: relevance to its storage and secretion. J. Biol. Chem. 289, 16884–16903 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dharmadana, D., Reynolds, N. P., Dekiwadia, C., Conn, C. E. & Valéry, C. Heparin assisted assembly of somatostatin amyloid nanofibrils results in disordered precipitates by hindrance of protofilaments interactions. Nanoscale 10, 18195–18204 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Meng, X. et al. Stable H3 peptide was delivered by gold nanorods to inhibit LSD1 activation and induce human mesenchymal stem cells differentiation. Oncotarget 8, 23110–23119 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kahn, P. C. & Beychok, S. Far-ultraviolet optical activity of crystals in mulls. I. Cystine. J. Am. Chem. Soc. 90, 4168–4170 (1968).

    Article  CAS  PubMed  Google Scholar 

  36. Wang, H., Qian, T., Zhao, Y. & Li, Y. A toolkit of highly selective and sensitive genetically encoded neuropeptide sensors. Preprint at https://doi.org/10.1101/2022.03.26.485911 (2022).

  37. Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jing, M. et al. An optimized acetylcholine sensor for monitoring in vivo cholinergic activity. Nat. Methods 17, 1139–1146 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pratesi, A. et al. DOTA-derivatives of octreotide dicarba-analogs with high affinity for somatostatin sst2,5 receptors. Front. Chem. 5, 8 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vivian, J. T. & Callis, P. R. Mechanisms of tryptophan fluorescence shifts in proteins. Biophys. J. 80, 2093–2109 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Yang, W., Chen, X., Su, H., Fang, W. & Zhang, Y. The fluorescence regulation mechanism of the paramagnetic metal in a biological HNO sensor. Chem. Commun. 51, 9616–9619 (2015).

    Article  CAS  Google Scholar 

  43. Ćendić, M. et al. Chelating properties of EDTA-type ligands containing six-membered backbone ring toward copper ion: structure, EPR and TD-DFT evaluation. Polyhedron 124, 215–228 (2017).

    Article  CAS  Google Scholar 

  44. van Grondelle, W. et al. Lamination and spherulite-like compaction of a hormone’s native amyloid-like nanofibrils: spectroscopic insights into key interactions. Faraday Discuss. 166, 163–180 (2013).

    Article  PubMed  CAS  Google Scholar 

  45. Kocyła, A., Pomorski, A. & Krężel, A. Molar absorption coefficients and stability constants of Zincon metal complexes for determination of metal ions and bioinorganic applications. J. Inorg. Biochem. 176, 53–65 (2017).

    Article  PubMed  CAS  Google Scholar 

  46. Vivekanandan, S., Brender, J. R., Lee, S. Y. & Ramamoorthy, A. A partially folded structure of amyloid-beta(1-40) in an aqueous environment. Biochem. Biophys. Res. Commun. 411, 312–316 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu, X. et al. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc. Natl Acad. Sci. USA 106, 20324–20329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Biancalana, M. & Koide, S. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim. Biophys. Acta 1804, 1405–1412 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baghallab, I., Reyes-Ruiz, J. M., Abulnaja, K., Huwait, E. & Glabe, C. Epitomic characterization of the specificity of the anti-amyloid Aβ monoclonal antibodies 6E10 and 4G8. J. Alzheimers Dis. 66, 1235–1244 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bernstein, S. L. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat. Chem. 1, 326–331 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Nirmalraj, P. N. et al. Complete aggregation pathway of amyloid β (1-40) and (1-42) resolved on an atomically clean interface. Sci. Adv. 6, eaaz6014 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Benilova, I., Karran, E. & De Strooper, B. The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 15, 349–357 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Dunn, K. W., Kamocka, M. M. & McDonald, J. H. A practical guide to evaluating colocalization in biological microscopy. Am. J. Physiol. Cell Physiol. 300, C723–C742 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Clementi, M. E. et al. Aβ(31-35) and Aβ(25-35) fragments of amyloid beta-protein induce cellular death through apoptotic signals: role of the redox state of methionine-35. FEBS Lett. 579, 2913–2918 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Han, J. et al. Mechanistic approaches for chemically modifying the coordination sphere of copper–amyloid-β complexes. Proc. Natl Acad. Sci. USA 117, 5160–5167 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pithadia, A. S. et al. Reactivity of diphenylpropynone derivatives toward metal-associated amyloid-β species. Inorg. Chem. 51, 12959–12967 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Mruk, D. D. & Cheng, C. Y. Enhanced chemiluminescence (ECL) for routine immunoblotting: an inexpensive alternative to commercially available kits. Spermatogenesis 1, 121–122 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Geenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    Article  CAS  Google Scholar 

  59. Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–E3103 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Frisch, M. J. et al. Gaussian 09v (Gaussian, 2009).

