Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Towards translational optogenetics

Abstract

Optogenetics is widely used to interrogate the neural circuits underlying disease and has most recently been harnessed for therapeutic applications. The optogenetic toolkit consists of light-responsive proteins that modulate specific cellular functions, vectors for the delivery of the transgenes that encode the light-responsive proteins to targeted cellular populations, and devices for the delivery of light of suitable wavelengths at effective fluence rates. A refined toolkit with a focus towards translational uses would include efficient and safer viral and non-viral gene-delivery vectors, increasingly red-shifted photoresponsive proteins, nanomaterials that efficiently transduce near-infrared light deep into tissue, and wireless implantable light-delivery devices that allow for spatiotemporally precise interventions at clinically relevant tissue depths. In this Review, we examine the current optogenetics toolkit and the most notable preclinical and translational uses of optogenetics, and discuss future methodological and translational developments and bottlenecks.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Light-responsive proteins.
Fig. 2: The translational optogenetics toolkit.
Fig. 3: Targeted gene delivery.
Fig. 4: Red-shifted photoreceptors.
Fig. 5: Wireless light-delivery approaches.
Fig. 6: Light transducers in optogenetics.

Similar content being viewed by others

References

  1. Deisseroth, K. Optogenetics. Nat. Methods 8, 26–29 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Duarte, M. J. et al. Ancestral adeno-associated virus vector delivery of opsins to spiral ganglion neurons: implications for optogenetic cochlear implants. Mol. Ther. 26, 1931–1939 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, S. et al. Non-invasive, focused ultrasound-facilitated gene delivery for optogenetics. Sci. Rep. 7, 39955 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pathak, G. P. et al. Bidirectional approaches for optogenetic regulation of gene expression in mammalian cells using Arabidopsis cryptochrome 2. Nucleic Acids Res. 45, e167/161–e167/112 (2017).

    Article  Google Scholar 

  5. Kim, T.-i et al. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science 340, 211–216 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wykes, R. C. et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4, 161ra152 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Chow, B. Y. & Boyden, E. S. Optogenetics and translational medicine. Sci. Transl. Med. 5, 177ps175 (2013).

    Article  Google Scholar 

  8. Galvan, A. et al. Nonhuman primate optogenetics: recent advances and future directions. J. Neurosci. 37, 10894–10903 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Eichler, J., Knof, J. & Lenz, H. Measurements on the depth of penetration of light (0.35–1.0 µm) in tissue. Radiat. Environ. Biophys. 14, 239–242 (1977).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, X. et al. Core–shell–shell upconversion nanoparticles with enhanced emission for wireless optogenetic inhibition. Nano Lett. 18, 948–956 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Mager, T. et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat. Commun. 9, 1750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pathak, G. P., Vrana, J. D. & Tucker, C. L. Optogenetic control of cell function using engineered photoreceptors. Biol. Cell 105, 59–72 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Reichhart, E., Ingles-Prieto, A., Tichy, A. M., McKenzie, C. & Janovjak, H. A phytochrome sensory domain permits receptor activation by red light. Angew. Chem. Int. Ed. 55, 6339–6342 (2016).

    Article  CAS  Google Scholar 

  15. Zhang, F. et al. The microbial opsin family of optogenetic tools. Cell 147, 1446–1457 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, F., Wang, L.-P., Boyden, E. S. & Deisseroth, K. Channelrhodopsin-2 and optical control of excitable cells. Nat. Methods 3, 785–792 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Krook-Magnuson, E., Armstrong, C., Oijala, M. & Soltesz, I. On-demand optogenetic control of spontaneous seizures in temporal lobe epilepsy. Nat. Commun. 4, 1376 (2013).

    Article  PubMed  Google Scholar 

  18. Chen, Y., Xiong, M. & Zhang, S.-C. Illuminating Parkinson’s therapy with optogenetics. Nat. Biotechnol. 33, 149–150 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lüscher, C. & Malenka, R. C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69, 650–663 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gradinaru, V., Thompson, K. R. & Deisseroth, K. eNpHR: a Natronomonas halorhodopsin enhanced for optogenetic applications. Brain Cell Biol. 36, 129–139 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Han, X. et al. A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front. Syst. Neurosci. 5, 18 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tye, K. M. et al. Amygdala circuitry mediating reversible and bidirectional control of anxiety. Nature 471, 358–362 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tye, K. M. et al. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493, 537–541 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Wietek, J. et al. Conversion of channelrhodopsin into a light-gated chloride channel. Science 344, 409–412 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. Berndt, A., Lee, S. Y., Ramakrishnan, C. & Deisseroth, K. Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344, 420–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berndt, A. & Deisseroth, K. Expanding the optogenetics toolkit. Science 349, 590–591 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X. & Spudich, J. L. Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349, 647–650 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Arrenberg, A. B., Stainier, D. Y., Baier, H. & Huisken, J. Optogenetic control of cardiac function. Science 330, 971–974 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. Doroudchi, M. M. et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol. Ther. 19, 1220–1229 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ye, H., Daoud-El Baba, M., Peng, R.-W. & Fussenegger, M. A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice. Science 332, 1565–1568 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Chen, D., Gibson, E. S. & Kennedy, M. J. A light-triggered protein secretion system. J. Cell Biol. 201, 631–640 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tyszkiewicz, A. B. & Muir, T. W. Activation of protein splicing with light in yeast. Nat. Methods 5, 303–305 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Liu, H., Gomez, G., Lin, S., Lin, S. & Lin, C. Optogenetic control of transcription in zebrafish. PLoS ONE 7, e50738 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou, X. X., Chung, H. K., Lam, A. J. & Lin, M. Z. Optical control of protein activity by fluorescent protein domains. Science 338, 810–814 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, Y. I. et al. A genetically encoded photoactivatable Rac controls the motility of living cells. Nature 461, 104–108 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, K. & Cui, B. Optogenetic control of intracellular signaling pathways. Trends Biotechnol. 33, 92–100 (2015).

    Article  PubMed  Google Scholar 

  38. Madisen, L. et al. A toolbox of Cre-dependent optogenetic transgenic mice for light-induced activation and silencing. Nat. Neurosci. 15, 793–802 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, F. et al. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat. Protoc. 5, 439–456 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Williams, J. C. & Denison, T. From optogenetic technologies to neuromodulation therapies. Sci. Transl. Med. 5, 177ps176 (2013).

    Article  Google Scholar 

  41. Edelstein, M. L., Abedi, M. R. & Wixon, J. Gene therapy clinical trials worldwide to 2007—an update. J. Gene Med. 9, 833–842 (2007).

    Article  PubMed  Google Scholar 

  42. Kaplitt, M. G. et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369, 2097–2105 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Pickar, A. K. & Gersbach, C. A. Gene therapies for hemophilia hit the mark in clinical trials. Nat. Med. 24, 121–122 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Mingozzi, F. & High, K. A. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122, 23–36 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Smalley, E. First AAV gene therapy poised for landmark approval. Nat. Biotechnol. 35, 998–1000 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. Ambrosi, C. M., Sadananda, G., Klimas, A. & Entcheva, E. Adeno-associated virus mediated gene delivery: Implications for scalable in vitro and in vivo cardiac optogenetic models. Front Physiol. 10, 168 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ginn, S. L., Amaya, A. K., Alexander, I. E., Edelstein, M. & Abedi, M. R. Gene therapy clinical trials worldwide to 2017: an update. J. Gene Med. 20, e3015 (2018).

    Article  PubMed  Google Scholar 

  48. Colella, P., Ronzitti, G. & Mingozzi, F. Emerging issues in AAV-mediated in vivo gene therapy. Mol. Ther. Methods Clin. Dev. 8, 87–104 (2018).

    Article  CAS  PubMed  Google Scholar 

  49. Pastrana, E. Optogenetics: controlling cell function with light. Nat. Methods 8, 24–25 (2010).

    Article  Google Scholar 

  50. Stujenske, J. M., Spellman, T. & Gordon, J. A. Modeling the spatiotemporal dynamics of light and heat propagation for in vivo optogenetics. Cell Rep. 12, 525–534 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yizhar, O., Fenno, L. E., Davidson, T. J., Mogri, M. & Deisseroth, K. Optogenetics in neural systems. Neuron 71, 9–34 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Fowley, C., Nomikou, N., McHale, A. P., McCaughan, B. & Callan, J. F. Extending the tissue penetration capability of conventional photosensitisers: a carbon quantum dot–protoporphyrin IX conjugate for use in two-photon excited photodynamic therapy. Chem. Commun. 49, 8934–8936 (2013).

    Article  CAS  Google Scholar 

  53. Brancaleon, L. & Moseley, H. Laser and non-laser light sources for photodynamic therapy. Lasers Med. Sci. 17, 173–186 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Aravanis, A. M. et al. An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng. 4, S143–S156 (2007).

    Article  PubMed  Google Scholar 

  55. Wilson, B. & Adam, G. A Monte Carlo model for the absorption and flux distributions of light in tissue. Med. Phys. 10, 824–830 (1983).

    Article  CAS  PubMed  Google Scholar 

  56. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00683-3 (2021).

  58. Krook-Magnuson, E. et al. In vivo evaluation of the dentate gate theory in epilepsy. J. Physiol. 593, 2379–2388 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tønnesen, J., Sørensen, A. T., Deisseroth, K., Lundberg, C. & Kokaia, M. Optogenetic control of epileptiform activity. Proc. Natl Acad. Sci. USA 106, 12162–12167 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Soper, C., Wicker, E., Kulick, C. V., N’Gouemo, P. & Forcelli, P. A. Optogenetic activation of superior colliculus neurons suppresses seizures originating in diverse brain networks. Neurobiol. Dis. 87, 102–115 (2016).

    Article  PubMed  Google Scholar 

  61. Krook-Magnuson, E., Szabo, G. G., Armstrong, C., Oijala, M. & Soltesz, I. Cerebellar directed optogenetic intervention inhibits spontaneous hippocampal seizures in a mouse model of temporal lobe epilepsy. eNeuro 1, PMC4293636 (2014).

  62. Sidor, M. M. Psychiatry’s age of enlightenment: optogenetics and the discovery of novel targets for the treatment of psychiatric disorders. J. Psychiatry Neurosci. 37, 4–6 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Stefanik, M. T. et al. Optogenetic inhibition of cocaine seeking in rats. Addict. Biol. 18, 50–53 (2013).

    Article  CAS  PubMed  Google Scholar 

  64. Chaudhury, D. et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493, 532–536 (2013).

    Article  CAS  PubMed  Google Scholar 

  65. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tsai, S. Q. & Joung, J. K. Defining and improving the genome-wide specificities of CRISPR–Cas9 nucleases. Nat. Rev. Genet. 17, 300–312 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable CRISPR-Cas9 for optogenetic genome editing. Nat. Biotechnol. 33, 755–760 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Busskamp, V., Picaud, S., Sahel, J.-A. & Roska, B. Optogenetic therapy for retinitis pigmentosa. Gene Ther. 19, 169–175 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Marc, R., Pfeiffer, R. & Jones, B. Retinal prosthetics, optogenetics, and chemical photoswitches. ACS Chem. Neurosci. 5, 895–901 (2014).

    Article  CAS  PubMed  Google Scholar 

  70. Busskamp, V. et al. Genetic reactivation of cone photoreceptors restores visual responses in retinitis pigmentosa. Science 329, 413–417 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Kalloniatis, M., Nivison-Smith, L., Chua, J., Acosta, M. & Fletcher, E. Using the rd1 mouse to understand functional and anatomical retinal remodelling and treatment implications in retinitis pigmentosa: a review. Exp. Eye Res. 150, 106–121 (2016).

    Article  CAS  PubMed  Google Scholar 

  72. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tomita, H. et al. Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp. Eye Res. 90, 429–436 (2010).

    Article  CAS  PubMed  Google Scholar 

  74. Thyagarajan, S. et al. Visual function in mice with photoreceptor degeneration and transgenic expression of channelrhodopsin 2 in ganglion cells. J. Neurosci. 30, 8745–8758 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tomita, H. et al. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter. PLoS ONE 4, e7679 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Fradot, M. et al. Gene therapy in ophthalmology: validation on cultured retinal cells and explants from postmortem human eyes. Hum. Gene Ther. 22, 587–593 (2010).

    Article  Google Scholar 

  77. Sahel, J.-A. et al. Partial recovery of visual function in a blind patient after optogenetic therapy. Nat. Med. 27, 1223–1229 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. van Wyk, M., Pielecka-Fortuna, J., Löwel, S. & Kleinlogel, S. Restoring the ON switch in blind retinas: opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol. 13, e1002143 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mager, T. et al. High frequency neural spiking and auditory signaling by ultrafast red-shifted optogenetics. Nat. Commun. 9, 1750 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Weiss, R. S., Voss, A. & Hemmert, W. Optogenetic stimulation of the cochlea—A review of mechanisms, measurements, and first models. Network 27, 212–236 (2016).

    Article  PubMed  Google Scholar 

  81. Furman, A. C., Kujawa, S. G. & Liberman, M. C. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J. Neurophysiol. 110, 577–586 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Jeschke, M. & Moser, T. Considering optogenetic stimulation for cochlear implants. Hear. Res. 322, 224–234 (2015).

    Article  PubMed  Google Scholar 

  83. Caracciolo, L. et al. CREB controls cortical circuit plasticity and functional recovery after stroke. Nat. Commun. 9, 2250 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hernandez, V. H. et al. Optogenetic stimulation of the auditory pathway. J. Clin. Invest. 124, 1114–1129 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Miller, C. A. et al. Electrical excitation of the acoustically sensitive auditory nerve: single-fiber responses to electric pulse trains. J. Assoc. Res. Otolaryngol. 7, 195–210 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hight, A. E. et al. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant. Hear. Res. 322, 235–241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wrobel, C. et al. Optogenetic stimulation of cochlear neurons activates the auditory pathway and restores auditory-driven behavior in deaf adult gerbils. Sci. Transl. Med. 10, eaao0540 (2018).

    Article  PubMed  Google Scholar 

  88. Goßler, C. et al. GaN-based micro-LED arrays on flexible substrates for optical cochlear implants. J. Phys. D Appl. Phys. 47, 205401 (2014).

    Article  Google Scholar 

  89. Iyer, S. M. et al. Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat. Biotechnol. 32, 274–278 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. May, T. et al. Detection of optogenetic stimulation in somatosensory cortex by non-human primates – towards artificial tactile sensation. PLoS ONE 9, e114529 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Stauffer, W. R. et al. Dopamine neuron-specific optogenetic stimulation in rhesus macaques. Cell 166, 1564–1571.e6 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cavanaugh, J. et al. Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76, 901–907 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kim, H. K., Alexander, A. L. & Soltesz, I. in Optogenetics: A Roadmap (ed. Stroh, A.) 277–300 (Springer, 2018).

  94. Cardin, J. A. et al. Targeted optogenetic stimulation and recording of neurons in vivo using cell-type-specific expression of Channelrhodopsin-2. Nat. Protoc. 5, 247–254 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Murlidharan, G., Samulski, R. J. & Asokan, A. Biology of adeno-associated viral vectors in the central nervous system. Front. Mol. Neurosci. 7, 76 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Dunbar, C. E. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    Article  PubMed  Google Scholar 

  97. Kessler, P. D. et al. Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc. Natl Acad. Sci. USA 93, 14082–14087 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33, 750–754 (2015).

    Article  CAS  PubMed  Google Scholar 

  99. Kravitz, A. V. et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466, 622–626 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Metzger, D. & Feil, R. Engineering the mouse genome by site-specific recombination. Curr. Opin. Biotechnol. 10, 470–476 (1999).

    Article  CAS  PubMed  Google Scholar 

  101. Kohara, K. et al. Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat. Neurosci. 17, 269–279 (2014).

    Article  CAS  PubMed  Google Scholar 

  102. Han, S. Y., McLennan, T., Czieselsky, K. & Herbison, A. E. Selective optogenetic activation of arcuate kisspeptin neurons generates pulsatile luteinizing hormone secretion. Proc. Natl Acad. Sci. USA 112, 13109–13114 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Li, Y. et al. Optogenetic activation of adenosine A 2A receptor signaling in the dorsomedial striatopallidal neurons suppresses goal-directed behavior. Neuropsychopharmacology 41, 1003–1013 (2016).

    Article  CAS  PubMed  Google Scholar 

  104. Cronin, T. et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol. Med. 6, 1175–1190 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Lu, Q. et al. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther. 23, 680–689 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Chan, K. Y. et al. Engineered AAVs for efficient noninvasive gene delivery to the central and peripheral nervous systems. Nat. Neurosci. 20, 1172–1179 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Manno, C. S. et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat. Med. 12, 342–347 (2006).

    Article  CAS  PubMed  Google Scholar 

  108. Boutin, S. et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors. Hum. Gene Ther. 21, 704–712 (2010).

    Article  CAS  PubMed  Google Scholar 

  109. Salganik, M., Hirsch, M. L. & Samulski, R. J. Adeno-associated virus as a mammalian DNA vector. Microbiol. Spectr. 3, 827–849 (2015).

    Article  Google Scholar 

  110. Senova, S. et al. Optogenetic tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates. Sci. Rep. 8, 3362 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Kyung, T. et al. Optogenetic control of endogenous Ca 2+ channels in vivo. Nat. Biotechnol. 33, 1092–1096 (2015).

    Article  CAS  PubMed  Google Scholar 

  112. Paonessa, F. et al. Regulation of neural gene transcription by optogenetic inhibition of the RE1-silencing transcription factor. Proc. Natl Acad. Sci. USA 113, E91–E100 (2016).

    Article  CAS  PubMed  Google Scholar 

  113. Danjo, T., Yoshimi, K., Funabiki, K., Yawata, S. & Nakanishi, S. Aversive behavior induced by optogenetic inactivation of ventral tegmental area dopamine neurons is mediated by dopamine D2 receptors in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 111, 6455–6460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ben-Simon, Y. et al. A combined optogenetic-knockdown strategy reveals a major role of tomosyn in mossy fiber synaptic plasticity. Cell Rep. 12, 396–404 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Seeger-Armbruster, S. et al. Patterned, but not tonic, optogenetic stimulation in motor thalamus improves reaching in acute drug-induced parkinsonian rats. J. Neurosci. 35, 1211–1216 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Andersson, M. et al. Optogenetic control of human neurons in organotypic brain cultures. Sci. Rep. 6, 24818 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jackman, S. L. et al. Silk fibroin films facilitate single-step targeted expression of optogenetic proteins. Cell Rep. 22, 3351–3361 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Galvan, A., Hu, X., Smith, Y. & Wichmann, T. Effects of optogenetic activation of corticothalamic terminals in the motor thalamus of awake monkeys. J. Neurosci. 36, 3519–3530 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Naso, M. F., Tomkowicz, B., Perry, W. L. & Strohl, W. R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 31, 317–334 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nathwani, A. C. et al. Long-term safety and efficacy following systemic administration of a self-complementary AAV vector encoding human FIX pseudotyped with serotype 5 and 8 capsid proteins. Mol. Ther. 19, 876–885 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Niemeyer, G. P. et al. Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy. Blood 113, 797–806 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nathwani, A. C. et al. Adenovirus-associated virus vector-mediated gene transfer in hemophilia B. N. Engl. J. Med. 365, 2357–2365 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yin, H. et al. Non-viral vectors for gene-based therapy. Nat. Rev. Genet. 15, 541–555 (2014).

    Article  CAS  PubMed  Google Scholar 

  124. Kesharwani, P. & Iyer, A. K. Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today 20, 536–547 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Sharei, A. et al. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA 110, 2082–2087 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Mehier-Humbert, S. & Guy, R. H. Physical methods for gene transfer: improving the kinetics of gene delivery into cells. Adv. Drug Deliv. Rev. 57, 733–753 (2005).

    Article  CAS  PubMed  Google Scholar 

  128. Buerli, T. et al. Efficient transfection of DNA or shRNA vectors into neurons using magnetofection. Nat. Protoc. 2, 3090–3101 (2007).

    Article  CAS  PubMed  Google Scholar 

  129. Soto-Sánchez, C. et al. Enduring high-efficiency in vivo transfection of neurons with non-viral magnetoparticles in the rat visual cortex for optogenetic applications. Nanomedicine 11, 835–843 (2015).

    Article  PubMed  Google Scholar 

  130. Hsieh, F.-Y., Lin, H.-H. & Hsu, S.-h 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71, 48–57 (2015).

    Article  CAS  PubMed  Google Scholar 

  131. Hsieh, F.-Y. et al. Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials 174, 31–40 (2018).

    Article  CAS  PubMed  Google Scholar 

  132. Steinbeck, J. A. et al. Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson’s disease model. Nat. Biotechnol. 33, 204–209 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Piña-Crespo, J. C. et al. High-frequency hippocampal oscillations activated by optogenetic stimulation of transplanted human ESC-derived neurons. J. Neurosci. 32, 15837–15842 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Weick, J. P. et al. Functional control of transplantable human ESC-derived neurons via optogenetic targeting. Stem Cells 28, 2008–2016 (2010).

    Article  CAS  PubMed  Google Scholar 

  135. Henderson, K. W. et al. Long-term seizure suppression and optogenetic analyses of synaptic connectivity in epileptic mice with hippocampal grafts of GABAergic interneurons. J. Neurosci. 34, 13492–13504 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tønnesen, J. et al. Functional integration of grafted neural stem cell-derived dopaminergic neurons monitored by optogenetics in an in vitro Parkinson model. PLoS ONE 6, e17560 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Weitz, A. J. & Lee, J. H. Probing neural transplant networks in vivo with optogenetics and optogenetic fMRI. Stem Cells Int. 2016, 8612751 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Byers, B. et al. Direct in vivo assessment of human stem cell graft–host neural circuits. Neuroimage 114, 328–337 (2015).

    Article  PubMed  Google Scholar 

  139. Shao, J. et al. Smartphone-controlled optogenetically engineered cells enable semiautomatic glucose homeostasis in diabetic mice. Sci. Transl. Med. 9, eaal2298 (2017).

    Article  PubMed  Google Scholar 

  140. Adil, M. M. et al. Engineered hydrogels increase the post-transplantation survival of encapsulated hESC-derived midbrain dopaminergic neurons. Biomaterials 136, 1–11 (2017).

    Article  CAS  PubMed  Google Scholar 

  141. Picanço-Castro, V., Moreira, L. F., Kashima, S. & Covas, D. T. Can pluripotent stem cells be used in cell-based therapy? Cell. Reprogram. 16, 98–107 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Scholl, H. P. et al. Emerging therapies for inherited retinal degeneration. Sci. Transl. Med. 8, 368rv366 (2016).

    Article  Google Scholar 

  143. Schwartz, S. D. et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet 385, 509–516 (2015).

    Article  PubMed  Google Scholar 

  144. Azad, T. D., Veeravagu, A. & Steinberg, G. K. Neurorestoration after stroke. Neurosurg. Focus 40, E2 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Wang, W. et al. Tuning the electronic absorption of protein-embedded all-trans-retinal. Science 338, 1340–1343 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang, F. et al. Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri. Nat. Neurosci. 11, 631–633 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Yizhar, O. et al. Neocortical excitation/inhibition balance in information processing and social dysfunction. Nature 477, 171–178 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Erbguth, K., Prigge, M., Schneider, F., Hegemann, P. & Gottschalk, A. Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS ONE 7, e46827 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Packer, A. M. et al. Two-photon optogenetics of dendritic spines and neural circuits. Nat. Methods 9, 1202–1205 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Lin, J. Y., Knutsen, P. M., Muller, A., Kleinfeld, D. & Tsien, R. Y. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat. Neurosci. 16, 1499–1508 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Inagaki, H. K. et al. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship. Nat. Methods 11, 325–332 (2014).

    Article  CAS  PubMed  Google Scholar 

  153. Klapoetke, N. C. et al. Independent optical excitation of distinct neural populations. Nat. Methods 11, 338–346 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Oda, K. et al. Crystal structure of the red light-activated channelrhodopsin Chrimson. Nat. Commun. 9, 3949 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Maimon, B. E., Sparks, K., Srinivasan, S., Zorzos, A. N. & Herr, H. M. Spectrally distinct channelrhodopsins for two-colour optogenetic peripheral nerve stimulation. Nat. Biomed. Eng. 2, 485–496 (2018).

    Article  CAS  PubMed  Google Scholar 

  156. McIsaac, R. S. et al. Directed evolution of a far-red fluorescent rhodopsin. Proc. Natl Acad. Sci. USA 111, 13034–13039 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ma, D. et al. Role of ER export signals in controlling surface potassium channel numbers. Science 291, 316–319 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Chuong, A. S. et al. Noninvasive optical inhibition with a red-shifted microbial rhodopsin. Nat. Neurosci. 17, 1123–1129 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Müller, K. et al. A red/far-red light-responsive bi-stable toggle switch to control gene expression in mammalian cells. Nucleic Acids Res. 41, e77 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Müller, K., Zurbriggen, M. D. & Weber, W. Control of gene expression using a red- and far-red light-responsive bi-stable toggle switch. Nat. Protoc. 9, 622–632 (2014).

    Article  PubMed  Google Scholar 

  161. Strauss, H. M., Schmieder, P. & Hughes, J. Light-dependent dimerisation in the N-terminal sensory module of cyanobacterial phytochrome 1. FEBS Lett. 579, 3970–3974 (2005).

    Article  CAS  PubMed  Google Scholar 

  162. Kim, S., Tathireddy, P., Normann, R. A. & Solzbacher, F. Thermal impact of an active 3-D microelectrode array implanted in the brain. IEEE Trans. Neural Syst. Rehabil. Eng. 15, 493–501 (2007).

    Article  PubMed  Google Scholar 

  163. Kienzler, M. A. et al. A red-shifted, fast-relaxing azobenzene photoswitch for visible light control of an ionotropic glutamate receptor. J. Am. Chem. Soc. 135, 17683–17686 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Klein, E., Gossler, C., Paul, O. & Ruther, P. High-density μLED-based optical cochlear implant with improved thermomechanical behavior. Front. Neurosci. 12, PMC6174235 (2018).

  165. Park, S. I. et al. Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics. Nat. Biotechnol. 33, 1280–1286 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Chow, B. Y. et al. High-performance genetically targetable optical neural silencing by light-driven proton pumps. Nature 463, 98–102 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Jeong, J.-W. et al. Wireless optofluidic systems for programmable in vivo pharmacology and optogenetics. Cell 162, 662–674 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Folcher, M. et al. Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nat. Commun. 5, 5392 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Noh, K. N. et al. Miniaturized, battery-free optofluidic systems with potential for wireless pharmacology and optogenetics. Small 14, 1702479 (2018).

    Article  Google Scholar 

  170. Park, S. I. et al. Stretchable multichannel antennas in soft wireless optoelectronic implants for optogenetics. Proc. Natl Acad. Sci. USA 113, E8169–E8177 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Shin, G. et al. Flexible near-field wireless optoelectronics as subdermal implants for broad applications in optogenetics. Neuron 93, 509–521.e3 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Samineni, V. K. et al. Fully implantable, battery-free wireless optoelectronic devices for spinal optogenetics. Pain 158, 2108–2116 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Shah, S. et al. Hybrid upconversion nanomaterials for optogenetic neuronal control. Nanoscale 7, 16571–16577 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jayakumar, M. K. G., Idris, N. M. & Zhang, Y. Remote activation of biomolecules in deep tissues using near-infrared-to-UV upconversion nanotransducers. Proc. Natl Acad. Sci. USA 109, 8483–8488 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Chen, G., Qiu, H., Prasad, P. N. & Chen, X. Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Bansal, A., Liu, H., Jayakumar, M. K. G., Andersson-Engels, S. & Zhang, Y. Quasi-continuous wave near-infrared excitation of upconversion nanoparticles for optogenetic manipulation of C. elegans. Small 12, 1732–1743 (2016).

    Article  CAS  PubMed  Google Scholar 

  177. Idris, N. M. et al. In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat. Med. 18, 1580–1585 (2012).

    Article  CAS  PubMed  Google Scholar 

  178. Pliss, A. et al. Subcellular optogenetics enacted by targeted nanotransformers of near-infrared light. ACS Photonics 4, 806–814 (2017).

    Article  CAS  Google Scholar 

  179. Chatterjee, D. K., Gnanasammandhan, M. K. & Zhang, Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small 6, 2781–2795 (2010).

    Article  CAS  PubMed  Google Scholar 

  180. Toettcher, J. E., Weiner, O. D. & Lim, W. A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Wu, X. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Zhao, F. et al. Huge enhancement of upconversion luminescence by dye/Nd 3+ sensitization of quenching-shield sandwich structured upconversion nanocrystals under 808 nm excitation. Dalton Trans. 46, 16180–16189 (2017).

    Article  CAS  PubMed  Google Scholar 

  183. Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 359, 679–684 (2018).

    Article  CAS  PubMed  Google Scholar 

  184. Zheng, B. et al. Near-infrared light triggered upconversion optogenetic nanosystem for cancer therapy. ACS nano 11, 11898–11907 (2017).

    Article  CAS  PubMed  Google Scholar 

  185. Han, S., Deng, R., Xie, X. & Liu, X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 53, 11702–11715 (2014).

    Article  CAS  Google Scholar 

  186. Lin, X. et al. Multiplexed optogenetic stimulation of neurons with spectrum-selective upconversion nanoparticles. Adv. Healthc. Mater. 6, 1700446 (2017).

    Article  Google Scholar 

  187. Wang, Y. et al. Tetherless near-infrared control of brain activity in behaving animals using fully implantable upconversion microdevices. Biomaterials 142, 136–148 (2017).

    Article  CAS  PubMed  Google Scholar 

  188. Kwon, K. Y., Lee, H.-M., Ghovanloo, M., Weber, A. & Li, W. Design, fabrication, and packaging of an integrated, wirelessly-powered optrode array for optogenetics application. Front. Syst. Neurosci. 9, 69 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Gerits, A. & Vanduffel, W. Optogenetics in primates: a shining future? Trends Genet. 29, 403–411 (2013).

    Article  CAS  PubMed  Google Scholar 

  190. Chernov, M. M., Friedman, R. M., Chen, G., Stoner, G. R. & Roe, A. W. Functionally specific optogenetic modulation in primate visual cortex. Proc. Natl Acad. Sci. USA 115, 10505–10510 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Koch, S. F. et al. Halting progressive neurodegeneration in advanced retinitis pigmentosa. J. Clin. Invest. 125, 3704–3713 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Keppeler, D. et al. Ultrafast optogenetic stimulation of the auditory pathway by targeting-optimized Chronos. EMBO J. 37, e99649 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Schenkl, S., van Mourik, F., van der Zwan, G., Haacke, S. & Chergui, M. Probing the ultrafast charge translocation of photoexcited retinal in bacteriorhodopsin. Science 309, 917–920 (2005).

    Article  CAS  PubMed  Google Scholar 

  194. Groth, G. & Walker, J. E. ATP synthase from bovine heart mitochondria: reconstitution into unilamellar phospholipid vesicles of the pure enzyme in a functional state. Biochem. J. 318, 351–357 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Li, D., Hérault, K., Isacoff, E. Y., Oheim, M. & Ropert, N. Optogenetic activation of LiGluR-expressing astrocytes evokes anion channel-mediated glutamate release. J. Physiol. 590, 855–873 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Shimizu-Sato, S., Huq, E., Tepperman, J. M. & Quail, P. H. A light-switchable gene promoter system. Nat. Biotechnol. 20, 1041–1044 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Mühlhäuser, W. W., Hörner, M., Weber, W. & Radziwill, G. in Synthetic Protein Switches 257–270 (Springer, 2017).

  199. Zhang, K. et al. Light-mediated kinetic control reveals the temporal effect of the Raf/MEK/ERK pathway in PC12 cell neurite outgrowth. PLoS ONE 9, e92917 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  200. Kim, N. et al. Spatiotemporal control of fibroblast growth factor receptor signals by blue light. Chem. Biol. 21, 903–912 (2014).

    Article  CAS  PubMed  Google Scholar 

  201. Wend, S. et al. Optogenetic control of protein kinase activity in mammalian cells. ACS Synth. Biol. 3, 280–285 (2013).

    Article  PubMed  Google Scholar 

  202. Zhou, X. X., Fan, L. Z., Li, P., Shen, K. & Lin, M. Z. Optical control of cell signaling by single-chain photoswitchable kinases. Science 355, 836–842 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  203. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Renicke, C., Schuster, D., Usherenko, S., Essen, L.-O. & Taxis, C. A LOV2 domain-based optogenetic tool to control protein degradation and cellular function. Chem. Biol. 20, 619–626 (2013).

    Article  CAS  PubMed  Google Scholar 

  205. Bonger, K. M., Rakhit, R., Payumo, A. Y., Chen, J. K. & Wandless, T. J. General method for regulating protein stability with light. ACS Chem. Biol. 9, 111–115 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Crefcoeur, R. P., Yin, R., Ulm, R. & Halazonetis, T. D. Ultraviolet-B-mediated induction of protein–protein interactions in mammalian cells. Nat. Commun. 4, 1779 (2013).

    Article  PubMed  Google Scholar 

  207. Müller, K., Engesser, R., Timmer, J., Zurbriggen, M. D. & Weber, W. Orthogonal optogenetic triple-gene control in mammalian cells. ACS Synth. Biol. 3, 796–801 (2014).

    Article  PubMed  Google Scholar 

  208. Sukhotinsky, I. et al. Optogenetic delay of status epilepticus onset in an in vivo rodent epilepsy model. PLoS ONE 8, e62013 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Paz, J. T. et al. Closed-loop optogenetic control of thalamus as a tool for interrupting seizures after cortical injury. Nat. Neurosci. 16, 64–70 (2013).

    Article  CAS  PubMed  Google Scholar 

  210. Gu, L. et al. Pain inhibition by optogenetic activation of specific anterior cingulate cortical neurons. PLoS ONE 10, e0117746 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354–359 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Bryson, J. B. et al. Optical control of muscle function by transplantation of stem cell–derived motor neurons in mice. Science 344, 94–97 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Tennant, K. A., Taylor, S. L., White, E. R. & Brown, C. E. Optogenetic rewiring of thalamocortical circuits to restore function in the stroke injured brain. Nat. Commun. 8, 15879 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Cheng, M. Y. et al. Optogenetic neuronal stimulation promotes functional recovery after stroke. Proc. Natl Acad. Sci. USA 111, 12913–12918 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Alex, A., Li, A., Tanzi, R. E. & Zhou, C. Optogenetic pacing in Drosophila melanogaster. Sci. Adv. 1, e1500639 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Bruegmann, T. et al. Optogenetic control of contractile function in skeletal muscle. Nat. Commun. 6, 7153 (2015).

    Article  CAS  PubMed  Google Scholar 

  217. Mei, Y. & Zhang, F. Molecular tools and approaches for optogenetics. Biol. Psychiatry 71, 1033–1038 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Venkatachalam, V. & Cohen, A. E. Imaging GFP-based reporters in neurons with multiwavelength optogenetic control. Biophys. J. 107, 1554–1563 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Education of Singapore (MOE), Tier3 and Tier1 programme (MOE 2016-T3-1-004, R-397-000-274-112, R-397-000-348-114, R-397-000-375-114); the National Medical Research Council (NMRC/OFIRG/0071/2018, R-397-000-317-213, MOH-000640, R-397-000-386-213); and the National University of Singapore for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., A.B. and S.S. conceived the project. A.B. and S.S. performed the literature review and wrote the manuscript draft. Y.Z., A.B. and S.S. discussed the content and revised the manuscript.

Corresponding author

Correspondence to Yong Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Biomedical Engineering thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, A., Shikha, S. & Zhang, Y. Towards translational optogenetics. Nat. Biomed. Eng 7, 349–369 (2023). https://doi.org/10.1038/s41551-021-00829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00829-3

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research