Abstract
Host organisms utilise a range of genetically encoded cell death programmes in response to pathogen challenge. Host cell death can restrict pathogen proliferation by depleting their replicative niche and at the same time dying cells can alert neighbouring cells to prepare environmental conditions favouring future pathogen attacks. As expected, many pathogenic microbes have strategies to subvert host cell death to promote their virulence. The structural and lifestyle differences between animals and plants have been anticipated to shape very different host defence mechanisms. However, an emerging body of evidence indicates that several components of the host–pathogen interaction machinery are shared between the two major branches of eukaryotic life. Many proteins involved in cell death execution or cell death-associated immunity in plants and animals exert direct effects on endomembrane and loss of membrane integrity has been proposed to explain the potential immunogenicity of dying cells. In this review we aim to provide a comparative view on how cell death processes are linked to anti-microbial defence mechanisms in plants and animals and how pathogens interfere with these cell death programmes. In comparison to the several well-defined cell death programmes in animals, immunogenic cell death in plant defence is broadly defined as the hypersensitive response. Our comparative overview may help discerning whether specific types of immunogenic cell death exist in plants, and correspondingly, it may provide new hints for previously undiscovered cell death mechanism in animals.
Similar content being viewed by others
Facts
-
Cell death is a fundamental immune defence mechanism in animals and plants.
-
Several components of cell death machinery are shared between animals and plants.
-
Alteration of endomembrane integrity represents a crucial step in immunogenic cell death signalling in animals and plants.
-
Pathogenic microbes have evolved strategies to subvert host cell death in animals and plants to promote their virulence.
Open questions
-
Caspases are increasingly anticipated as a molecular switch in cell death and cellular signalling. What is the evolutionary conserved function of cell death proteases in animals and plants?
-
Lytic cell death and membrane disintegration are viewed as an initiator of neighbouring responses and systemic immunity in animals. How does cell death in plants involve neighbouring cells and provoke systemic immunity?
-
How does limited/controlled membrane disruption control cell death, neighbouring responses and pathogen progression in animals and plants?
-
Are there common molecular structures that are released from animal and plant cells and how do they impact immunity and pathogen progression?
-
Does plant hypersensitive cell death resemble the distinct features of regulated necroptosis and/or pyroptosis in animals?
-
How does the increase of cation concentration in the cytosol caused by the action of plant resistosomes translate into immunogenic cell death in plants?
Introduction
Cell death represents a common and fundamental process in host-microbe interactions in both plants and animals [1, 2]. Not surprisingly, plant and animal pathogens have evolved various means to specifically avoid or subvert host cell death as part of their virulence strategies. Such co-evolutionary struggles between hosts and pathogens have resulted in some of the most complex and interesting biological interactions [3]. The structural and lifestyle differences between plants and animals and their respective pathogens have been expected to involve very different defence mechanisms and pathogenic strategies. However, accumulating evidence indicate that several components of host–pathogen interactions are shared between the two phyla.
The death of pathogen-infected cells can have beneficial or detrimental consequences for the host. Host cell death can restrict pathogen proliferation by destroying their replicative niche. Alternatively, pathogens can induce host cell death to disseminate and infect adjacent tissues. Beyond this categorical view of cell death, the quality of cell death or how exactly cells die is emerging as a central determinant of the fate of the affected tissues. Alteration of membrane integrity represents one of the key steps outlining a model that the immune system is more concerned with entities that do damage rather than with those that are only foreign [4]. The concept of damage-associated molecular patterns (DAMPs) has been originally proposed to explain the potential immunogenicity of dying cells and immunogenic cell death describes cell death modalities that stimulate an immune response against dead cell-antigens [5, 6]. Accordingly, a number of genetically controlled and molecularly defined cellular death processes that utilise distinct cellular death machinery and yield different tissue responses have been characterized in animal cells, including apoptosis, necroptosis, pyroptosis and ferroptosis (Fig. 1 and Table 1). Furthermore, accumulating evidence suggests that different cell death processes are deeply interlinked, serve as backup mechanisms and thereby guarantee cellular death to mount immunity.
In plants, immunogenic cell death has been broadly termed hypersensitive response (HR). HR involves generation of reactive oxygen species (ROS) and elevation of intracellular Ca2+ levels (Fig. 1) and is often caused by activation of members of the intracellular nucleotide-binding domain leucine-rich repeat containing (NLR) receptor family [7,8,9]. The amplitude of HR can be intensified upon recognition of conserved pathogen-associated molecular patterns (PAMPs) by plasma membrane resident receptors (PRRs) [10, 11]. Because NLR-triggered immunity also intensifies PRR-triggered immunity [10, 11], this mutual potentiation mechanism between NLR and PRR signalling acts as an amplification step in immune signalling and HR. Whether specific types of immunogenic cell death exist in plants under the wide umbrella of HR remains to be clarified.
Despite the differences in nomenclature, both plant and animal pathogens can be classified as killers or non-killers, as previously proposed [12]. This simplistic view is useful when comparing host–pathogen interactions in animals and plants. Essentially, non-killer pathogens feed on living tissue and need to maintain a living host, whereas killer pathogens feed on dead or dying tissue. As a consequence, non-killer pathogens have evolved a variety of mechanisms to block host cell death, while in turn, killer pathogens can induce cell death in the host for their own benefit. Naturally, intermediate situations exist, whereby pathogens can switch from non-killers to killers during their life cycle.
In fact, suppression of cell death by certain pathogens as a virulence strategy may have acted as an evolutionary driving force for the host to evolve different cell death modalities [13, 14]. Furthermore, it is increasingly evident that the pathogenesis of microbial infection does not only rely on the host cell death as a final event, but also depends on the mode of cell death and the quality of the intercellular communication within the infected tissue. These intercellular communications do not only activate host defence mechanisms, but also boost tissue regeneration to achieve full resolution of the infection. On the other hand, successful pathogens are able to thwart this process and cause overwhelming tissue damage that supports the propagation and spread of the pathogen.
In the sections below we provide detailed descriptions of the death processes linked to microbial infection in animals and plants.
Regulation of host–pathogen interaction by apoptosis
Apoptosis is the best studied form of animal cell death and is morphologically characterized by the ordered disassembly of the dying cell within the boundaries of an intact plasma membrane. Apoptosis is controlled by cysteine-dependent aspartate-specific proteases termed caspases. With the exception of caspase-1—enriched in monocytes/macrophages, and caspase-14—restricted to keratinocytes, caspases are widely expressed as cytosolic/nucleoplasmic zymogens [15]. Once activated by an upstream stimulus, caspases perform limited proteolysis resulting in inactivation or activation of distinct downstream cascade of signalling events permitting the controlled demolition of cells. Within the family, apoptotic caspases are distinguished as initiator or executioner caspases. The initiator caspases translate upstream death signals into proteolytic action upon association with multicomponent signalling complexes which generate an active protease [16]. Executioner caspases can be activated by initiator caspases and subsequently convert the proteolytic action into an apoptotic phenotype by processing distinct downstream substrates. The main pathways for caspase cascade activation are the extrinsic and intrinsic pathways. In the extrinsic pathway, the activation of cell surface death receptor leads to the formation of a protein complex including the initiator caspase-8 [17]. In the intrinsic/mitochondrial pathway the initiator caspase-9 is activated after mitochondrial outer membrane permeabilization (MOMP) and the release of cytochrome c. Once in the cytosol, cytochrome c induces the formation of a cytosolic protein complex––the apoptosome—consisting of the apoptotic protease activating factor 1 (Apaf-1) [18] and caspase-9. Both caspase-8 and −9 proteolytically activate executioner caspase-3 and -7 which ultimately drive the characteristic morphology of apoptosis including membrane blebbing, chromosomal DNA fragmentation, packaging of cell constituents into apoptotic bodies and eventually cell death.