  61. Runge, E. & Gross, E. K. U. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52, 997–1000 (1984).

    Article  CAS  Google Scholar 

  62. Neese, F. Prediction of electron paramagnetic resonance g values using coupled perturbed Hartree–Fock and Kohn–Sham theory. J. Chem. Phys. 115, 11080–11096 (2001).

    Article  CAS  Google Scholar 

  63. Neese, F. The ORCA program system. WIREs Comput. Mol. Sci. 2, 73–78 (2012).

    Article  CAS  Google Scholar 

  64. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, 6 (2018).

    Article  Google Scholar 

  65. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38, 3098–3100 (1988).

    Article  CAS  Google Scholar 

  66. Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 33, 8822–8824 (1986).

    Article  CAS  Google Scholar 

  67. Ditchfield, R., Hehre, W. J. & Pople, J. A. Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54, 724–728 (1971).

    Article  CAS  Google Scholar 

  68. Hehre, W. J., Ditchfield, R. & Pople, J. A. Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56, 2257–2261 (1972).

    Article  CAS  Google Scholar 

  69. Hariharan, P. C. & Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28, 213–222 (1973).

    Article  CAS  Google Scholar 

  70. Francl, M. M. et al. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77, 3654–3665 (1982).

    Article  CAS  Google Scholar 

  71. Rassolov, V. A., Pople, J. A., Ratner, M. A. & Windus, T. L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 109, 1223–1229 (1998).

    Article  CAS  Google Scholar 

  72. Barone, V. & Cossi, M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 102, 1995–2001 (1998).

    Article  CAS  Google Scholar 

  73. Lee, C., Yang, W. & Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  74. Neese, F. Prediction and interpretation of the 57Fe isomer shift in Mössbauer spectra by density functional theory. Inorg. Chim. Acta 337, 181–192 (2002).

    Article  Google Scholar 

  75. Rega, N., Cossi, M. & Barone, V. Development and validation of reliable quantum mechanical approaches for the study of free radicals in solution. J. Chem. Phys. 105, 11060–11067 (1996).

    Article  CAS  Google Scholar 

  76. Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin, Y. et al. Diverse structural conversion and aggregation pathways of Alzheimer’s amyloid-β (1–40). ACS Nano 13, 8766–8783 (2019).

    Article  CAS  PubMed  Google Scholar 

  78. Schreiber, A., Fischer, S. & Lang, T. The amyloid precursor protein forms plasmalemmal clusters via its pathogenic amyloid-β domain. Biophys. J. 102, 1411–1417 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2017R1A2B3002585 and NRF-2022R1A3B1077319 (M.H.L.); NRF-2021R1A2C3012159 (S.-H.L.); NRF-2018R1C1B6007430 (K.P.)); the Basic Science Research Program through the NRF funded by the Ministry of Education (NRF-2019R1A6A1A10073887) (M.H.L.); the KAIST Advanced Institute for Science-X (KAIX) Challenge (M.H.L.). J.H. thanks the Global Ph.D. fellowship program for support through the NRF funded by the Ministry of Education (NRF-2019H1A2A1073754).

Author information

Authors and Affiliations

Authors

Contributions

J.H. and M.H.L. designed the research. J.H. performed the spectroscopic measurements (absorbance, fluorescence and CD), PAGE, ESI–MS, docking studies, biochemical assays, TEM and cell studies with data analysis. T.Q. and Y.L. developed the GRABSST sensor. J.Y. and S.-H.L. designed the GRABSST imaging experiment and analysed the data. J.S. and K.P. collected and analysed the spectroscopic data and DFT calculation. E.N. contributed to the immunocytochemistry studies. J.H., E.N., K.P., S.-H.L. and M.H.L. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Kiyoung Park, Seung-Hee Lee or Mi Hee Lim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Ujendra Kumar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Receptor-binding studies of SST treated with and without metal ions.

