Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The evolution of commercial drug delivery technologies

Abstract

Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classes of therapeutic and delivery paradigms.
Fig. 2: Delivery systems integrating drug modifications and environmental modifications.

Similar content being viewed by others

References

  1. Chien, Y. Novel Drug Delivery Systems (CRC Press, 1991).

  2. Langer, R. Drug delivery and targeting. Nature 392, 5–10 (1998).

    CAS  PubMed  Google Scholar 

  3. Langer, R. New methods of drug delivery. Science 249, 1527–1533 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Allen, T. M. & Cullis, P. R. Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Gidal, B. E. et al. Gabapentin bioavailability: effect of dose and frequency of administration in adult patients with epilepsy. Epilepsy Res. 31, 91–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. Serajuddin, A. T. Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J. Pharm. Sci. 88, 1058–1066 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Schmidt, B. et al. A natural history of botanical therapeutics. Metabolism 57, S3–S9 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Washington, N., Washington, C. & Wilson, C. Physiological Pharmaceutics: Barriers to Drug Absorption (CRC Press, 2000).

  9. Savjani, K. T., Gajjar, A. K. & Savjani, J. K. Drug solubility: importance and enhancement techniques. ISRN Pharm. 2012, 195727 (2012).

    PubMed  PubMed Central  Google Scholar 

  10. Kalepu, S. & Nekkanti, V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm. Sinica B 5, 442–453 (2015).

    Article  Google Scholar 

  11. Sharma, P. C., Jain, A., Jain, S., Pahwa, R. & Yar, M. S. Ciprofloxacin: review on developments in synthetic, analytical, and medicinal aspects. J. Enzym. Inhib. Med. Chem. 25, 577–589 (2010).

    Article  CAS  Google Scholar 

  12. Beaumont, K., Webster, R., Gardner, I. & Dack, K. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr. Drug Metab. 4, 461–485 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Kempf, D. J. et al. Discovery of ritonavir, a potent inhibitor of HIV protease with high oral bioavailability and clinical efficacy. J. Med. Chem. 41, 602–617 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Nelson, E. Kinetics of drug absorption, distribution, metabolism, and excretion. J. Pharm. Sci. 50, 181–192 (1961).

    Article  CAS  PubMed  Google Scholar 

  15. Teorell, T. Kinetics of distribution of substances administered to the body, I: the extravascular modes of administration. Arch. Int. Pharmacodyn. Ther. 57, 205–225 (1937).

    CAS  Google Scholar 

  16. Dost, F. H. Der Blutspiegel: Kinetik der Konzentrationsabläufe in der Kreislaufflüssigkeit (Georg Thieme, 1953).

  17. Kubitza, D., Becka, M., Wensing, G., Voith, B. & Zuehlsdorf, M. Safety, pharmacodynamics, and pharmacokinetics of BAY 59-7939—an oral, direct factor Xa inhibitor—after multiple dosing in healthy male subjects. Eur. J. Clin. Pharmacol. 61, 873–880 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Chien, S. C. et al. Pharmacokinetic profile of levofloxacin following once-daily 500-milligram oral or intravenous doses. Antimicrob. Agents Chemother. 41, 2256–2260 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Park, K. Controlled drug delivery systems: past forward and future back. J. Control. Release 190, 3–8 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Keraliya, R. A. et al. Osmotic drug delivery system as a part of modified release dosage form. ISRN Pharm. 2012, 528079 (2012).

    PubMed  PubMed Central  Google Scholar 

  21. Prausnitz, M. R. & Langer, R. Transdermal drug delivery. Nat. Biotechnol. 26, 1261–1268 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic. Bioeng. Transl. Med. 1, 10–29 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Anselmo, A. C. & Mitragotri, S. Nanoparticles in the clinic: an update. Bioeng. Transl. Med. 4, e10143 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Albanese, A., Tang, P. S. & Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Champion, J. A., Katare, Y. K. & Mitragotri, S. Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J. Control. Release 121, 3–9 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Champion, J. A., Walker, A. & Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25, 1815–1821 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Win, K. Y. & Feng, S.-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26, 2713–2722 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Papahadjopoulos, D. et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc. Natl Acad. Sci. USA 88, 11460–11464 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Barenholz, Y. Doxil—the first FDA-approved nano-drug: lessons learned. J. Control. Release 160, 117–134 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Rask-Andersen, M., Masuram, S. & Schioth, H. B. The druggable genome: evaluation of drug targets in clinical trials suggests major shifts in molecular class and indication. Annu. Rev. Pharmacol. Toxicol. 54, 9–26 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Lau, J. L. & Dunn, M. K. Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg. Med. Chem. 26, 2700–2707 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Bruno, B. J., Miller, G. D. & Lim, C. S. Basics and recent advances in peptide and protein drug delivery. Ther. Deliv. 4, 1443–1467 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide-based. Drugs Chem. Biol. Drug Des. 81, 136–147 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Putney, S. D. & Burke, P. A. Improving protein therapeutics with sustained-release formulations. Nat. Biotechnol. 16, 153–157 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Pisal, D. S., Kosloski, M. P. & Balu-Iyer, S. V. Delivery of therapeutic proteins. J. Pharm. Sci. 99, 2557–2575 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schuster, J. et al. In vivo stability of therapeutic proteins. Pharm. Res. 37, 23 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Baker, M. P., Reynolds, H. M., Lumicisi, B. & Bryson, C. J. Immunogenicity of protein therapeutics: the key causes, consequences and challenges. Self Nonself 1, 314–322 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jawa, V. et al. T-cell dependent immunogenicity of protein therapeutics: preclinical assessment and mitigation. Clin. Immunol. 149, 534–555 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Rosenberg, A. S. & Sauna, Z. E. Immunogenicity assessment during the development of protein therapeutics. J. Pharm. Pharmacol. 70, 584–594 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J. 17, 134–143 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Ovadia, O. et al. Improvement of drug-like properties of peptides: the somatostatin paradigm. Expert Opin. Drug Discov. 5, 655–671 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Jevsevar, S., Kunstelj, M. & Porekar, V. G. PEGylation of therapeutic proteins. Biotechnol. J. 5, 113–128 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Brown, T. D., Whitehead, K. A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2019).