Pathogens, particularly when growing inside a host cell, often activate a plethora of cellular stress responses that are normally sensed by apoptotic machinery and translated into proteolytic action involving caspases. Inhibition of apoptosis allows pathogens to optimize replication and progeny synthesis by prolonging the infected cell life. Accordingly, caspases represent an important molecular target for pathogens to control apoptosis. This is particularly the case for viral pathogens, as they are obligate and intracellular pathogens, therefore they have evolved multiple strategies to block caspase activity, as shown with the cytokine response modifier A (CrmA) from cowpox virus [19,20,21], p35 from baculoviruses [22, 23] or FLICE/caspase-8-inhibitory proteins (v-FLIPs) from gamma-herpesviruses and the tumorigenic human molluscipoxvirus [24]. Other anti-apoptotic viral gene products have been shown to inhibit apoptosis without inhibiting caspase activity, such as inhibitor of apoptosis protein (IAP) from baculoviruses [25]. A number of different viral pathogens including Adenoviridae, Birnaviridae, Herpesviridae and Poxviridae express viral orthologues of Bcl-2, a key regulator of MOMP, efficiently controlling intrinsic apoptosis during the course of viral infection [26].
In contrast to viruses, only a minority of bacterial pathogens propagate within the cytosol and have direct access to caspases. Instead, they usually reside and multiply outside the cell or within intracellular vacuoles and deliver their effector proteins into their hosts’ cytosol via secretion systems [27]. Regardless, inhibition of apoptosis plays an integral role in bacterial pathogenesis at early stages of infection, and bacteria utilise a number of different strategies for the inhibition of host cell apoptosis [28]. These include caspase inhibition, as it has been shown for Rickettsia rickettsii, Shigella flexneri and Crassostrea gigas [29,30,31,32] and upon lipopolysaccharide (LPS) direct binding to the executioner caspase-3 [31, 32]. Furthermore, Escherichia coli inhibits caspase activation by N-linked glycosylation of the components of the death receptor signalling complex [33]. Intrinsic/mitocondrial apoptosis is also controlled by many bacterial pathogens including Chlamydia [34, 35], Mycobacterium tuberculosis [36], and Coxiella burnetii [37] by interfering with the expression or degradation of different members of the Bcl-2 protein family.
Although initially and extensively studied in the context of apoptosis, caspases are increasingly considered as versatile molecular switch controlling different cellular outcomes. In particular, inhibition of caspase-8 not only fails to block cell death, but also causes inflammatory lytic cell death by involving necroptosis or pyroptosis (see below) [13, 14]. Lack of caspase-9 activity indeed uncouples the apoptotic death from mitochondrial damage, but it engages various inflammatory signalling and leads to lytic cell death [38]. Accordingly, inhibition of caspase activity by pathogens may not solely increase the lifespan of the host cell, it rather changes the nature of death and may cause beneficial or detrimental tissue responses which deserves further consideration during the course of host–pathogen interaction.
In plants, there is no apoptosis. As outlined above, plant pathogens can trigger HR, a plant-specific type of regulated cell death that involves activation of proteolytic enzymes [39]. As we discuss in this review, several exciting similarities between HR and different forms of regulated lytic cell death (pyroptosis, necroptosis) are emerging, especially at the molecular level. However, considering HR as a form of apoptotic-like cell death is a very limiting misnomer often used in the literature that leads to confusion and should be avoided.
Proteases are probably one of the most ancient families of enzymes [40]. However, plants do not encode caspases in their genomes [41]. Although caspase-like activities have been shown to be important for HR, these are carried out by proteases with little structural resemblance to caspases [39]. In turn, metacaspases, which belong to the same superfamily as caspases and share certain structural similarities with them, do not cleave after aspartate residues (positively charged), but rather lysine or arginine (negatively charged) and therefore they cannot be considered caspases [42]. Metacaspases have been shown to be important for HR regulation [43], although their mode of action in this process remains unclear. Interestingly, available crystal structures suggest that functional metacaspases act as monomers [44, 45].
“Deathosomes”, macromolecular apparatuses causing cell death
Inflammasome-initiated pyroptosis in animal cells
Inflammasomes are multiprotein complexes that are formed upon activation of PRRs following the detection of PAMPs or DAMPs in the cytosol of host cells [46]. Inflammasomes serve as platforms for the activation of caspase-1 which promotes the proteolytic maturation of the cytokines interleukin-1β (IL-1β) and IL-18. Caspase-1 additionally cleaves gasdermin D (GSDMD) unleashing its pore-forming domain and inducing a lytic type of cell death that is known as pyroptosis.
Although initially described as caspase-1–dependent cell death, pyroptosis can be additionally induced by caspase-4 (or its orthologues caspase-11 in mouse) and caspase-5 each of which cleaves GSDMD and induces membrane pores [47, 48] (Fig. 1). Activation of caspase-1 requires the formation of an inflammasome which is initiated upon pattern recognition by NLRs (Nlrp3, Nlrp1b and Nlrc4), the cytosolic DNA sensor AIM2 (absent in melanoma 2) and Pyrin, which subsequently recruits caspase-1 zymogen directly or through the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) [49]. Caspase-4, −5 and −11 are activated by the detection of cytosolic LPS and do not require the formation of canonical inflammasomes [50]. Unlike caspase-1, −4, −5 and −11 are not able to process IL-1β and IL-18.
Pathogens manipulate various aspects of pyroptosis to escape the immediate and efficient killing of the host cells. Yersinia outer protein K (YopK) and M (YopM) block the activation of the inflammasome [51, 52]. Pseudomonas aeruginosa effectors C120HSL, ExoU and ExoS inhibit NLRC4, NLRP3 and caspase-1 [53, 54]. Bacterial pathogens also efficiently manipulate caspase-4, −5 and −11-mediated pyroptosis. Francisella and Shigella reshape their LPS and escape efficient cytosolic detection by caspase-4, −5 and −11 [55, 56]. Shigella OspC3 effector can efficiently inhibit caspase-4 and −11 by direct binding or post-translational modification [57, 58]. Caspase-1 can also be inhibited by viruses such as poxvirus serpins [19]. Poxviruses also express pyrin-only proteins that inhibit inflammasome activation by direct binding ASC and NLRs [59]. Papillomaviruses inhibit pyroptosis by inducing proteosomal degradation of the inflammasome [60]. Kaposi’s sarcoma-associated herpesviruses express the NLRP1 homolog Orf63, which subverts the function of NLRs [61]. Measles virus and influenza virus inhibit the NLRP3 inflammasome [62, 63]. Enterovirus 71 inhibits pyroptosis by cleaving and inactivating GSDMD [64].
GSDM-like proteins have been identified in taxa outside of animals such as fungi and bacteria [62]. Fungal and bacterial GSDM-like proteins share many features with mammalian GSDMs: they are activated by proteases and they have the ability to form pores and permeabilize plasma membranes mediating cell death upon allorecognition and upon phage infection, respectively [63, 64]. These observations establish GSDMs as an extremely ancient mechanism of cell death and membrane pore formation, which may be important for the understanding of the evolution of regulated necrosis in immunity. Currently, no GSDM-like proteins have been identified in plants. Further structural and functional analyses will be instrumental for identifying GSDM-like proteins in plants, paving the way for a better understanding of cell death in these organisms.
Resistosome-initiated cell death in plants
In the last few years, a major breakthrough in plant immunity has been the identification of supramolecular complexes assembled upon NLR activation with a key role in defence, which have been dubbed “resistosomes” [65]. In plants, NLRs are broadly classified according to their N-terminal domain as coiled-coil (CC) domain NLRs (CNLs) or TOLL/interleukin 1 receptor (TIR)-like domain NLRs (TNLs). Additionally, a subclass of CNLs has been identified as RPW8-like CC domain containing NLRs (RNLs) [66,67,68]. The RPW8-like CC domain is alternatively called the HeLo-domain due to a characteristic N-terminal four-helix bundle structure (also see below) [69, 70]. As TNL-mediated HR and immunity require RNLs, RNLs are also known as “helper-NLR” [68]. Structural and biochemical data on resistosomes have helped understanding the differences of CNL- and TNL-RNL pathways and their mechanistic similarities to animal immune deathosomes. Structurally, CNL resistosomes resemble the wheel-like inflammasome comprising animal NLRs [71, 72].
In the context of the two-tiered plant immune system [73], it has been proposed that initial PAMP recognition by surface receptors triggers a fast and transient elevation of cytosolic Ca2+ concentration (i.e, Ca2+ influx), whereas NLR activation leads to a long-lasting Ca2+ influx that would result in cell death, overcoming potential pathogen-mediated immune suppression [74]. The spatiotemporal pattern of Ca2+ spikes upon NLR activation at a single cell level as well as at tissue-level might be distinctive to activate cell death-executing proteins. In addition, Ca2+ could directly act as an activator of many proteolytic enzymes, which have been shown to play a role in HR [39, 75]. It has been recently shown that GSDM pores induce calcium influx, which modulates pore opening/closing kinetics through a phospholipid-mediated feedback mechanism [76].
(a) CNL resistosome-initiated cell death
The first resistosome described in plants was a pentameric structure containing the activated form of the CNL ZAR1 (HOPZ-ACTIVATED RESISTANCE1) in complex with the pseudokinase PBL2 [72, 77]. Recognition of the cognate bacterial effector AvrAC causes a post-translational modification of PBL2 that results in subsequent activation and oligomerization of ZAR1 into a pentameric wheel structure. In the activated ZAR1 resistosome, the first N-terminal alpha-helixes of the CC domains form a solvent exposed funnel-shaped structure, which constitutes a cation channel (Fig. 2A, B). This structural configuration is required for plasma membrane association and Ca2+ influx [72, 77]. The CNL Sr35 also assembles into a resistosome upon direct binding of the fungal effector AvrSr35, forming a structure that is highly similar to the ZAR1 resistosome [71]. Similar to the CNL resistosomes of ZAR1 and Sr35, members of the RNL subclass also exhibit a calcium-permeable unselective cation channel activity [71, 78, 79], likely contributing to the aforementioned long-lasting Ca2+ influx. The elevation of cytosolic Ca2+ is essential for HR execution, since chemically blocking calcium channels prevents HR cell death [80]. It has been shown that cations other than Ca2+ can be transported through resistosome channels [79], indicating that other cations could be important for HR.
(b) TNL resistosome-initiated cell death
Some TNLs assemble into a tetrameric resistosome upon ligand binding, in which two pairs of TIR homodimers function as a nicotinamide adenine dinucleotide (NAD+) cleaving enzyme (NADase) [81, 82]. The plant genome encodes a number of TIR-only proteins, which lack some of the typical domains present in TNL proteins (e.g., NB-ARC, LRR domains) [67, 83]. These TIR-only proteins and artificially truncated TIR domains of TNLs can be assembled into filament-like structures that produce 2′,3′-cAMP/cGMP by hydrolysing DNA or RNA [84]. As HR caused by TNLs and TIR-only proteins genetically requires RNLs [85, 68], some of products of the TIR enzymes are anticipated to act as signalling molecule(s) to facilitate the formation of RNL-resistosomes. Recently identified TIR products, 2’-(5”-phosphoribosyl)-5’-adenosine mono-/di-phosphate (pRib-AMP/ADP) [86], and ADP-ribosylated ADPR (di-ADPR) or (ADP-ribosylated ATP or ADPr-ATP) [87] are proposed to be perceived by EDS1-PAD4 and EDS1-SAG101 receptor complexes, respectively, for the formation of RNL-resistosomes [86, 87]. Plant pathogens have evolved effectors to manipulate both precursors and products of TIR-enzymes. For example, an effector of Xanthomonas phosphorylates NAD+ [88] and effectors from oomycete and bacterial pathogens hydrolyse 2′,3′-cAMP/cGMP but not its regioisomer 3′,5′-cAMP/cGMP [84, 89] emphasising the importance of the TIR-catalysed products in plant disease resistance.
MLKL-mediated necroptosis
In animals, necroptosis has been defined as a form of regulated necrotic cell death induced by receptor interacting protein kinase 3 (RIPK3) and its substrate mixed lineage kinase-like (MLKL) [90]. RIPK3 is activated by upstream pathways via RIP homotypic interaction motif (RHIM)-dependent protein-protein interactions with the three additional proteins in the mammalian genome that contain conserved RHIMs, namely RIPK1, TRIF and ZBP1/DAI [90, 91]. RIPK1 links RIPK3 to death receptor (DR) signalling: TRIF mediates RIPK3 activation downstream of TLR3 and TLR4, whilst ZBP1/DAI mediates RIPK3 activation in response to certain viruses [91] and endogenous Z-form nucleic acid [92]. Importantly, caspase-8 inhibits RIPK3 activation and the induction of necroptosis by mechanisms that likely involve cleavage of RIPK1/RIPK3 complex components. Necroptosis execution requires the RIPK3-dependent phosphorylation of MLKL. Phosphorylated MLKL induces plasma membrane damage via incompletely characterized mechanisms [91, 93].
Pathogens utilize a plethora of mechanisms to inhibit necroptosis. Several bacterial peptidases expressed by EPEC and Shigella degrade components of necroptotic machinery [94, 95]. However, interference of necroptosis seems to be a common pathogenic strategy of viral pathogens. Viral inhibitor of RIP activation (vIRA) proteins of MCMV (M45) can interact with TRIF, ZBP1, RIPK1, and RIPK3 via RHIM homotypic interaction to impair necroptosis [96]. Unlike MCMV, human CMV (HCMV) ortholog of M45, UL45, does not contain a RHIM domain but efficiently inhibits necroptosis by acting downstream of RIPK3 and MLKL [97]. Cowpox virus expresses viral inducer of RIPK3 degradation (vIRD) triggering K48-linked ubiquitylation of RIPK3 and its proteasomal degradation [98]. Other poxviruses express viral MLKL-like proteins (vMLKL) and inhibit necroptosis by sequestering RIPK3 [99].
In view of the fact that caspase-8 is the central inhibitor of necroptosis, necroptosis has been frequently considered to have evolved as a “back-up” cell death mechanism when death receptor activation fails to kill an infected cell via apoptosis. Intriguingly, poxovirus crmA is able to preferentially inhibit caspase-8-mediated apoptosis without markedly altering caspase-8-mediated inhibition of necroptosis [100]. Herpes simplex virus (HSV)-1 and HSV-2 inhibit apoptosis via direct binding of caspase-8 by the large subunit (R1) of ribonucleotide reductase (RR). HSV-1 and HSV-2 R1 proteins (ICP6 and ICP10, respectively) also prevent necroptosis by inhibiting the interaction between RIPK1 and RIPK3 [101].
MLKLs contain a characteristic N-terminal four-helix bundle structure called the HeLo domain. This domain, named after fungal Het and LopB proteins, is commonly present in a number of cell death-inducing proteins in animals, fungi and plants [68,69,70, 102, 103]. In fungi, Het-S or Het-s (Heterokaryon incompatibility protein S/s) trigger hyphal death in heterokaryon incompatibility [69]. In plants, the N-terminal RPW8-like CC domains in RNLs (i.e., ADR1 and NRG1 family) are structurally similar to the HeLo domain [69, 78] and the N-terminal domains alone of the ADR1 and NRG1 are sufficient to cause HR cell death [104].
A conserved protein family across seed plants that structurally resembles animal MLKL was recently discovered [70]. Experiments using combinatorial mutants of the three Arabidopsis MLKLs (AtMLKLs) indicate that they act redundantly in conferring disease resistance mediated by TNLs but not CNLs [70]. Considering that the HeLo domain-containing RNLs are also required for TNL-mediated HR and immunity [68], it may be surmised that two distinctive HeLo domain-containing protein families, namely plant MLKL and RNL families, cooperatively participate in TNL-mediated immunity. Furthermore, the mobility of AtMLKLs on microtubules is linked to their immune output [70]. This is interesting, considering the fact that microtubules are attributed to the translocation of animal MLKLs from cytoplasmic necrosomes to the plasma membrane [105].Taken together, an analogous biochemical mode of action for plant and animal MLKL-mediated cell death and immunity is anticipated.
Iron-dependent lytic cell death
Ferroptosis is an iron-dependent, oxidative form of necrotic cell death that does not share genetic similarities with apoptosis, pyroptosis or necroptosis. In animals, ferroptosis can be triggered by depleting the cell of the amino acid cysteine, or by inhibiting phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4) [106]. In contrast to apoptosis, pyroptosis and necroptosis, ferroptotic cell death does not appear to involve molecularly defined cascades of events, but represents a distinct cellular death outcome involving iron-dependent peroxidation of lipids associated with plasma membrane damage [107]. During ferroptosis, a partial membrane rupture could cause ion influxes from extracellular spaces, which might activate further downstream cell death programme [108].
Lipid peroxidation has been long known to be involved in the pathogenesis of diverse infectious diseases, although knowledge about the role of ferroptosis in previous data dealing with lipid peroxidation during the course of infection is lacking. In particular, ROS are frequently formed after viral infections and an imbalance in cellular redox responses has been viewed as one the of the drivers of virus-induced inflammatory destruction of a tissue [109]. Therefore, one can speculate that oxidative stress, lipid peroxidation and ferroptosis can participate in various pathological states of viral infection. In line with this notion, T cell lipid peroxidation and ferroptosis were shown to prevent immunity against Choriomeningitis virus [110]. Similar to viral infection, a few bacterial pathogens have been associated with ferroptosis of the host cell. M. tuberculosis has been characterized as a trigger of pathological ferroptosis in macrophages [111]. P. aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium [112]. Whether and how ferroptosis interferes and impacts on the course of host–pathogen interaction in animals will constitute future experimental challenges.
In plants, a ferroptosis-like process has been shown to take place in rice upon NLR-mediated recognition of the fungal pathogen Magnaporthe oryzae [113]. In this study, ferric ions (Fe3+) and ROS were shown to focally accumulate in cells undergoing HR cell death and neighbouring areas. Importantly, the ferroptosis inhibitors deferoxamine and ferrostatin-1 attenuated HR levels. The degree of conservation of ferroptosis between plants and animals and how extended is this type of cell death within the green lineages remain to be determined.
Loss of plasma membrane integrity in plant and animal cell death
It is becoming increasingly clear that a transient or permanent loss of endomembrane integrity is a key step of many forms of cell death both in animals (pyroptosis, necroptosis, ferroptosis, apoptosis) and plants (HR). In the case of animal cell death, plasma membrane rupture and catastrophic cell lysis are facilitated by the transmembrane protein Ninjurin-1 (NINJ1), upon oligomerization of its amphiphatic extracellular α-helix [114]. An amphiphatic α-helix carries both but segregated hydrophilic and hydrophobic surfaces, a common feature of cation channel-forming pores or pore-forming proteins/toxins [72, 79, 93] (Fig. 2).
In plants, an amphiphatic helical domain is located at the N-termini of many CNLs -including ZAR1, MLA10, Sr33 [72, 115, 116] and they share the “MADA” motif named after the consensus MADAxVSFxVxKLxxLLxxEx [117] (Fig. 2). Although this motif could be attributed to their cation channel functions associated with resistosomes, overexpression of the N-terminal part of NRC containing the “MADA” motif is sufficient to cause HR-like cell death [117]. This is reminiscent of lytic cell death caused by amphiphatic PSM-alpha3 (Staphylococcus aureus) [118]. Such an amphipathic feature is also present in the HeLo-helices of mouse, human, and plant MLKLs [70, 93] (Fig. 2C), although how MLKLs induce plasma membrane permeabilization is not well established [70, 91, 93].
How does the amphipathic helical domain cause membrane disruption? Hydrophilic surfaces of the amphipathic helical domain could be buried inside the acyl chains of the phospholipid bilayer of the plasma membrane, which would partially compromise integrity of cell membrane like a surfactant [119] (Fig. 2E). Experimental evidence suggests that oligomerization of amphipathic helical proteins enchases or are required for their cell lytic activities [114, 117, 118]. Partial membrane damage leading to formation of a transient pore can cause ion fluxes, which might activate a cell death programme as described in the case of ferroptosis [108] (Fig. 2E). This model suggests that cell death can be initiated by a range of proteins carrying an amphipathic helical domain, although they may not form well-organised pores or channels and this model might apply to the MLKL-induced plasma membrane permeabilization as previously proposed [93].
Signalling molecules released from dying cells
Conceptually, lytic cell death including pyroptosis, necroptosis and ferroptosis in animals has been originally considered to cause an uncontrolled release of cellular contents and exposure of DAMPs, since the cell boundary is lost due to membrane rupture (Fig. 3A). It is however increasingly evident that different modes of regulated necrosis provoke the release of a distinct battery of DAMPs. Accordingly, HMGB1 released by pyroptosis is hyperacetylated, which is not the case when it is released from necrotic or apoptotic cells [120]. Furthermore, in contrast to initial views, apoptotic cells can also release different factors such as nuclear DNA (below 180 bp), ATP (early phase) and HMGB1 (late phase) [121].
The composition and signatures of apoptotic and necroptotic DAMPs might be qualitatively and quantitatively different. In apoptosis, caspases process different factors such as phospholipase A2 (PLA2) and inhibitor of caspase-activated DNase (called ICAD) to induce phagocytosis and to produce small and weak immunostimulatory DNA fragments. In addition, full-length IL-33 is released during necroptosis, but during apoptosis it can undergo caspase-dependent proteolysis into a non-immunogenic form [122]. DAMP release has been significantly less studied in the context of necroptosis. However, as membrane integrity is lost in necroptosis in a fashion similar to necrosis, theoretically, necroptosis also results in the release of DAMPs and other cellular components including, but not limited to, HMGB1, ATP, histones, HSPs, exRNAs, and cfDNA. Pyroptosis is typically known for the release of IL-1ß and IL-18, though some other DAMPs such as HMGB1, ATP and cfDNA can be released by cells undergoing pyroptosis. Although it is a relatively new concept and less has been elucidated yet, HMGB1 and cfDNA have been regarded to be released by ferroptosis [123].
Plant cells also release a large range of DAMPs or phytocytokines into the surrounding environment upon pathogen perception, to alert neighbouring cells and activate immunity, including peptides, nucleotides, sugars and amino acids [124,125,126] (Fig. 3B). However, it remains to be established how dying and dead cells contribute to the release of signalling molecules during plant-pathogen interactions. A hint for such a mechanism could be inferred from plant responses to wounding, oxidative, and biotic stresses [127, 128]. Upon mechanical damage, the Ca2+-activated metacaspase AtMC4 cleaves a 23-residue peptide called PEP1 from its precursor PROPEP1. As PROPEP1 and PEP1 do not contain canonical signal sequences for extracellular secretion [127], plasma membrane damage during cell death can promote the release of the peptide (Fig. 3B). The released PEP1 is recognized by its cognate plasma membrane localised receptor [129]. Other extracellularly released DAMPs upon membrane damage may include extracellular ATP [130] and oligogalacturonides, a constituent of the plant cell wall [131]. Collectively, these examples provide a mechanistic clue for how DAMPs that lack the signal sequences for secretion could be released into extracellular spaces upon membrane disintegration. However, this field of research is still in its infancy and these molecules could as well be released by alternative secretion mechanisms that are so far unknown.
Calcium entry as a danger signal driving membrane repair to counteract cell death machinery
While a long-lasting Ca2+ influx would facilitate HR cell death, Ca2+ entry or leakage (Fig. 2) caused by plasma membrane damage or pore forming proteins can activate membrane repair machinery [132, 133]. Therefore, the point where membrane damage exceeds the capacity for membrane repair would define “Point-of-no-return” of dying cells. In animals, the repair machinery removing lesions from the plasma membrane includes endocytosis, ESCRT-complex mediated shedding, exocytosis-mediated patching and annexin-mediated sealing [132, 133]. Although these processes can seal off lesions of Ca2+ entry, failure to prevent Ca2+ entry can result in a prolonged Ca2+ influx.
In animals, increases in cytosolic Ca2+ have long been shown to cause cell death with or without engaging cell death machinery. Our knowledge about the molecular events and physiological relevance of these findings is however still fragmentary. A Ca2+-related mechanism was proposed more than two decades ago to explain necrosis incurred in cardiac ischemia and muscular dystrophy by involving phospholipases and proteases, leading to release of free fatty acids and their breakdown products and to degradation of cytoskeletal proteins [134]. Under pathological conditions of cellular cytosolic Ca2+ overload, particularly in association with oxidative stress, alteration of mitochondrial Ca2+ uptake causes cellular damage and necrosis. Long-lasting opening of mitochondrial permeability transition pore (PTP) under high Ca2+ concentrations induces mitochondrial damage and triggers cell death which is accompanied by mitochondrial apoptosis [135], the biologic role of which remain elusive. The prolonged and elevated cytoplasmic Ca2+ concentration was shown to cause irreversible formation of ceramide platforms within the plasma membrane, which is proposed to induce a proximity of FAS (CD95) receptors to fully activate caspase-8 [136]. The generation of ceramide-enriched membrane is irreversible, thereby defining the ‘Point-of-no-return” of dying cells [137]. Mutations in the gene encoding NLRP3 cause a spectrum of autoinflammatory diseases known as cryopyrin-associated periodic syndromes (CAPS). Increased extracellular Ca2+ concentrations trigger activation of the NLRP3 inflammasome in monocytes through Ca2+-sensing receptor (CaSR) which causes inflammation in human cryopyrin-associated periodic syndrome (CAPS) [138, 139].
In plants, the prolonged and elevated cytoplasmic Ca2+ concentration is tightly associated with HR [140]. Whether plants have genetically encoded-machinery to sabotage membrane repair machinery or to detect a sustained Ca2+ influx for final cell death executioner activation during HR remains to be determined.
Concluding remarks
Traditional studies focusing on the role of cell death and its regulation in plants and animals mainly considered caspase-induced apoptosis as the only regulated cell death process and viewed death as the ultimate end point. Those initial studies failed to identify shared molecular features of cell death among the two kingdoms. In contrast to apoptosis, plant cell death is usually accompanied by membrane disintegration and the characteristic features of apoptosis are not induced in plants, including caspase activation. The recent discovery of molecularly controlled pathways of lytic cell death in animals has redefined necrosis as a regulated cell death process. Accumulating evidence in the past decades identified regulated necrosis as a powerful trigger of inflammation, indicating that the mediators of cell death additionally control inflammatory signalling. In particular caspases, originally described as engines of apoptosis can, however, independently control lytic cell death and membrane rupture. Accordingly, the lack of caspase-8 causes lethality in mice because of its failure to inhibit necroptosis, but not because of its failure to induce apoptosis.
Membrane pore formation has indeed emerged as a major shared characteristic between plant and animal immunogenic cell death. This has become particularly intriguing with i) the discovery of plant resistosomes comprising activated NLRs that can directly form pores in the membrane that allow Ca2+ influx and ii) the characterization of functional/structural homologs of animal MLKLs in plants [70], revealing necroptosis as a relevant lytic cell death option in plants. Besides, the discovery of GSDM-like pore-forming proteins outside of mammals and vertebrates indicates that the GSDM family is of extremely old evolutionary origin and likely a core-component of immunity in divergent eukaryotic and prokaryotic taxa [141]. It is important to note that some recently described GSDM-like proteins in fungi show remarkable structural similarity to animal proteins [142]. One important task for future experimental work will be to identify and characterize plant GSDM-like proteins. This may pave the way for further identification of proteases controlling GSDM function and membrane integrity in plants.
References
Coll NS, Epple P, Dangl JL. Programmed cell death in the plant immune system. Cell Death Differ. 2011;18:1247–56.
Lamkanfi M, Dixit VM. Manipulation of host cell death pathways during microbial infections. Cell Host Microbe. 2010;8:44–54.
Taylor CB. Defense responses in plants and animals–more of the same. Plant Cell. 1998;10:873–6.
Matzinger P. The danger model: a renewed sense of self. Science. 2002;296:301–5.
Green DR, Ferguson T, Zitvogel L, Kroemer G. Immunogenic and tolerogenic cell death. Nat Rev Immunol. 2009;9:353–63.
Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.
Saur IML, Panstruga R, Schulze-Lefert P. NOD-like receptor-mediated plant immunity: from structure to cell death. Nat Rev Immunol. 2021;21:305–18.
Pitsili E, Phukan UJ, Coll NS. Cell Death in Plant Immunity. Cold Spring Harb Perspect Biol. 2020;12:a036483.
Li L, Weigel D. One hundred years of hybrid necrosis: hybrid autoimmunity as a window into the mechanisms and evolution of plant-pathogen interactions. Annu Rev Phytopathol. 2021;59:213–37.
Ngou BPM, Ahn HK, Ding P, Jones JDG. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. 2021;592:110–5.
Yuan M, Jiang Z, Bi G, Nomura K, Liu M, Wang Y, et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature. 2021;592:105–9.
Sharon A, Shlezinger N. Fungi infecting plants and animals: killers, non-killers, and cell death. PLoS Pathog. 2013;9:e1003517.
Fritsch M, Gunther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, et al. Caspase-8 is the molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 2019;575:683–7.
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, et al. Activity of caspase-8 determines plasticity between cell death pathways. Nature. 2019;575:679–82.
Ramirez MLG, Salvesen GS. A primer on caspase mechanisms. Semin Cell Dev Biol. 2018;82:79–85.
Salvesen GS, Dixit VM. Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA. 1999;96:10964–7.
Muzio M, Chinnaiyan AM, Kischkel FC, O’Rourke K, Shevchenko A, Ni J, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death–inducing signaling complex. Cell. 1996;85:817–27.
Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 1996;86:147–57.
Ray CA, Black RA, Kronheim SR, Greenstreet TA, Sleath PR, Salvesen GS, et al. Viral inhibition of inflammation: cowpox virus encodes an inhibitor of the interleukin-1 beta converting enzyme. Cell. 1992;69:597–604.
Miura M, Friedlander RM, Yuan J. Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc Natl Acad Sci USA. 1995;92:8318–22.
Tewari M, Dixit VM. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus crmA gene product. J Biol Chem. 1995;270:3255–60.
Clem RJ, Fechheimer M, Miller LK. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science. 1991;254:1388–90.
Zhou Q, Krebs JF, Snipas SJ, Price A, Alnemri ES, Tomaselli KJ, et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases. Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry. 1998;37:10757–65.
Thome M, Schneider P, Hofmann K, Fickenscher H, Meinl E, Neipel F, et al. Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors. Nature. 1997;386:517–21.
Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol. 1993;67:2168–74.
Kvansakul M, Caria S, Hinds MG. The Bcl-2 family in host-virus interactions. Viruses 2017;9:290–309.
Ray K, Marteyn B, Sansonetti PJ, Tang CM. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol. 2009;7:333–40.
Robinson KS, Aw R. The commonalities in bacterial effector inhibition of apoptosis. Trends Microbiol. 2016;24:665–80.
Joshi SG, Francis CW, Silverman DJ, Sahni SK. Nuclear factor kappa B protects against host cell apoptosis during Rickettsia rickettsii infection by inhibiting activation of apical and effector caspases and maintaining mitochondrial integrity. Infect Immun. 2003;71:4127–36.
Clark CS, Maurelli AT. Shigella flexneri inhibits staurosporine-induced apoptosis in epithelial cells. Infect Immun. 2007;75:2531–9.
Xu J, Jiang S, Li Y, Li M, Cheng Q, Zhao D, et al. Caspase-3 serves as an intracellular immune receptor specific for lipopolysaccharide in oyster Crassostrea gigas. Dev Comp Immunol. 2016;61:1–12.
Gunther SD, Fritsch M, Seeger JM, Schiffmann LM, Snipas SJ, Coutelle M, et al. Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nat Microbiol. 2020;5:354–67.
Pearson JS, Giogha C, Ong SY, Kennedy CL, Kelly M, Robinson KS, et al. A type III effector antagonizes death receptor signalling during bacterial gut infection. Nature. 2013;501:247–51.
Fischer A, Harrison KS, Ramirez Y, Auer D, Chowdhury SR, Prusty BK, et al. Chlamydia trachomatis-containing vacuole serves as deubiquitination platform to stabilize Mcl-1 and to interfere with host defense. Elife. 2017;6:e21465.
Ying S, Seiffert BM, Hacker G, Fischer SF. Broad degradation of proapoptotic proteins with the conserved Bcl-2 homology domain 3 during infection with Chlamydia trachomatis. Infect Immun. 2005;73:1399–403.
Arnett E, Weaver AM, Woodyard KC, Montoya MJ, Li M, Hoang KV, et al. PPARgamma is critical for Mycobacterium tuberculosis induction of Mcl-1 and limitation of human macrophage apoptosis. PLoS Pathog. 2018;14:e1007100.
Cherla R, Zhang Y, Ledbetter L, Zhang G. Coxiella burnetii inhibits neutrophil apoptosis by exploiting survival pathways and antiapoptotic protein Mcl-1. Infect Immun 2018;86:e00504-17.
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21:85–100.
Salguero-Linares J, Coll NS. Plant proteases in the control of the hypersensitive response. J Exp Bot. 2019;70:2087–95.
Salvesen GS, Hempel A, Coll NS. Protease signaling in animal and plant-regulated cell death. FEBS J. 2016;283:2577–98.
Bonneau L, Ge Y, Drury GE, Gallois P. What happened to plant caspases? J Exp Bot. 2008;59:491–9.
Minina EA, Staal J, Alvarez VE, Berges JA, Berman-Frank I, Beyaert R, et al. Classification and nomenclature of metacaspases and paracaspases: no more confusion with caspases. Mol Cell. 2020;77:927–9.
Coll NS, Vercammen D, Smidler A, Clover C, Van Breusegem F, Dangl JL, et al. Arabidopsis type I metacaspases control cell death. Science. 2010;330:1393–7.
Zhu P, Yu XH, Wang C, Zhang Q, Liu W, McSweeney S, et al. Structural basis for Ca(2+)-dependent activation of a plant metacaspase. Nat Commun. 2020;11:2249.
McLuskey K, Rudolf J, Proto WR, Isaacs NW, Coombs GH, Moss CX, et al. Crystal structure of a Trypanosoma brucei metacaspase. Proc Natl Acad Sci USA. 2012;109:7469–74.
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 2016;16:407–20.
Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 2015;526:666–71.
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 2015;526:660–5.
Vande Walle L, Lamkanfi M. Pyroptosis. Curr Biol. 2016;26:R568–r572.
Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, et al. Non-canonical inflammasome activation targets caspase-11. Nature. 2011;479:117–21.
Brodsky IE, Palm NW, Sadanand S, Ryndak MB, Sutterwala FS, Flavell RA, et al. A Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe. 2010;7:376–87.
Chung LK, Park YH, Zheng Y, Brodsky IE, Hearing P, Kastner DL, et al. The Yersinia virulence factor YopM hijacks host kinases to inhibit type iii effector-triggered activation of the pyrin inflammasome. Cell Host Microbe. 2016;20:296–306.
Yang J, Lee KM, Park S, Cho Y, Lee E, Park JH, et al. Bacterial secretant from pseudomonas aeruginosa dampens inflammasome activation in a quorum sensing-dependent manner. Front Immunol. 2017;8:333.
Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med. 2007;204:3235–45.
Paciello I, Silipo A, Lembo-Fazio L, Curcurù L, Zumsteg A, Noël G, et al. Intracellular Shigella remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proc Natl Acad Sci USA. 2013;110:E4345–4354.
Lagrange B, Benaoudia S, Wallet P, Magnotti F, Provost A, Michal F, et al. Human caspase-4 detects tetra-acylated LPS and cytosolic Francisella and functions differently from murine caspase-11. Nat Commun. 2018;9:242.
Kobayashi T, Ogawa M, Sanada T, Mimuro H, Kim M, Ashida H, et al. The Shigella OspC3 effector inhibits caspase-4, antagonizes inflammatory cell death, and promotes epithelial infection. Cell Host Microbe. 2013;13:570–83.
Li Z, Liu W, Fu J, Cheng S, Xu Y, Wang Z, et al. Shigella evades pyroptosis by arginine ADP-riboxanation of caspase-11. Nature. 2021;599:290–5.
Johnston JB, Barrett JW, Nazarian SH, Goodwin M, Ricciuto D, Wang G, et al. A poxvirus-encoded pyrin domain protein interacts with ASC-1 to inhibit host inflammatory and apoptotic responses to infection. Immunity. 2005;23:587–98.
Song Y, Wu X, Xu Y, Zhu J, Li J, Zou Z, et al. HPV E7 inhibits cell pyroptosis by promoting TRIM21-mediated degradation and ubiquitination of the IFI16 inflammasome. Int J Biol Sci. 2020;16:2924–37.
Gregory SM, Davis BK, West JA, Taxman DJ, Matsuzawa S, Reed JC, et al. Discovery of a viral NLR homolog that inhibits the inflammasome. Science. 2011;331:330–4.
Komune N, Ichinohe T, Ito M, Yanagi Y. Measles virus V protein inhibits NLRP3 inflammasome-mediated interleukin-1β secretion. J Virol. 2011;85:13019–26.
Moriyama M, Chen IY, Kawaguchi A, Koshiba T, Nagata K, Takeyama H, et al. The RNA- and TRIM25-binding domains of influenza virus NS1 protein are essential for suppression of NLRP3 inflammasome-mediated interleukin-1β secretion. J Virol. 2016;90:4105–14.
Lei X, Zhang Z, Xiao X, Qi J, He B, Wang J. Enterovirus 71 Inhibits Pyroptosis through Cleavage of Gasdermin D. J Virol. 2017;91.
Förderer A, Yu D, Li E, Chai J. Resistosomes at the interface of pathogens and plants. Curr Opin in Plant Biol. 2022;67:102212.
Maekawa T, Kufer TA, Schulze-Lefert P. NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol. 2011;12:817–26.
Jacob F, Vernaldi S, Maekawa T. Evolution and conservation of plant NLR functions. Front Immunol. 2013;4:297.
Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL. Help wanted: helper NLRs and plant immune responses. Curr Opin Plant Biol. 2019;50:82–94.
Daskalov A, Habenstein B, Sabate R, Berbon M, Martinez D, Chaignepain S, et al. Identification of a novel cell death-inducing domain reveals that fungal amyloid-controlled programmed cell death is related to necroptosis. Proc Natl Acad Sci USA. 2016;113:2720–5.
Mahdi LK, Huang M, Zhang X, Nakano RT, Kopp LB, Saur IML, et al. Discovery of a family of mixed lineage kinase domain-like proteins in plants and their role in innate immune signaling. Cell Host Microbe. 2020;28:813–24.e816.
Förderer A, Li E, Lawson A, Deng Y, Sun Y, Logemann E, et al. A wheat resistosome defines common principles of immune receptor channels. BioRxiv. https://doi.org/10.1101/2022.03.23.485489
Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, et al. Reconstitution and structure of a plant NLR resistosome conferring immunity. Science. 2019;364:eaav5870.
Ngou BPM, Ding P, Jones JD. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell. 2022;34:1447–78.
Kim NH, Jacob P, Dangl JL. Con-Ca(2+) -tenating plant immune responses via calcium-permeable cation channels. N. Phytol. 2022;234:813–8.
Godson A, van der Hoorn RAL. The front line of defence: a meta-analysis of apoplastic proteases in plant immunity. J Exp Bot. 2021;72:3381–94.
Santa Cruz Garcia AB, Schnur KP, Malik AB, Mo GCH. Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry. Nat Commun. 2022;13:52.
Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, et al. Ligand-triggered allosteric ADP release primes a plant NLR complex. Science. 2019;364:eaav5868.
Jacob P, Kim NH, Wu F, El-Kasmi F, Chi Y, Walton WG, et al. Plant “helper” immune receptors are Ca(2+)-permeable nonselective cation channels. Science. 2021;373:420–5.
Bi G, Su M, Li N, Liang Y, Dang S, Xu J, et al. The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell. 2021;184:3528–41 e3512.
He SY, Huang HC, Collmer A. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell. 1993;73:1255–66.
Martin R, Qi T, Zhang H, Liu F, King M, Toth C, et al. Structure of the activated ROQ1 resistosome directly recognizing the pathogen effector XopQ. Science. 2020;370:eabd9993.