a, Titration experiments to determine the EC50 value of the GRABSST sensor against SST. Various concentrations of SST were sequentially added to the GRABSST sensor-expressing HEK293T cells at a 1 min interval. The ΔF/F0 values were plotted as a function of log[SST] and fitted to obtain the EC50 value. Data are presented as mean ± s.e.m. (standard error of the mean); n = 9. Conditions: [SST] = 0.003, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5, 1, 3, and 7 μM; 20 mM HEPES, pH 7.4, 150 mM NaCl. b, Change in the fluorescence intensity of the GRABSST sensor upon addition of SST incubated with or without metal ions. Data are presented as mean ± s.e.m. (standard error of the mean); n = 20 (without metal ions), n = 10 (with metal ions). c, Fluorescence measurements of the GRABSST sensor after administration of metal ions and vehicle (buffered solution). Data are presented as mean ± s.e.m. (standard error of the mean); n = 4–10 per group. Conditions: [SST] = 0.5 μM; [MCl2] = 0.5 μM; 20 mM HEPES, pH 7.4, 150 mM NaCl; 24 h incubation; constant agitation. The vertical lines indicate time points when the ΔF/F0 values were quantitatively analyzed and compared between groups.

Source data

Extended Data Fig. 2 DFT models of Cu(II)(SST).

a, Energy-minimized geometry of SST. The amino acid residues that can coordinate to Cu(II) are circled. Yellow, gray, blue, red, and white balls indicate S, C, N, O, and H atoms, respectively. H atoms bonded to carbon atoms are omitted for clarity. b, Comparison of the DFT models of Cu(II)(SST). Total 11 models were constructed and their relative potential energies (ΔE in kcal/mol), the TDDFT-calculated Abs band energies (\(\bar v_{max}\) in cm-1), and EPR gz parameters are summarized. The model Ala1Cys14-I exhibits the highest \(\bar v_{max}\) and the smallest gz value that reproduce the experimental results, with a reasonable stability given the DFT energy error (ca. 5 kcal/mol). c, DFT models (Ala1Cys14-II–IV) of Cu(II)(SST). The Cu(II) center is coordinated to the N-terminal primary amine (Ala1) and water molecules that are hydrogen bonded to Cys14. Three different structures obtained with variations in hydrogen bonding are given, with their relative potential energies at the bottom. The truncated Cu(II) sites used for spectroscopic calculations are depicted at the bottom. Compared to the Cu(II)-free SST structure (coloured lines), major configurational changes were observed and highlighted in dashed circles. Orange, yellow, gray, blue, red, and white balls indicate Cu, S, C, N, O, and H atoms, respectively, and H atoms bonded to carbon atoms are omitted for clarity.

Extended Data Fig. 3 Receptor-binding studies of SST incubated with Aβ40.

a, Change in the fluorescence of the GRABSST sensor upon addition of SST treated with Aβ40 in the absence and presence of metal ions. Data are presented as mean ± s.e.m. (standard error of the mean); n = 19–21 per group. b, Fluorescence measurements of the GRABSST sensor after administration of metal-added and metal-free Aβ40 without SST. Data are presented as mean ± s.e.m. (standard error of the mean); n = 10 per group. Conditions: [SST] = 0.5 μM; [MCl2] = 0.5 μM; [Aβ40] = 0.5 μM; 20 mM HEPES, pH 7.4, 150 mM NaCl; 24 h incubation; constant agitation. The vertical lines indicate time points when the ΔF/F0 values were quantitatively analyzed and compared between groups.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Table 1 and unprocessed gel/Western blot data.

Reporting Summary

Supplementary Data 1

Final coordinates and energy from BP86 calculations on geometry-optimized SST (PDB 2MI1)

Supplementary Data 2

Final coordinates and energy from BP86 calculations on geometry-optimized Ala1-I–III

Supplementary Data 3

Final coordinates and energy from BP86 calculations on geometry-optimized Ala1Lys4-I–II

Supplementary Data 4

Final coordinates and energy from BP86 calculations on geometry-optimized Ala1Cys14-I–IV

Supplementary Data 5

Final coordinates and energy from BP86 calculations on geometry-optimized Cys14 and Lys9Cys14

Source data

Source Data Fig. 2

Unprocessed gels for Fig. 2b

Source Data Fig. 2

Statistical source data for Fig. 2c,f

Source Data Fig. 3

Statistical source data for Fig. 3a,b

Source Data Fig. 4

Unprocessed gels for Fig. 4d,e

Source Data Fig. 5

Statistical source data for Fig. 5b

Source Data Fig. 5

Unprocessed gels for Fig. 5c

Source Data Extended Data Fig. 1

Statistical source data for Extended Data Fig. 1

Source Data Extended Data Fig. 3

Statistical source data for Extended Data Fig. 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Yoon, J., Shin, J. et al. Conformational and functional changes of the native neuropeptide somatostatin occur in the presence of copper and amyloid-β. Nat. Chem. 14, 1021–1030 (2022). https://doi.org/10.1038/s41557-022-00984-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00984-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing