Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders

Abstract

The skin is the largest organ of the body. The establishment of immunological memory in the skin is a crucial component of the adaptive immune response. Once naive T cells are activated by antigen-presenting cells, a small fraction of them differentiate into precursor memory T cells. These precursor cells ultimately develop into several subsets of memory T cells, including central memory T (TCM) cells, effector memory T (TEM) cells, and tissue resident memory T (TRM) cells. TRM cells have a unique transcriptional profile, and their most striking characteristics are their long-term survival (longevity) and low migration in peripheral tissues, including the skin. Under physiological conditions, TRM cells that reside in the skin can respond rapidly to pathogenic challenges. However, there is emerging evidence to support the vital role of TRM cells in the recurrence of chronic inflammatory skin disorders, including psoriasis, vitiligo, and fixed drug eruption, under pathological or uncontrolled conditions. Clarifying and characterizing the mechanisms that are involved in skin TRM cells will help provide promising strategies for reducing the frequency and magnitude of skin inflammation recurrence. Here, we discuss recent insights into the generation, homing, retention, and survival of TRM cells and share our perspectives on the biological characteristics of TRM cells in the recurrence of inflammatory skin disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sheridan, B. S. & Lefrancois, L. Regional and mucosal memory T cells. Nat. Immunol. 12, 485–491 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watanabe, R. et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory T cells. Sci. Transl. Med 7, 279ra39 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Zou, J. et al. CD4+ T cells memorize obesity and promote weight regain. Cell Mol. Immunol. 15, 630–639 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Landrith, T. A. et al. CD103+ CD8 T cells in the toxoplasma-infected brain exhibit a tissue-resident memory transcriptional profile. Front Immunol. 8, 335 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Sun, H., Sun, C., Xiao, W. & Sun, R. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell Mol. Immunol. 16, 205–215 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Topham, D. J. & Reilly, E. C. Tissue-resident memory CD8+ T cells: from phenotype to function. Front Immunol. 9, 515 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Mackay, L. K. et al. The developmental pathway for CD103 (+) CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14, 1294–1301 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Stolley, J. M. & Masopust, D. Tissue-resident memory T cells live off the fat of the land. Cell Res 27, 847–848 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan, Y. et al. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature 543, 252–256 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gerlach, C. et al. The chemokine receptor CX3CR1 defines three antigen-experienced CD8 T cell subsets with distinct roles in immune surveillance and homeostasis. Immunity 45, 1270–1284 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park, C. O. & Kupper, T. S. The emerging role of resident memory T cells in protective immunity and inflammatory disease. Nat. Med 21, 688–697 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483, 227–231 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Beura, L. K. et al. T cells in nonlymphoid tissues give rise to lymph-node-resident memory T Cells. Immunity 48, 327–338.e5 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheuk, S. et al. CD49a expression defines tissue-resident CD8+ T cells poised for cytotoxic function in human skin. Immunity 46, 287–300 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilk, M. M. et al. Lung CD4 tissue-resident memory T cells mediate adaptive immunity induced by previous infection of mice with bordetella pertussis. J. Immunol. 199, 233–243 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Iijima, N. & Iwasaki, A. T cell memory. A local macrophage chemokine network sustains protective tissue-resident memory CD4 T cells. Science 346, 93–98 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glennie, N. D., Volk, S. W. & Scott, P. Skin-resident CD4+ T cells protect against Leishmania major by recruiting and activating inflammatory monocytes. PLoS Pathog. 13, e1006349 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Park, C. O. et al. Staged development of long-lived T-cell receptor αβ TH17 resident memory T-cell population to Candida albicans after skin infection. J. Allergy Clin. Immunol. 142, 647–662 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Nguyen, Q. P., Deng, T. Z., Witherden, D. A. & Goldrath, A. W. Origins of CD4+ circulating and tissue-resident memory T-cells. Immunology 157, 3–12 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schenkel, J. M., Fraser, K. A., Vezys, V. & Masopust, D. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14, 509–513 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clark, R. A. Resident memory T cells in human health and disease. Sci. Transl. Med 7, 269rv1 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ho, A. W. & Kupper, T. S. T cells and the skin: from protective immunity to inflammatory skin disorders. Nat. Rev. Immunol. 19, 490–502 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Cheuk, S. et al. Epidermal Th22 and Tc17 cells form a localized disease memory in clinically healed psoriasis. J. Immunol. 192, 3111–3120 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mizukawa, Y. & Shiohara, T. Fixed drug eruption: a prototypic disorder mediated by effector memory T cells. Curr. Allergy Asthma Rep. 9, 71–77 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Richmond, J. M. et al. Resident memory and recirculating memory T cells cooperate to maintain disease in a mouse model of vitiligo. J. Invest Dermatol 139, 769–778 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Gaide, O. et al. Common clonal origin of central and resident memory T cells following skin immunization. Nat. Med 21, 647–653 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lefrançois, L. & Obar, J. J. Once a killer, always a killer: from cytotoxic T cell to memory cell. Immunol. Rev. 235, 206–218 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Obar, J. J. & Lefrançois, L. Early events governing memory CD8+ T-cell differentiation. Int Immunol. 22, 619–625 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Willis, C. R. et al. Interleukin-7 receptor blockade suppresses adaptive and innate inflammatory responses in experimental colitis. J. Inflamm. (Lond.) 9, 39 (2012).

    Article  CAS  Google Scholar 

  30. Klonowski, K. D., Williams, K. J., Marzo, A. L. & Lefrançois, L. Cutting edge: IL-7-independent regulation of IL-7 receptor alpha expression and memory CD8 T cell development. J. Immunol. 177, 4247–4251 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Hand, T. W., Morre, M. & Kaech, S. M. Expression of IL-7 receptor alpha is necessary but not sufficient for the formation of memory CD8 T cells during viral infection. Proc. Natl Acad. Sci. USA 104, 11730–11735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bhat, J. & Kabelitz, D. Multilayer epigenetic analysis reveals novel transcription factor networks in CD8 T cells. Cell Mol. Immunol. 15, 199–202 (2018).

    Article  PubMed  Google Scholar 

  33. Henson, S. M. et al. KLRG1 signaling induces defective Akt (ser473) phosphorylation and proliferative dysfunction of highly differentiated CD8+ T cells. Blood 113, 6619–6628 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Joshi, N. S. et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27, 281–295 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chang, J. T., Wherry, E. J. & Goldrath, A. W. Molecular regulation of effector and memory T cell differentiation. Nat. Immunol. 15, 1104–1115 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gebhardt, T. & Carbone, F. R. Unpleasant memories: tissue-embedded T cell memory drives skin hypersensitivity. Nat. Med 21, 551–552 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Osborn, J. F. et al. Central memory CD8+ T cells become CD69+ tissue-residents during viral skin infection independent of CD62L-mediated lymph node surveillance. PLoS Pathog. 15, e1007633 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Iborra, S. et al. Optimal generation of tissue-resident but not circulating memory T cells during viral infection requires crosspriming by DNGR-1+ dendritic cells. Immunity 45, 847–860 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krummey, S. M. et al. Low-affinity memory CD8+ T cells mediate robust heterologous immunity. J. Immunol. 196, 2838–2846 (2016).

    Article  CAS  PubMed  Google Scholar 

  40. Krummey, S. M. et al. Enhanced requirement for TNFR2 in graft rejection mediated by low-affinity memory CD8+ T cells during heterologous immunity. J. Immunol. 197, 2009–2015 (2016).

    Article  CAS  PubMed  Google Scholar 

  41. Takamura, S. Persistence in temporary lung niches: a survival strategy of lung-resident memory CD8+ T cells. Viral Immunol. 30, 438–450 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maru, S., Jin, G., Schell, T. D. & Lukacher, A. E. TCR stimulation strength is inversely associated with establishment of functional brain-resident memory CD8 T cells during persistent viral infection. PLoS Pathog. 13, e1006318 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Yoshizawa, A. et al. TCR-pMHC encounter differentially regulates transcriptomes of tissue-resident CD8 T cells. Eur. J. Immunol. 48, 128–150 (2018).

    Article  CAS  PubMed  Google Scholar 

  44. Waickman, A. T. & Powell, J. D. mTOR, metabolism, and the regulation of T-cell differentiation and function. Immunol. Rev. 249, 43–58 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Sowell, R. T., Rogozinska, M., Nelson, C. E., Vezys, V. & Marzo, A. L. Cutting edge: generation of effector cells that localize to mucosal tissues and form resident memory CD8 T cells is controlled by mTOR. J. Immunol. 193, 2067–2071 (2014).

    Article  CAS  PubMed  Google Scholar 

  47. Sowell, R. T. & Marzo, A. L. Resident-memory CD8 T cells and mTOR: generation, protection, and clinical importance. Front Immunol. 6, 38 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Becker, T. C. et al. Interleukin 15 is required for proliferative renewal of virus-specific memory CD8 T cells. J. Exp. Med 195, 1541–1548 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li, Q. et al. A central role for mTOR kinase in homeostatic proliferation induced CD8+ T cell memory and tumor immunity. Immunity 34, 541–553 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Khan, T. N., Mooster, J. L., Kilgore, A. M., Osborn, J. F. & Nolz, J. C. Local antigen in nonlymphoid tissue promotes resident memory CD8+ T cell formation during viral infection. J. Exp. Med 213, 951–966 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, L., Fuhlbrigge, R. C., Karibian, K., Tian, T. & Kupper, T. S. Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 25, 511–520 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Campbell, D. J. & Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med 195, 135–141 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Homey, B. et al. CCL27-CCR10 interactions regulate T cell-mediated skin inflammation. Nat. Med 8, 157–165 (2002).

    Article  CAS  PubMed  Google Scholar 

  54. Xia, M. et al. regulates balanced maintenance and function of resident regulatory and effector T cells to promote immune homeostasis in the skin. J. Allergy Clin. Immunol. 134, 634–644.e10 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Masopust, D. et al. Dynamic T cell migration program provides resident memory within intestinal epithelium. J. Exp. Med 207, 553–564 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. McCully, M. L. et al. Epidermis instructs skin homing receptor expression in human T cells. Blood 120, 4591–4598 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma, C., Mishra, S., Demel, E. L., Liu, Y. & Zhang, N. TGF-β controls the formation of kidney-resident T cells via promoting effector T cell extravasation. J. Immunol. 198, 749–756 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. Teijaro, J. R. et al. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187, 5510–5514 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Klein, R. S. et al. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J. Virol. 79, 11457–11466 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Glass, W. G. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J. Exp. Med 202, 1087–1098 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ohmatsu, H. et al. α4β7 Integrin is essential for contact hypersensitivity by regulating migration of T cells to skin. J. Allergy Clin. Immunol. 126, 1267–1276 (2010).

    Article  CAS  PubMed  Google Scholar 

  62. Haddad, W. et al. P-selectin and P-selectin glycoprotein ligand 1 are major determinants for Th1 cell recruitment to nonlymphoid effector sites in the intestinal lamina propria. J. Exp. Med 198, 369–377 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lim, K. et al. Neutrophil trails guide influenza-specific CD8+ T cells in the airways. Science 349, aaa4352 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Li, Y. et al. Characterization and biological significance of IL-23-induced neutrophil polarization. Cell Mol. Immunol. 15, 518–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Toichi, E., Tachibana, T. & Furukawa, F. Rapid improvement of psoriasis vulgaris during drug-induced agranulocytosis. J. Am. Acad. Dermatol 43, 391–395 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Lin, A. M. et al. Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis. J. Immunol. 187, 490–500 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Chowaniec, O. et al. Earliest clinical and histological changes in psoriasis. Dermatologica 163, 42–51 (1981).

    Article  CAS  PubMed  Google Scholar 

  68. Camargo, C. M., Brotas, A. M., Ramos-e-Silva, M. & Carneiro, S. Isomorphic phenomenon of Koebner: facts and controversies. Clin. Dermatol 31, 741–749 (2013).

    Article  PubMed  Google Scholar 

  69. Diani, M., Cozzi, C. & Altomare, G. Heinrich Koebner and his phenomenon. JAMA Dermatol 152, 919 (2016).

    Article  PubMed  Google Scholar 

  70. Suárez-Fariñas, M. et al. Nonlesional atopic dermatitis skin is characterized by broad terminal differentiation defects and variable immune abnormalities. J. Allergy Clin. Immunol. 127, 954–964 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wang, J. et al. Identification of unique proteomic signatures in allergic and non-allergic skin disease. Clin. Exp. Allergy 47, 1456–1467 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Baker, B. S., Powles, A. V., Lambert, S., Valdimarsson, H. & Fry, L. A prospective study of the Koebner reaction and T lymphocytes in uninvolved psoriatic skin. Acta Derm. Venereol. 68, 430–434 (1988).

    CAS  PubMed  Google Scholar 

  73. Sagi, L. & Trau, H. The Koebner phenomenon. Clin. Dermatol 29, 231–236 (2011).

    Article  PubMed  Google Scholar 

  74. Casey, K. A. et al. Antigen- independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188, 4866–4875 (2012).

    Article  CAS  PubMed  Google Scholar 

  75. Kumar, B. V. et al. Human tissue-resident memory T cells are defined by core transcriptional and functional signatures in lymphoid and mucosal sites. Cell Rep. 20, 2921–2934 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sathaliyawala, T. et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity 38, 187–197 (2013).

    Article  CAS  PubMed  Google Scholar 

  77. Skon, C. N. et al. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol. 14, 1285–1293 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mackay, L. K. et al. Cutting edge: CD69 interference with sphingosine-1-phosphate receptor function regulates peripheral T cell retention. J. Immunol. 194, 2059–2063 (2015).

    Article  CAS  PubMed  Google Scholar 

  79. Pérès, M., Montfort, A., Andrieu-Abadie, N., Colacios, C. & Ségui, B. S1P: the elixir of life for naive T cells. Cell Mol. Immunol. 15, 657–659 (2018).

    Article  PubMed  CAS  Google Scholar 

  80. Zhang, N. & Bevan, M. J. Transforming growth factor-β signaling controls the formation and maintenance of gut-resident memory T cells by regulating migration and retention. Immunity 39, 687–696 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chapman, T. J. & Topham, D. J. Identification of a unique population of tissue-memory CD4+ T cells in the airways after influenza infection that is dependent on the integrin VLA-1. J. Immunol. 184, 3841–3849 (2010).

    Article  CAS  PubMed  Google Scholar 

  82. Ray, S. J. et al. The collagen binding alpha1beta1 integrin VLA-1 regulates CD8 T cell-mediated immune protection against heterologous influenza infection. Immunity 20, 167–179 (2004).

    Article  CAS  PubMed  Google Scholar 

  83. Kilshaw, P. J. Alpha E beta 7. Mol. Pathol. 52, 203–207 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li, Y. et al. Structure of natural killer cell receptor KLRG1 bound to E-cadherin reveals basis for MHC-independent missing self recognition. Immunity 31, 35–46 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Schwartzkopff, S. et al. TGF-β downregulates KLRG1 expression in mouse and human CD8(+) T cells. Eur. J. Immunol. 45, 2212–2217 (2015).

    Article  CAS  PubMed  Google Scholar 

  86. Yu, C. I. et al. Human CD1c+ dendritic cells drive the differentiation of CD103+ CD8+ mucosal effector T cells via the cytokine TGF-β. Immunity 38, 818–830 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Schön, M. P. et al. Mucosal T lymphocyte numbers are selectively reduced in integrin alpha E (CD103)-deficient mice. J. Immunol. 162, 6641–6649 (1999).

    PubMed  Google Scholar 

  88. Mohammed, J. et al. Stromal cells control the epithelial residence of DCs and memory T cells by regulated activation of TGF-β. Nat. Immunol. 17, 414–421 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Moed, H. et al. Increased CCL27- CCR10 expression in allergic contact dermatitis: implications for local skin memory. J. Pathol. 204, 39–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  90. Zaid, A. et al. Persistence of skin-resident memory T cells within an epidermal niche. Proc. Natl. Acad. Sci. USA 111, 5307–5312 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wang, H. C. et al. Aryl hydrocarbon receptor signaling promotes ORMDL3-dependent generation of sphingosine-1-phosphate by inhibiting sphingosine-1-phosphate lyase. Cell Mol Immunol 2018; https://doi.org/10.1038/s41423-018-0022-2.

    Article  CAS  Google Scholar 

  92. Colonna, M. AHR: Making the Keratinocytes Thick Skinned. Immunity 40, 863–864 (2014).

    Article  CAS  PubMed  Google Scholar 

  93. Di Meglio, P. et al. Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40, 989–1001 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Leavy, O. Mucosal immunology: The ‘AHR diet’ for mucosal homeostasis. Nat. Rev. Immunol. 11, 806 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Li, Y. et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147, 629–640 (2011).

    Article  CAS  PubMed  Google Scholar 

  96. Hijnen, D. et al. CD8+ T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-γ, IL-13, IL-17, and IL-22. J. Invest Dermatol 133, 973–979 (2012).

    Article  PubMed  CAS  Google Scholar 

  97. Hooper, L. V. You AhR what you eat: linking diet and immunity. Cell 147, 489–491 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Zhang, L. H., Shin, J. H., Haggadone, M. D. & Sunwoo, J. B. The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells. J. Exp. Med 213, 2249–2257 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Horras, C. J., Lamb, C. L., King, A. L., Hanley, J. R. & Mitchell, K. A. Consequences of TCDD treatment on intra-hepatic lymphocytes during liver regeneration. J. Immunotoxicol. 9, 359–367 (2012).

    Article  CAS  PubMed  Google Scholar 

  100. Mackay, L. K. et al. Hobit and Blimp1 instruct a universal transcriptional program of tissue residency in lymphocytes. Science 352, 459–463 (2016).

    Article  CAS  PubMed  Google Scholar 

  101. Mackay, L. K. et al. Long-lived epithelial immunity by tissue-resident memory T (TRM) cells in the absence of persisting local antigen presentation. Proc. Natl. Acad. Sci. USA 109, 7037–7042 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kaech, S. M. et al. Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat. Immunol. 4, 1191–1198 (2003).

    Article  CAS  PubMed  Google Scholar 

  103. Schluns, K. S., Kieper, W. C., Jameson, S. C. & Lefrançois, L. Interleukin-7 mediates the homeostasis of naïve and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  PubMed  Google Scholar 

  104. Gallais Sérézal, I. et al. A skewed pool of resident T cells triggers psoriasis-associated tissue responses in never-lesional skin from patients with psoriasis. J. Allergy Clin. Immunol. 143, 1444–1454 (2019).

  105. Martini, E. et al. Dynamic changes in resident and infiltrating epidermal dendritic cells in active and resolved psoriasis. J. Invest Dermatol 137, 865–873 (2017).

    Article  CAS  PubMed  Google Scholar 

  106. Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).

    Article  CAS  PubMed  Google Scholar 

  107. Maekawa, Y. et al. Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nat. Med 21, 55–61 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Hombrink, P. et al. Programs for the persistence, vigilance and control of human CD8+ lung-resident memory T cells. Nat. Immunol. 17, 1467–1478 (2016).

    Article  CAS  PubMed  Google Scholar 

  109. Wijeyesinghe, S. & Masopust, D. Resident memory T cells are a Notch above the rest. Nat. Immunol. 17, 1337–1338 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Riou, C. et al. Convergence of TCR and cytokine signaling leads to FOXO3a phosphorylation and drives the survival of CD4+ central memory T cells. J. Exp. Med 204, 79–91 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hand, T. W. et al. Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proc. Natl Acad. Sci. USA 107, 16601–11606 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chetoui, N., Boisvert, M., Gendron, S. & Aoudjit, F. Interleukin-7 promotes the survival of human CD4+ effector/memory T cells by up-regulating Bcl-2 proteins and activating the JAK/STAT signalling pathway. Immunology 130, 418–426 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Grange, M. et al. Control of CD8 T cell proliferation and terminal differentiation by active STAT5 and CDKN2A/CDKN2B. Immunology 145, 543–557 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Quigley, M., Huang, X. & Yang, Y. Extent of stimulation controls the formation of memory CD8 T cells. J. Immunol. 179, 5768–5777 (2007).

    Article  CAS  PubMed  Google Scholar 

  115. Li, Y. et al. Persistent antigen and prolonged AKT-mTORC1 activation underlie memory CD8 T cell impairment in the absence of CD4 T cells. J. Immunol. 195, 1591–1598 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Kim, E. H. et al. Signal integration by Akt regulates CD8 T cell effector and memory differentiation. J. Immunol. 188, 4305–4314 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells. Nat. Med 15, 808–813 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Zhou, X. et al. Differentiation and persistence of memory CD8(+) T cells depend on T cell factor 1. Immunity 33, 229–240 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhao, D. M. et al. Constitutive activation of Wnt signaling favors generation of memory CD8 T cells. J. Immunol. 184, 1191–1199 (2010).

    Article  CAS  PubMed  Google Scholar 

  120. Jeannet, G. et al. Essential role of the Wnt pathway effector Tcf-1 for the establishment of functional CD8 T cell memory. Proc. Natl Acad. Sci. USA 107, 9777–9782 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Pallett, L. J. et al. IL-2high tissue-resident T cells in the human liver: Sentinels for hepatotropic infection. J. Exp. Med 214, 1567–1580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Mackay, L. K. et al. T-box transcription factors combine with the cytokines TGF-β and IL-15 to control tissue-resident memory T cell fate. Immunity 43, 1101–1111 (2015).

    Article  CAS  PubMed  Google Scholar 

  123. Hu, Y., Lee, Y. T., Kaech, S. M., Garvy, B. & Cauley, L. S. Smad4 promotes differentiation of effector and circulating memory CD8 T cells but is dispensable for tissue-resident memory CD8 T cells. J. Immunol. 194, 2407–2414 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Clark, R. A. Skin-resident T cells: the ups and downs of on site immunity. J. Invest Dermatol 130, 362–370 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Song, X., He, X., Li, X. & Qian, Y. The roles and functional mechanisms of interleukin-17 family cytokines in mucosal immunity. Cell Mol. Immunol. 13, 418–431 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Giacomin, P. R. et al. Epithelial-intrinsic IKKα expression regulates group 3 innate lymphoid cell responses and antibacterial immunity. J. Exp. Med 212, 1513–1528 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lowes, M. A., Russell, C. B., Martin, D. A., Towne, J. E. & Krueger, J. G. The IL-23/T17 pathogenic axis in psoriasis is amplified by keratinocyte responses. Trends Immunol. 34, 174–181 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Scheper, R. J. et al. Induction of immunological memory in the skin. Role local T cell Retent. Clin. Exp. Immunol. 51, 141–148 (1983).

    CAS  Google Scholar 

  129. Carey, W. et al. Relapse, rebound, and psoriasis adverse events: an advisory group report. J. Am. Acad. Dermatol 54, S171–S181 (2006).

    Article  PubMed  Google Scholar 

  130. Boyman, O. et al. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J. Exp. Med 199, 731–736 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Gilhar, A., David, M., Ullmann, Y., Berkutski, T. & Kalish, R. S. T-lymphocyte dependence of psoriatic pathology in human psoriatic skin grafted to SCID mice. J. Invest Dermatol 109, 283–288 (1997).

    Article  CAS  PubMed  Google Scholar 

  132. Teraki, Y. & Shiohara, T. Preferential expression of alphaEbeta7 integrin (CD103) on CD8+ T cells in the psoriatic epidermis: regulation by interleukins 4 and 12 and transforming growth factor-beta. Br. J. Dermatol 147, 1118–1126 (2002).

    Article  CAS  PubMed  Google Scholar 

  133. Bhushan, M. et al. Anti-E-selectin is ineffective in the treatment of psoriasis: a randomized trial. Br. J. Dermatol 146, 824–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  134. Gallais Sérézal, I. et al. Resident T cells in resolved psoriasis steer tissue responses that stratify clinical outcome. J. Invest Dermatol 138, 1754–1763 (2018).

    Article  PubMed  CAS  Google Scholar 

  135. Matos, T. R. et al. Clinically resolved psoriatic lesions contain psoriasis-specific IL-17-producing αβ T cell clones. J. Clin. Invest 127, 4031–4041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Torres-Alvarez, B., Castanedo-Cazares, J. P., Fuentes-Ahumada, C. & Moncada, B. The effect of methotrexate on the expression of cell adhesion molecules and activation molecule CD69 in psoriasis. J. Eur. Acad. Dermatol Venereol. 21, 334–339 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Cibrian, D. et al. CD69 controls the uptake of L-tryptophan through LAT1-CD98 and AhR-dependent secretion of IL-22 in psoriasis. Nat. Immunol. 17, 985–996 (2016).

    Article  CAS  PubMed  Google Scholar 

  138. Pan, Y. & Kupper, T. S. Metabolic reprogramming and longevity of tissue-resident memory T cells. Front Immunol. 9, 1347 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Nomura, I. et al. Distinct patterns of gene expression in the skin lesions of atopic dermatitis and psoriasis: a gene microarray analysis. J. Allergy Clin. Immunol. 112, 1195–1202 (2003).

    Article  CAS  PubMed  Google Scholar 

  140. Gudjonsson, J. E. et al. Assessment of the psoriatic transcriptome in a large sample: additional regulated genes and comparisons with in vitro models. J. Invest Dermatol 130, 1829–1840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Karakawa, M. et al. CCL27 is downregulated by interferon gamma via epidermal growth factor receptor in normal human epidermal keratinocytes. J. Cell Physiol. 229, 1935–1945 (2014).

    Article  CAS  PubMed  Google Scholar 

  142. Kanda, N., Koike, S. & Watanabe, S. IL-17 suppresses TNF-alpha-induced CCL27 production through induction of COX-2 in human keratinocytes. J. Allergy Clin. Immunol. 116, 1144–1150 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Villadsen, L. S. et al. Resolution of psoriasis upon blockade of IL-15 biological activity in a xenograft mouse model. J. Clin. Invest 112, 1571–1580 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Duffin, K. C. & Krueger, G. G. Genetic variations in cytokines and cytokine receptors associated with psoriasis found by genome-wide association. J. Invest Dermatol 129, 827–833 (2009).

    Article  CAS  PubMed  Google Scholar 

  145. Korkij, W. & Soltani, K. Fixed drug eruption. A brief review. Arch. Dermatol 120, 520–524 (1984).

    Article  CAS  PubMed  Google Scholar 

  146. Mizukawa, Y. & Shiohara, T. Trauma-localized fixed drug eruption: involvement of burn scars, insect bites and venipuncture sites. Dermatology 205, 159–161 (2002).

    Article  PubMed  Google Scholar 

  147. Teraki, Y. & Shiohara, T. IFN-gamma-producing effector CD8+ T cells and IL-10-producing regulatory CD4+ T cells in fixed drug eruption. J. Allergy Clin. Immunol. 112, 609–615 (2003).

    Article  CAS  PubMed  Google Scholar 

  148. Shiohara, T., Mizukawa, Y. & Teraki, Y. Pathophysiology of fixed drug eruption: the role of skin-resident T cells. Curr. Opin. Allergy Clin. Immunol. 2, 317–323 (2002).

    Article  PubMed  Google Scholar 

  149. Mizukawa, Y. et al. Direct evidence for interferon-gamma production by effector-memory-type intraepidermal T cells residing at an effector site of immunopathology in fixed drug eruption. Am. J. Pathol. 161, 1337–1347 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Mizukawa, Y., Yamazaki, Y. & Shiohara, T. In vivo dynamics of intraepidermal CD8+ T cells and CD4+ T cells during the evolution of fixed drug eruption. Br. J. Dermatol 158, 1230–1238 (2008).

    Article  CAS  PubMed  Google Scholar 

  151. Iriki, H. et al. Toxic epidermal necrolysis in the absence of circulating T cells: a possible role for resident memory T cells. J. Am. Acad. Dermatol 71, e214–e216 (2014).

    Article  PubMed  Google Scholar 

  152. Willemsen, M., Linkutė, R., Luiten, R. M. & Matos, T. R. Skin-resident memory T cells as a potential new therapeutic target in vitiligo and melanoma. Pigment Cell Melanoma Res 32, 612–622 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Boniface, K. et al. Vitiligo Skin Is Imprinted with Resident Memory CD8 T Cells Expressing CXCR3. J. Invest Dermatol 138, 355–364 (2018).

    Article  CAS  PubMed  Google Scholar 

  154. Richmond, J. M. et al. Antibody blockade of IL-15 signaling has the potential to durably reverse vitiligo. Sci. Transl. Med. 10, eaam7710 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Weidinger, S. & Novak, N. Atopic dermatitis. Lancet 387, 1109–1122 (2016).

    Article  PubMed  Google Scholar 

  156. Patra, V., Laoubi, L., Nicolas, J. F., Vocanson, M. & Wolf, P. Perspective on the interplay of ultraviolet-radiation, skin microbiome and skin resident memory TCRαβ+ cells. Front Med (Lausanne) 5, 166 (2018).

    Article  Google Scholar 

  157. Brunner, P. M. et al. Nonlesional atopic dermatitis skin shares similar T-cell clones with lesional tissues. Allergy 72, 2017–2025 (2017).

    Article  CAS  PubMed  Google Scholar 

  158. Kim, S. et al. Multicytokine-producing tissue resident memory (TRM) cells in atopic dermatitis patient. J. Invest Dermatol 136, S9 (2016).

    Article  Google Scholar 

  159. Kim, S., Kim, J., Park, C., Kupper, T. & Lee, K. Distinct transcriptome signature of skin-resident memory T cells and migratory memory T cells in atopic dermatitis. J. Invest Dermatol 138, S4 (2018).

    Article  Google Scholar 

  160. Mowad, C. M. et al. Allergic contact dermatitis: patient diagnosis and evaluation. J. Am. Acad. Dermatol 74, 1029–1040 (2016).

    Article  PubMed  Google Scholar 

  161. Torchia, D., Capretti, C., Pizzo, B. & Francalanci, S. Patch test triggering recurrence of distant dermatitis: the flare-up phenomenon. CMAJ. 179, 341 (2008).

  162. Gamradt, P. et al. Inhibitory checkpoint receptors control CD8+ resident memory T cells to prevent skin allergy. J. Allergy Clin. Immunol. 143, 2147–2157 (2019).

    Article  CAS  PubMed  Google Scholar 

  163. Schmidt, J. D. et al. Rapid allergen-induced interleukin-17 and interferon-γ secretion by skin-resident memory CD8+ T cells. Contact Dermat. 76, 218–227 (2017).

    Article  CAS  Google Scholar 

  164. Jawed, S. I., Myskowski, P. L., Horwitz, S., Moskowitz, A. & Querfeld, C. Primary cutaneous T-cell lymphoma (mycosis fungoides and Sézary syndrome): part II. Prognosis, management, and future directions. J. Am. Acad. Dermatol 70, 223.e1–17 (2014).

    Article  Google Scholar 

  165. Campbell, J. J., Clark, R. A., Watanabe, R. & Kupper, T. S. Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. Blood 116, 767–771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Khairallah, C., Chu, T. H. & Sheridan, B. S. Tissue adaptations of memory and tissue-resident gamma delta T cells. Front Immunol. 9, 2636 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  167. Hunter, S. et al. Human liver infiltrating γδ T cells are composed of clonally expanded circulating and tissue-resident populations. J. Hepatol. 69, 654–665 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Gebhardt, T., Palendira, U., Tscharke, D. C. & Bedoui, S. Tissue-resident memory T cells in tissue homeostasis, persistent infection, and cancer surveillance. Immunol. Rev. 283, 54–76 (2018).

    Article  CAS  PubMed  Google Scholar 

  169. D’Ambrosio, D., Freedman, M. S. & Prinz, J. Ponesimod, a selective S1P1 receptor modulator: a potential treatment for multiple sclerosis and other immune-mediated diseases. Ther. Adv. Chronic Dis. 7, 18–33 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Blankenbach, K. V., Schwalm, S., Josef, P. & Dagmar, M. Z. H. Sphingosine-1-phosphate receptor-2 antagonists: therapeutic potential and potential risks. Front Pharm. 7, 167 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

In view of space limitation, we apologize to the colleagues whose contributions to the field could not be cited. The National Natural Science Foundation of China (no. 81573054, 81371729, 81771783), the Clinical Research and Translation Key Project of Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital (no. 2016LZ02), and the Sichuan Science and Technology Program (no. 2019JDTD0027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Shen, Z. Tissue-resident memory T cells and their biological characteristics in the recurrence of inflammatory skin disorders. Cell Mol Immunol 17, 64–75 (2020). https://doi.org/10.1038/s41423-019-0291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41423-019-0291-4

Keywords

This article is cited by

Search

Quick links