    Article  Google Scholar 

  45. Drucker, D. J. Advances in oral peptide therapeutics. Nat. Rev. Drug Discov. 19, 277–289 (2020).

    Article  CAS  PubMed  Google Scholar 

  46. Suzuki, R., Brown, G. A., Christopher, J. A., Scully, C. C. G. & Congreve, M. Recent developments in therapeutic peptides for the glucagon-like peptide 1 and 2 receptors. J. Med. Chem. 63, 905–927 (2020).

    Article  CAS  PubMed  Google Scholar 

  47. Anselmo, A. C., Gokarn, Y. & Mitragotri, S. Non-invasive delivery strategies for biologics. Nat. Rev. Drug Discov. 18, 19–40 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Morales, J. O. et al. Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes. AAPS J. 19, 652–668 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Ritschel, W. Microemulsion technology in the reformulation of cyclosporine: the reason behind the pharmacokinetic properties of Neoral. Clin. Transplant. 10, 364–373 (1996).

    CAS  PubMed  Google Scholar 

  50. Pfutzner, A., Mann, A. E. & Steiner, S. S. Technosphere/insulin—a new approach for effective delivery of human insulin via the pulmonary route. Diabetes Technol. Ther. 4, 589–594 (2002).

    Article  PubMed  Google Scholar 

  51. Dlugi, A. M., Miller, J. D., Knittle, J. & Group, L. S. Lupron depot (leuprolide acetate for depot suspension) in the treatment of endometriosis: a randomized, placebo-controlled, double-blind study. Fertil. Steril. 54, 419–427 (1990).

    Article  CAS  PubMed  Google Scholar 

  52. Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Jain, D., Raturi, R., Jain, V., Bansal, P. & Singh, R. Recent technologies in pulsatile drug delivery systems. Biomatter 1, 57–65 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yu, J. et al. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery. Proc. Natl Acad. Sci. USA 112, 8260–8265 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu, R.-M. et al. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 27, 1 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chames, P., Van Regenmortel, M., Weiss, E. & Baty, D. Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Shih, T. & Lindley, C. Bevacizumab: an angiogenesis inhibitor for the treatment of solid malignancies. Clin. Ther. 28, 1779–1802 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Smith, M. R. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 22, 7359–7368 (2003).

    Article  CAS  PubMed  Google Scholar 

  59. Aarden, L., Ruuls, S. R. & Wolbink, G. Immunogenicity of anti-tumor necrosis factor antibodies—toward improved methods of anti-antibody measurement. Curr. Opin. Immunol. 20, 431–435 (2008).

    Article  CAS  PubMed  Google Scholar 

  60. Baert, F. et al. Influence of immunogenicity on the long-term efficacy of infliximab in Crohn’s disease. N. Engl. J. Med. 348, 601–608 (2003).

    Article  CAS  PubMed  Google Scholar 

  61. Atzeni, F. et al. Immunogenicity and autoimmunity during anti-TNF therapy. Autoimmun. Rev. 12, 703–708 (2013).

    Article  CAS  PubMed  Google Scholar 

  62. Sgro, C. Side-effects of a monoclonal antibody, muromonab CD3/orthoclone OKT3: bibliographic review. Toxicology 105, 23–29 (1995).

    Article  CAS  PubMed  Google Scholar 

  63. Reichert, J. M. Marketed therapeutic antibodies compendium. mAbs 4, 413–415 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Suzuki, M., Kato, C. & Kato, A. Therapeutic antibodies: their mechanisms of action and the pathological findings they induce in toxicity studies. J. Toxicol. Pathol. 28, 133–139 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jones, P. T., Dear, P. H., Foote, J., Neuberger, M. S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  PubMed  Google Scholar 

  66. McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  PubMed  Google Scholar 

  67. Bradbury, A. R., Sidhu, S., Dubel, S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nat. Biotechnol. 29, 245–254 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chapman, A. P. PEGylated antibodies and antibody fragments for improved therapy: a review. Adv. Drug Deliv. Rev. 54, 531–545 (2002).

    Article  CAS  PubMed  Google Scholar 

  69. Ryman, J. T. & Meibohm, B. Pharmacokinetics of monoclonal antibodies. CPT Pharmacometrics Syst. Pharm. 6, 576–588 (2017).

    Article  CAS  Google Scholar 

  70. Frost, G. I. Recombinant human hyaluronidase (rHuPH20): an enabling platform for subcutaneous drug and fluid administration. Expert Opin. Drug Deliv. 4, 427–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Sugahara, K. N. et al. Coadministration of a tumor-penetrating peptide enhances the efficacy of cancer drugs. Science 328, 1031–1035 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gabrilovich, D. I., Ishida, T., Nadaf, S., Ohm, J. E. & Carbone, D. P. Antibodies to vascular endothelial growth factor enhance the efficacy of cancer immunotherapy by improving endogenous dendritic cell function. Clin. Cancer Res. 5, 2963–2970 (1999).

    CAS  PubMed  Google Scholar 

  73. Wei, S. C. et al. Distinct cellular mechanisms underlie anti-CTLA-4 and anti-PD-1 checkpoint blockade. Cell 170, 1120–1133.e17 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meadows, K. L. & Hurwitz, H. I. Anti-VEGF therapies in the clinic. Cold Spring Harb. Perspect. Med. 2, a006577 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Alley, S. C., Okeley, N. M. & Senter, P. D. Antibody–drug conjugates: targeted drug delivery for cancer. Curr. Opin. Chem. Biol. 14, 529–537 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Beck, A., Goetsch, L., Dumontet, C. & Corvaïa, N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 16, 315–337 (2017).

    Article  CAS  PubMed  Google Scholar 

  77. Opalinska, J. B. & Gewirtz, A. M. Nucleic-acid therapeutics: basic principles and recent applications. Nat. Rev. Drug Discov. 1, 503–514 (2002).

    Article  CAS  PubMed  Google Scholar 

  78. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. de Smet, M. D., Meenken, C. & van den Horn, G. J. Fomivirsen—a phosphorothioate oligonucleotide for the treatment of CMV retinitis. Ocul. Immunol. Inflamm. 7, 189–198 (1999).

    Article  PubMed  Google Scholar 

  80. Rinaldi, C. & Wood, M. J. A. Antisense oligonucleotides: the next frontier for treatment of neurological disorders. Nat. Rev. Neurol. 14, 9–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  81. Kaczmarek, J. C., Kowalski, P. S. & Anderson, D. G. Advances in the delivery of RNA therapeutics: from concept to clinical reality. Genome Med. 9, 60 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Van Hoecke, L. & Roose, K. How mRNA therapeutics are entering the monoclonal antibody field. J. Transl. Med. 17, 54 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Behlke, M. A. Chemical modification of siRNAs for in vivo use. Oligonucleotides 18, 305–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  84. Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol. 29, 154–157 (2011).

    Article  CAS  PubMed  Google Scholar 

  85. Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Endoh, T. & Ohtsuki, T. Cellular siRNA delivery using cell-penetrating peptides modified for endosomal escape. Adv. Drug Deliv. Rev. 61, 704–709 (2009).

    Article  CAS  PubMed  Google Scholar 

  87. Liang, W. & Lam, J. K. W. in Molecular Regulation of Endocytosis (ed. Ceresa, B) 429–456 (IntechOpen, 2012).

  88. Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov. 8, 129–138 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Garber, K. Alnylam launches era of RNAi drugs. Nat. Biotechnol. 36, 777–778 (2018).

    Article  CAS  PubMed  Google Scholar 

  90. Scott, L. J. Givosiran: first approval. Drugs 80, 335–339 (2020).

    Article  PubMed  Google Scholar 

  91. Scherphof, G. L., Dijkstra, J., Spanjer, H. H., Derksen, J. T. & Roerdink, F. H. Uptake and intracellular processing of targeted and nontargeted liposomes by rat Kupffer cells in vivo and in vitro. Ann. NY Acad. Sci. 446, 368–384 (1985).

    Article  CAS  PubMed  Google Scholar 

  92. Wu, G. Y. & Wu, C. H. Receptor-mediated in vitro gene transformation by a soluble DNA carrier system. J. Biol. Chem. 262, 4429–4432 (1987).

    Article  CAS  PubMed  Google Scholar 

  93. Baenziger, J. U. & Fiete, D. Galactose and N-acetylgalactosamine-specific endocytosis of glycopeptides by isolated rat hepatocytes. Cell 22, 611–620 (1980).

    Article  CAS  PubMed  Google Scholar 

  94. Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 136, 16958–16961 (2014).

    Article  CAS  PubMed  Google Scholar 

  95. Allen, T. M. & Cullis, P. R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48 (2013).

    Article  CAS  PubMed  Google Scholar 

  96. Moghimi, S. M., Hunter, A. C. & Murray, J. C. Long-circulating and target-specific nanoparticles: theory to practice. Pharm. Rev. 53, 283–318 (2001).

    CAS  PubMed  Google Scholar 

  97. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  98. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2035389 (2020).

  99. Frenette, P. S., Pinho, S., Lucas, D. & Scheiermann, C. Mesenchymal stem cell: keystone of the hematopoietic stem cell niche and a stepping-stone for regenerative medicine. Annu. Rev. Immunol. 31, 285–316 (2013).

    Article  PubMed  Google Scholar 

  100. Palucka, K. & Banchereau, J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 39, 38–48 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. June, C. H., O’Connor, R. S., Kawalekar, O. U., Ghassemi, S. & Milone, M. C. CAR T cell immunotherapy for human cancer. Science 359, 1361–1365 (2018).

    Article  CAS  PubMed  Google Scholar 

  102. Vargason, A. M. & Anselmo, A. C. Clinical translation of microbe-based therapies: current clinical landscape and preclinical outlook. Bioeng. Transl. Med. 3, 124–137 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Prasad, V. Tisagenlecleucel—the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat. Rev. Clin. Oncol. 15, 11–12 (2018).

    Article  PubMed  Google Scholar 

  104. Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cheever, M. A. & Higano, C. S. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin. Cancer Res. 17, 3520–3526 (2011).

    Article  PubMed  Google Scholar 

  106. Office of Tissues and Advanced Therapies. Approved Cellular and Gene Therapy Products https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/approved-cellular-and-gene-therapy-products (US Food and Drug Adminstration, 2019).

  107. Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    Article  CAS  PubMed  Google Scholar 

  108. Volkman, R. & Offen, D. Concise review: mesenchymal stem cells in neurodegenerative diseases. Stem Cells 35, 1867–1880 (2017).

    Article  PubMed  Google Scholar 

  109. Newick, K., O’Brien, S., Moon, E. & Albelda, S. M. CAR T cell therapy for solid tumors. Annu. Rev. Med. 68, 139–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  110. Gargett, T. et al. GD2-specific CAR T cells undergo potent activation and deletion following antigen encounter but can be protected from activation-induced cell death by PD-1 blockade. Mol. Ther. 24, 1135–1149 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hourd, P., Ginty, P., Chandra, A. & Williams, D. J. Manufacturing models permitting roll out/scale out of clinically led autologous cell therapies: regulatory and scientific challenges for comparability. Cytotherapy 16, 1033–1047 (2014).

    Article  PubMed  Google Scholar 

  113. Levine, B. L., Miskin, J., Wonnacott, K. & Keir, C. Global manufacturing of CAR T cell therapy. Mol. Ther. Methods Clin. Dev. 4, 92–101 (2017).

    Article  CAS  PubMed  Google Scholar 

  114. Liu, Y., Guo, J. & Huang, L. Modulation of tumor microenvironment for immunotherapy: focus on nanomaterial-based strategies. Theranostics 10, 3099–3117 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jarosławski, S. & Toumi, M. Sipuleucel-T (Provenge)—autopsy of an innovative paradigm change in cancer treatment: why a single-product biotech company failed to capitalize on its breakthrough invention. BioDrugs 29, 301–307 (2015).

    Article  PubMed  CAS  Google Scholar 

  116. Abou-El-Enein, M., Elsanhoury, A. & Reinke, P. Overcoming challenges facing advanced therapies in the EU market. Cell Stem Cell 19, 293–297 (2016).

    Article  CAS  PubMed  Google Scholar 

  117. Vegas, A. J. et al. Long-term glycemic control using polymer-encapsulated human stem cell-derived beta cells in immune-competent mice. Nat. Med. 22, 306–311 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Stephan, M. T., Moon, J. J., Um, S. H., Bershteyn, A. & Irvine, D. J. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16, 1035–1041 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kauer, T. M., Figueiredo, J.-L., Hingtgen, S. & Shah, K. Encapsulated therapeutic stem cells implanted in the tumor resection cavity induce cell death in gliomas. Nat. Neurosci. 15, 197–204 (2012).

    Article  CAS  Google Scholar 

  121. Gordh, T. Xylocain—a new local analgesic. Anaesthesia 4, 4–9 (1949).

    Article  CAS  PubMed  Google Scholar 

  122. Stanley, T. H. The history and development of the fentanyl series. J. Pain Symptom Manag. 7, S3–S7 (1992).

    Article  CAS  Google Scholar 

  123. Tishler, M. in Molecular Modification in Drug Design Vol. 45 (ed. Schueler, F. W.) Ch. 1 (American Chemical Society, 1964).

  124. Pereira, D. A. & Williams, J. A. Origin and evolution of high throughput screening. Br. J. Pharmacol. 152, 53–61 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lipinski, C. A., Lombardo, F., Dominy, B. W. & Feeney, P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3–25 (1997).

    Article  CAS  Google Scholar 

  126. Hewitt, W. M. et al. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc. 137, 715–721 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Heinis, C. & Winter, G. Encoded libraries of chemically modified peptides. Curr. Opin. Chem. Biol. 26, 89–98 (2015).

    Article  CAS  PubMed  Google Scholar 

  128. Harris, J. M., Martin, N. E. & Modi, M. Pegylation: a novel process for modifying pharmacokinetics. Clin. Pharmacokinet. 40, 539–551 (2001).

    Article  CAS  PubMed  Google Scholar 

  129. Dunn, C. J., Plosker, G. L., Keating, G. M., McKeage, K. & Scott, L. J. Insulin glargine. Drugs 63, 1743–1778 (2003).

    Article  CAS  PubMed  Google Scholar 

  130. Jonassen, I. et al. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm. Res. 29, 2104–2114 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Birkeland, K. I. et al. Insulin degludec in type 1 diabetes. Diabetes Care 34, 661–665 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Nelson, A. L., Dhimolea, E. & Reichert, J. M. Development trends for human monoclonal antibody therapeutics. Nat. Rev. Drug Discov. 9, 767–774 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Sievers, E. L. & Senter, P. D. Antibody–drug conjugates in cancer therapy. Annu. Rev. Med. 64, 15–29 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Benizri, S. et al. Bioconjugated oligonucleotides: recent developments and therapeutic applications. Bioconjug. Chem. 30, 366–383 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Anselmo, A. C. et al. Delivering nanoparticles to lungs while avoiding liver and spleen through adsorption on red blood cells. ACS Nano 7, 11129–11137 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Anselmo, A. C. & Mitragotri, S. Cell-mediated delivery of nanoparticles: taking advantage of circulatory cells to target nanoparticles. J. Control. Release 190, 531–541 (2014).

    Article  CAS  PubMed  Google Scholar 

  137. Roberts, M. J., Bentley, M. D. & Harris, J. M. Chemistry for peptide and protein PEGylation. Adv. Drug Deliv. Rev. 54, 459–476 (2002).

    Article  CAS  PubMed  Google Scholar 

  138. DeLoach, J. R. & Sprandel, U. (eds) in Bibliotheca Haematologica Vol. 51 (Karger, 1985).

  139. Stephan, M. T. & Irvine, D. J. Enhancing cell therapies from the outside in: cell surface engineering using synthetic nanomaterials. Nano Today 6, 309–325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Villa, C. H., Anselmo, A. C., Mitragotri, S. & Muzykantov, V. Red blood cells: supercarriers for drugs, biologicals, and nanoparticles and inspiration for advanced delivery systems. Adv. Drug Deliv. Rev. 106, 88–103 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Song, W., Anselmo, A. C. & Huang, L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 14, 1093–1103 (2019).

    Article  CAS  PubMed  Google Scholar 

  142. Ashmore-Harris, C. & Fruhwirth, G. O. The clinical potential of gene editing as a tool to engineer cell-based therapeutics. Clin. Transl. Med. 9, 15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  143. Xu, X., Ho, W., Zhang, X., Bertrand, N. & Farokhzad, O. Cancer nanomedicine: from targeted delivery to combination therapy. Trends Mol. Med. 21, 223–232 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Bago, J. R. et al. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma. Nat. Commun. 7, 10593 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Pagliuca, F. W. et al. Generation of functional human pancreatic beta cells in vitro. Cell 159, 428–439 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Goldberg, M. S. Improving cancer immunotherapy through nanotechnology. Nat. Rev. Cancer 19, 587–602 (2019).

    Article  CAS  PubMed  Google Scholar 

  149. Song, W. et al. Synergistic and low adverse effect cancer immunotherapy by immunogenic chemotherapy and locally expressed PD-L1 trap. Nat. Commun. 9, 2237 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Shields, C. W. IV. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Cao, P. et al. Abstract 3577: application of deep IL-15 backpacks to human T cells demonstrates tunable loading with enhanced cell proliferation and antitumor activity. Cancer Res. 78(Suppl.), 3577 (2018).

    Article  Google Scholar 

  152. Flanagan, T. Potential for pharmaceutical excipients to impact absorption: a mechanistic review for BCS class 1 and 3 drugs. Eur. J. Pharm. Biopharm. 141, 130–138 (2019).

    Article  CAS  PubMed  Google Scholar 

  153. Breda, S. A., Jimenez-Kairuz, A. F., Manzo, R. H. & Olivera, M. E. Solubility behavior and biopharmaceutical classification of novel high-solubility ciprofloxacin and norfloxacin pharmaceutical derivatives. Int. J. Pharm. 371, 106–113 (2009).

    Article  CAS  PubMed  Google Scholar 

  154. Taniguchi, C., Kawabata, Y., Wada, K., Yamada, S. & Onoue, S. Microenvironmental pH-modification to improve dissolution behavior and oral absorption for drugs with pH-dependent solubility. Expert Opin. Drug Deliv. 11, 505–516 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Lostalé-Seijo, I. & Montenegro, J. Synthetic materials at the forefront of gene delivery. Nat. Rev. Chem. 2, 258–277 (2018).

    Article  Google Scholar 

  156. Evans, B. C. et al. An anionic, endosome-escaping polymer to potentiate intracellular delivery of cationic peptides, biomacromolecules, and nanoparticles. Nat. Commun. 10, 5012 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 8, 1188–1196 (2001).

    Article  CAS  PubMed  Google Scholar 

  158. Wan, C., Allen, T. & Cullis, P. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv. Transl. Res. 4, 74–83 (2014).

    Article  CAS  PubMed  Google Scholar 

  159. Welling, S. H. et al. The role of citric acid in oral peptide and protein formulations: relationship between calcium chelation and proteolysis inhibition. Eur. J. Pharm. Biopharm. 86, 544–551 (2014).

    Article  CAS  PubMed  Google Scholar 

  160. Chen, S. et al. Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids. J. Control. Release 286, 46–54 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Scarfo, I. & Maus, M. V. Current approaches to increase CAR T cell potency in solid tumors: targeting the tumor microenvironment. J. Immunother. Cancer 5, 28 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Shum, T. et al. Constitutive signaling from an engineered IL7 receptor promotes durable tumor elimination by tumor-redirected T cells. Cancer Discov. 7, 1238–1247 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Berger, C. et al. Safety and immunologic effects of IL-15 administration in nonhuman primates. Blood 114, 2417–2426 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Lotze, M. T. et al. In vivo administration of purified human interleukin 2. II. Half life, immunologic effects, and expansion of peripheral lymphoid cells in vivo with recombinant IL 2. J. Immunol. 135, 2865–2875 (1985).

    Article  CAS  PubMed  Google Scholar 

  165. Yeku, O. O. & Brentjens, R. J. Armored CAR T-cells: utilizing cytokines and pro-inflammatory ligands to enhance CAR T-cell anti-tumour efficacy. Biochem. Soc. Trans. 44, 412–418 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Di Stasi, A. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N. Engl. J. Med. 365, 1673–1683 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Ma, X. et al. Interleukin-23 engineering improves CAR T cell function in solid tumors. Nat. Biotechnol. 38, 448–459 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Hamilton, M. J., Weingarden, A. R., Unno, T., Khoruts, A. & Sadowsky, M. J. High-throughput DNA sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes 4, 125–135 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  169. Lee, S. & Margolin, K. Cytokines in cancer immunotherapy. Cancers 3, 3856–3893 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Grayson, M. L. et al. Kucers’ The Use of Antibiotics Sixth Edition: A Clinical Review of Antibacterial, Antifungal and Antiviral Drugs (CRC Press, 2010).

  171. Dou, H. et al. Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J. Immunol. 183, 661–669 (2009).

    Article  CAS  PubMed  Google Scholar 

  172. Brynskikh, A. M. et al. Macrophage delivery of therapeutic nanozymes in a murine model of Parkinson’s disease. Nanomedicine 5, 379–396 (2010).

    Article  CAS  PubMed  Google Scholar 

  173. Mimee, M., Tucker, A. C., Voigt, C. A. & Lu, T. K. Programming a human commensal bacterium, Bacteroides thetaiotaomicron, to sense and respond to stimuli in the murine gut microbiota. Cell Syst. 1, 62–71 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Charbonneau, M. R., Isabella, V. M., Li, N. & Kurtz, C. B. Developing a new class of engineered live bacterial therapeutics to treat human diseases. Nat. Commun. 11, 1738–1738 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Robinson, J. R. & Lee, V. H. (eds) Controlled Drug Delivery: Fundamentals and Applications (Dekker, 1987).

  176. Owens, D. E. III & Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 307, 93–102 (2006).

    Article  CAS  PubMed  Google Scholar 

  177. Tiwari, G. et al. Drug delivery systems: an updated review. Int. J. Pharm. Investig. 2, 2–11 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O. C. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Rosen, H. & Abribat, T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 4, 381–385 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Cole, E. T. et al. Enteric coated HPMC capsules designed to achieve intestinal targeting. Int. J. Pharm. 231, 83–95 (2002).

    Article  CAS  PubMed  Google Scholar 

  181. Carino, G. P. & Mathiowitz, E. Oral insulin delivery. Adv. Drug Deliv. Rev. 35, 249–257 (1999).

    Article  CAS  PubMed  Google Scholar 

  182. Lane, M. E. Skin penetration enhancers. Int. J. Pharm. 447, 12–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  183. Schwendeman, S. P., Shah, R. B., Bailey, B. A. & Schwendeman, A. S. Injectable controlled release depots for large molecules. J. Control. Release 190, 240–253 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Awwad, S. & Angkawinitwong, U. Overview of antibody drug delivery. Pharmaceutics 10, 83 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  185. McKay, W. F., Peckham, S. M. & Badura, J. M. A comprehensive clinical review of recombinant human bone morphogenetic protein-2 (INFUSE Bone Graft). Int. Orthop. 31, 729–734 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Geho, W. B., Geho, H. C., Lau, J. R. & Gana, T. J. Hepatic-directed vesicle insulin: a review of formulation development and preclinical evaluation. J. Diabetes Sci. Technol. 3, 1451–1459 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Baselga, J. Clinical trials of Herceptin (trastuzumab). Eur. J. Cancer 37, 18–24 (2001).

    Article  PubMed  Google Scholar 

  188. Coats, S. et al. Antibody–drug conjugates: future directions in clinical and translational strategies to improve the therapeutic index. Clin. Cancer Res. 25, 5441–5448 (2019).

    Article  CAS  PubMed  Google Scholar 

  189. Verma, S. et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N. Engl. J. Med. 367, 1783–1791 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Gao, X. & Huang, L. Cationic liposome-mediated gene transfer. Gene Ther. 2, 710–722 (1995).

    CAS  PubMed  Google Scholar 

  191. Zelphati, O. & Szoka, F. C. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl Acad. Sci. USA 93, 11493–11498 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Friend, D. S., Papahadjopoulos, D. & Debs, R. J. Endocytosis and intracellular processing accompanying transfection mediated by cationic liposomes. Biochim. Biophys. Acta 1278, 41–50 (1996).

    Article  PubMed  Google Scholar 

  193. Nabel, G. J. et al. Direct gene transfer with DNA–liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc. Natl Acad. Sci. USA 90, 11307–11311 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Filion, M. C. & Phillips, N. C. Major limitations in the use of cationic liposomes for DNA delivery. Int. J. Pharm. 162, 159–170 (1998).

    Article  CAS  Google Scholar 

  195. Lv, H., Zhang, S., Wang, B., Cui, S. & Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109 (2006).

    Article  CAS  PubMed  Google Scholar 

  196. Semple, S. C. et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta 1510, 152–166 (2001).

    Article  CAS  PubMed  Google Scholar 

  197. Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol. 28, 172–176 (2010).

    Article  CAS  PubMed  Google Scholar 

  198. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    Article  CAS  PubMed  Google Scholar 

  199. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bochenek, M. A. et al. Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Grøndahl, L., Lawrie, G., Anitha, A. & Shejwalkar, A. in Biointegration of Medical Implant Materials 2nd edn (ed. Sharma, C. P.) 375–403 (Woodhead Publishing, 2020).

  202. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  203. Carmona, G. et al. Correcting rare blood disorders using coagulation factors produced in vivo by Shielded Living Therapeutics products. Blood 134, 2065 (2019).

    Article  Google Scholar 

  204. Stephan, S. B. et al. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33, 97–101 (2015).

    Article  CAS  PubMed  Google Scholar 

  205. Mao, A. S. et al. Programmable microencapsulation for enhanced mesenchymal stem cell persistence and immunomodulation. Proc. Natl Acad. Sci. USA 116, 15392–15397 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Lipsitz, Y. Y., Timmins, N. E. & Zandstra, P. W. Quality cell therapy manufacturing by design. Nat. Biotechnol. 34, 393–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  207. Malik, N. N. & Durdy, M. B. in Translational Regenerative Medicine (eds Atala, A. & Allickson, J. G.) 87–106 (Elsevier, 2015).

  208. Ding, X. et al. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat. Biomed. Eng. 1, 0039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zhang, W.-W. et al. The first approved gene therapy product for cancer Ad-p53 (Gendicine): 12 years in the clinic. Hum. Gene Ther. 29, 160–179 (2018).

    Article  CAS  PubMed  Google Scholar 

  211. Devaud, C., John, L. B., Westwood, J. A., Darcy, P. K. & Kershaw, M. H. Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. OncoImmunology 2, e25961 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Dane, K. Y. et al. Nano-sized drug-loaded micelles deliver payload to lymph node immune cells and prolong allograft survival. J. Control. Release 156, 154–160 (2011).

    Article  CAS  PubMed  Google Scholar 

  213. Eggermont, L. J., Paulis, L. E., Tel, J. & Figdor, C. G. Towards efficient cancer immunotherapy: advances in developing artificial antigen-presenting cells. Trends Biotechnol. 32, 456–465 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Deshayes, S., Morris, M. C., Divita, G. & Heitz, F. Cell-penetrating peptides: tools for intracellular delivery of therapeutics. Cell. Mol. Life Sci. 62, 1839–1849 (2005).

    Article  CAS  PubMed  Google Scholar 

  215. Adler, L. A. et al. Efficacy and safety of OROS methylphenidate in adults with attention-deficit/hyperactivity disorder: a randomized, placebo-controlled, double-blind, parallel group, dose-escalation study. J. Clin. Psychopharmacol. 29, 239–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  216. Jana, S., Mandlekar, S. & Marathe, P. Prodrug design to improve pharmacokinetic and drug delivery properties: challenges to the discovery scientists. Curr. Med. Chem. 17, 3874–3908 (2010).

    Article  CAS  PubMed  Google Scholar 

  217. Swinney, D. C. & Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov. 10, 507–519 (2011).

    Article  CAS  PubMed  Google Scholar 

  218. Chey, W. D. et al. Naloxegol for opioid-induced constipation in patients with noncancer pain. N. Engl. J. Med. 370, 2387–2396 (2014).

    Article  PubMed  CAS  Google Scholar 

  219. Agersø, H. et al. Pharmacokinetics and renal excretion of desmopressin after intravenous administration to healthy subjects and renally impaired patients. Br. J. Clin. Pharm. 58, 352–358 (2004).

    Article  CAS  Google Scholar 

  220. Al-Tabakha, M. M. Future prospect of insulin inhalation for diabetic patients: the case of Afrezza versus Exubera. J. Control. Release 215, 25–38 (2015).

    Article  CAS  PubMed  Google Scholar 

  221. Booth, C. & Gaspar, H. B. Pegademase bovine (PEG-ADA) for the treatment of infants and children with severe combined immunodeficiency (SCID). Biologics 3, 349–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Larsen, C. P. et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am. J. Transplant. 5, 443–453 (2005).

    Article  CAS  PubMed  Google Scholar 

  223. Pasut, G. Pegylation of biological molecules and potential benefits: pharmacological properties of certolizumab pegol. BioDrugs 28, 15–23 (2014).

    Article  Google Scholar 

  224. Mensink, M. A., Frijlink, H. W., van der Voort Maarschalk, K. & Hinrichs, W. L. How sugars protect proteins in the solid state and during drying (review): mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 114, 288–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Sanford, M. Subcutaneous trastuzumab: a review of its use in HER2-positive breast cancer. Target. Oncol. 9, 85–94 (2014).

    Article  PubMed  Google Scholar 

  226. Cohenuram, M. & Saif, M. W. Panitumumab the first fully human monoclonal antibody: from the bench to the clinic. Anti-cancer Drugs 18, 7–15 (2007).

    Article  CAS  PubMed  Google Scholar 

  227. Hu, Q. et al. in Development of Biopharmaceutical Drug-Device Products (eds Jameel, F. et al.) 343–372 (Springer International Publishing, 2020).

  228. Eckstein, F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 24, 374–387 (2014).

    Article  CAS  PubMed  Google Scholar 

  229. Springer, A. D. & Dowdy, S. F. GalNAc–siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 28, 109–118 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Corey, D. R. Nusinersen, an antisense oligonucleotide drug for spinal muscular atrophy. Nat. Neurosci. 20, 497–499 (2017).

    Article  CAS  PubMed  Google Scholar 

  231. Xu, L. et al. CRISPR-edited stem cells in a patient with HIV and acute lymphocytic leukemia. N. Engl. J. Med. 381, 1240–1247 (2019).

    Article  CAS  PubMed  Google Scholar 

  232. Brudno, J. N. & Kochenderfer, J. N. Chimeric antigen receptor T-cell therapies for lymphoma. Nat. Rev. Clin. Oncol. 15, 31–46 (2018).

    Article  CAS  PubMed  Google Scholar 

  233. Bartlett, W. et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J. Bone Joint Surg. Br. 87, 640–645 (2005).

    Article  CAS  PubMed  Google Scholar 

  234. Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Fordtran, J. S. & Hofmann, A. F. Seventy years of polyethylene glycols in gastroenterology: the journey of PEG 4000 and 3350 from nonabsorbable marker to colonoscopy preparation to osmotic laxative. Gastroenterology 152, 675–680 (2017).

    Article  PubMed  Google Scholar 

  236. Abuchowski, A., van Es, T., Palczuk, N. C. & Davis, F. F. Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol. J. Biol. Chem. 252, 3578–3581 (1977).

    Article  CAS  PubMed  Google Scholar 

  237. Liu, K.-J. & Parsons, J. L. Solvent effects on the preferred conformation of poly(ethylene glycols). Macromolecules 2, 529–533 (1969).

    Article  CAS  Google Scholar 

  238. Maxfield, J. & Shepherd, I. Conformation of poly (ethylene oxide) in the solid state, melt and solution measured by Raman scattering. Polymer 16, 505–509 (1975).

    Article  CAS  Google Scholar 

  239. Turecek, P. L., Bossard, M. J., Schoetens, F. & Ivens, I. A. PEGylation of biopharmaceuticals: a review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 105, 460–475 (2016).

    Article  CAS  PubMed  Google Scholar 

  240. Klibanov, A. L., Maruyama, K., Torchilin, V. P. & Huang, L. Amphipathic polyethyleneglycols effectively prolong the circulation time of liposomes. FEBS Lett. 268, 235–237 (1990).

    Article  CAS  PubMed  Google Scholar 

  241. Rohlke, F. & Stollman, N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap. Adv. Gastroenterol. 5, 403–420 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Li, W., Zhan, P., De Clercq, E., Lou, H. & Liu, X. Current drug research on PEGylation with small molecular agents. Prog. Polym. Sci. 38, 421–444 (2013).

    Article  CAS  Google Scholar 

  243. Yang, Q. & Lai, S. K. Anti‐PEG immunity: emergence, characteristics, and unaddressed questions. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7, 655–677 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  244. Mora, J. R., White, J. T. & DeWall, S. L. Immunogenicity risk assessment for PEGylated therapeutics. AAPS J. 22, 35 (2020).

    Article  CAS  PubMed  Google Scholar 

  245. Wang, X., Ishida, T. & Kiwada, H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J. Control. Release 119, 236–244 (2007).

    Article  CAS  PubMed  Google Scholar 

  246. Povsic, T. J. et al. Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer. J. Allergy Clin. Immunol. 138, 1712–1715 (2016).

    Article  CAS  PubMed  Google Scholar 

  247. Bauer, M. et al. Poly (2‐ethyl‐2‐oxazoline) as alternative for the stealth polymer poly (ethylene glycol): comparison of in vitro cytotoxicity and hemocompatibility. Macromol. Biosci. 12, 986–998 (2012).

    Article  CAS  PubMed  Google Scholar 

  248. Knop, K., Hoogenboom, R., Fischer, D. & Schubert, U. S. Poly (ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew. Chem. Int. Ed. 49, 6288–6308 (2010).

    Article  CAS  Google Scholar 

  249. Zhang, P. et al. Polypeptides with high zwitterion density for safe and effective therapeutics. Angew. Chem. Int. Ed. 57, 7743–7747 (2018).

    Article  CAS  Google Scholar 

  250. Rodriguez, P. L. et al. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339, 971–975 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Sosale, N. G. et al. ‘Marker of Self’ CD47 on lentiviral vectors decreases macrophage-mediated clearance and increases delivery to SIRPA-expressing lung carcinoma tumors. Mol. Ther. Methods Clin. Dev. 3, 16080 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  252. Shereen, M. A., Khan, S., Kazmi, A., Bashir, N. & Siddique, R. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res. 24, 91–98 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Lipsitch, M., Swerdlow, D. L. & Finelli, L. Defining the epidemiology of Covid-19—studies needed. N. Engl. J. Med. 382, 1194–1196 (2020).

    Article  CAS  PubMed  Google Scholar 

  254. Shin, M. D. et al. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol. 15, 646–655 (2020).

    Article  CAS  PubMed  Google Scholar 

  255. Chen, W. H., Strych, U., Hotez, P. J. & Bottazzi, M. E. The SARS-CoV-2 vaccine pipeline: an overview. Curr. Trop. Med. Rep. 7, 61–64 (2020).

    Article  Google Scholar 

  256. Le, T. T. et al. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov. 19, 305–306 (2020).

    Article  CAS  Google Scholar 

  257. Florindo, H. F. et al. Immune-mediated approaches against COVID-19. Nat. Nanotechnol. 15, 630–645 (2020).

    Article  CAS  PubMed  Google Scholar 

  258. McHugh, K. J., Guarecuco, R., Langer, R. & Jaklenec, A. Single-injection vaccines: progress, challenges, and opportunities. J. Control. Release 219, 596–609 (2015).

    Article  CAS  PubMed  Google Scholar 

  259. Arya, J. & Prausnitz, M. R. Microneedle patches for vaccination in developing countries. J. Control. Release 240, 135–141 (2016).

    Article  CAS  PubMed  Google Scholar 

  260. Zaman, M., Chandrudu, S. & Toth, I. Strategies for intranasal delivery of vaccines. Drug Deliv. Transl. Res. 3, 100–109 (2013).

    Article  CAS  PubMed  Google Scholar 

  261. Feldman, R. A. et al. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine 37, 3326–3334 (2019).

    Article  CAS  PubMed  Google Scholar 

  262. Kose, N. et al. A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection. Sci. Immunol. 4, eaaw6647 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Richner, J. M. et al. Modified mRNA vaccines protect against Zika virus infection. Cell 168, 1114–1125.e10 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Amante, D. H. et al. Skin transfection patterns and expression kinetics of electroporation-enhanced plasmid delivery using the CELLECTRA-3P, a portable next-generation dermal electroporation device. Hum. Gene Ther. Methods 26, 134–146 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. McHugh, K. J. Employing drug delivery strategies to create safe and effective pharmaceuticals for COVID-19. Bioeng. Transl. Med. 5, e10163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Singh, S. et al. Allogeneic cardiosphere-derived cells (CAP-1002) in critically ill COVID-19 patients: compassionate-use case series. Basic Res. Cardiol. 115, 36 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  267. Har-Noy, M. & Or, R. Allo-priming as a universal anti-viral vaccine: protecting elderly from current COVID-19 and any future unknown viral outbreak. J. Transl. Med. 18, 196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

A.M.V. was supported by the National Science Foundation Graduate Research Fellowship under grant number DGE-1650116. S.M. acknowledges support from the National Institutes of Health (1R01HL143806-01), the Department of Defense Medical Research and Development Program (W81XWH-19-2-0011) and the Defense Threat Reduction Agency (HDTRA1-15-1-0045). This publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under award number R35GM137898 (to A.C.A.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agencies.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of the contents, and reviewed and edited the manuscript.

Corresponding authors

Correspondence to Aaron C. Anselmo or Samir Mitragotri.

Ethics declarations

Competing interests

S.M. is a shareholder, advisor and board member of companies working in drug delivery. The other authors declare no competing interests.

Additional information

Peer review information Nature Biomedical Engineering thanks Twan Lammers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargason, A.M., Anselmo, A.C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat Biomed Eng 5, 951–967 (2021). https://doi.org/10.1038/s41551-021-00698-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41551-021-00698-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research