Ma S, Lapin D, Liu L, Sun Y, Song W, Zhang X, et al. Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science. 2020;370:eabe3069.
Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW. Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell. 2003;15:809–34.
Yu D, Song W, Yong E, Tan J, Liu L, Cao Y, et al. TIR domains of plant immune receptors are 2’,3’-cAMP/cGMP synthetases mediating cell death. Cell. 2022;185:2370–86.
Wan L, Essuman K, Anderson RG, Sasaki Y, Monteiro F, Chung EH, et al. TIR domains of plant immune receptors are NAD(+)-cleaving enzymes that promote cell death. Science. 2019;365:799–803.
Huang S, Jia A, Song W, Hessler G, Meng Y, Sun Y, et al. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity. 2022. https://doi.org/10.1126/science.abq3297
Jia A, Huang S, Song W, Wang J, Meng Y, Sun Y, et al. TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity. Science. 2022. https://doi.org/10.1126/science.abq8180
Shidore T, Broeckling CD, Kirkwood JS, Long JJ, Miao J, Zhao B, et al. The effector AvrRxo1 phosphorylates NAD in planta. PLoS Pathog. 2017;13:e1006442.
Kong G, Zhao Y, Jing M, Huang J, Yang J, Xia Y, et al. The activation of phytophthora effector Avr3b by plant cyclophilin is required for the nudix hydrolase activity of Avr3b. PLoS Pathog. 2015;11:e1005139.
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature. 2015;517:311–20.
Grootjans S, Vanden Berghe T, Vandenabeele P. Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ. 2017;24:1184–95.
Jiao H, Wachsmuth L, Kumari S, Schwarzer R, Lin J, Eren RO, et al. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation. Nature. 2020;580:391–5.
Flores-Romero H, Ros U, Garcia-Saez AJ. Pore formation in regulated cell death. EMBO J. 2020;39:e105753.
Ashida H, Sasakawa C, Suzuki T. A unique bacterial tactic to circumvent the cell death crosstalk induced by blockade of caspase-8. EMBO J. 2020;39:e104469.
Pearson JS, Giogha C, Mühlen S, Nachbur U, Pham CL, Zhang Y, et al. EspL is a bacterial cysteine protease effector that cleaves RHIM proteins to block necroptosis and inflammation. Nat Microbiol. 2017;2:16258.
Upton JW, Kaiser WJ, Mocarski ES. DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host Microbe. 2012;11:290–7.
Omoto S, Guo H, Talekar GR, Roback L, Kaiser WJ, Mocarski ES. Suppression of RIP3-dependent necroptosis by human cytomegalovirus. J Biol Chem. 2015;290:11635–48.
Liu Z, Nailwal H, Rector J, Rahman MM, Sam R, McFadden G, et al. A class of viral inducer of degradation of the necroptosis adaptor RIPK3 regulates virus-induced inflammation. Immunity. 2021;54:247–58.e247.
Petrie EJ, Sandow JJ, Lehmann WIL, Liang LY, Coursier D, Young SN, et al. Viral MLKL homologs subvert necroptotic cell death by sequestering cellular RIPK3. Cell Rep. 2019;28:3309–19.e3305.
Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471:363–7.
Guo H, Omoto S, Harris PA, Finger JN, Bertin J, Gough PJ, et al. Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe. 2015;17:243–51.
Barragan CA, Wu R, Kim ST, Xi W, Habring A, Hagmann J, et al. RPW8/HR repeats control NLR activation in Arabidopsis thaliana. PLoS Genet. 2019;15:e1008313.
Bentham AR, Zdrzalek R, De la Concepcion JC, Banfield MJ. Uncoiling CNLs: Structure/Function Approaches to Understanding CC Domain Function in Plant NLRs. Plant Cell Physiol. 2018;59:2398–408.
Collier SM, Hamel LP, Moffett P. Cell death mediated by the N-terminal domains of a unique and highly conserved class of NB-LRR protein. Mol Plant Microbe Interact. 2011;24:918–31.
Samson AL, Zhang Y, Geoghegan ND, Gavin XJ, Davies KA, Mlodzianoski MJ, et al. MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun. 2020;11:3151.
Dixon SJ. Ferroptosis: bug or feature? Immunol Rev. 2017;277:150–7.
Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22:266–82.
Pedrera L, Espiritu RA, Ros U, Weber J, Schmitt A, Stroh J, et al. Ferroptotic pores induce Ca(2+) fluxes and ESCRT-III activation to modulate cell death kinetics. Cell Death Differ. 2021;28:1644–57.
Camini FC, da Silva Caetano CC, Almeida LT, de Brito, Magalhães CL. Implications of oxidative stress on viral pathogenesis. Arch Virol. 2017;162:907–17.
Matsushita M, Freigang S, Schneider C, Conrad M, Bornkamm GW, Kopf M. T cell lipid peroxidation induces ferroptosis and prevents immunity to infection. J Exp Med. 2015;212:555–68.
Amaral EP, Costa DL, Namasivayam S, Riteau N, Kamenyeva O, Mittereder L, et al. A major role for ferroptosis in Mycobacterium tuberculosis-induced cell death and tissue necrosis. J Exp Med. 2019;216:556–70.
Dar HH, Tyurina YY, Mikulska-Ruminska K, Shrivastava I, Ting HC, Tyurin VA, et al. Pseudomonas aeruginosa utilizes host polyunsaturated phosphatidylethanolamines to trigger theft-ferroptosis in bronchial epithelium. J Clin Invest. 2018;128:4639–53.
Dangol S, Chen Y, Hwang BK, Jwa NS. Iron- and reactive oxygen species-dependent ferroptotic cell death in rice-magnaporthe oryzae interactions. Plant Cell. 2019;31:189–209.
Kayagaki N, Kornfeld OS, Lee BL, Stowe IB, O’Rourke K, Li Q, et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature. 2021;591:131–6.
Casey LW, Lavrencic P, Bentham AR, Cesari S, Ericsson DJ, Croll T, et al. The CC domain structure from the wheat stem rust resistance protein Sr33 challenges paradigms for dimerization in plant NLR proteins. Proc Natl Acad Sci USA. 2016;113:12856–61.
Maekawa T, Cheng W, Spiridon LN, Toller A, Lukasik E, Saijo Y, et al. Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe. 2011;9:187–99.
Adachi H, Contreras MP, Harant A, Wu CH, Derevnina L, Sakai T, et al. An N-terminal motif in NLR immune receptors is functionally conserved across distantly related plant species. Elife. 2019;8:e49956.
Tayeb-Fligelman E, Tabachnikov O, Moshe A, Goldshmidt-Tran O, Sawaya MR, Coquelle N, et al. The cytotoxic Staphylococcus aureus PSMα3 reveals a cross-α amyloid-like fibril. Science. 2017;355:831–3.
Auluck PK, Caraveo G, Lindquist S. alpha-Synuclein: membrane interactions and toxicity in Parkinson’s disease. Annu Rev Cell Dev Biol. 2010;26:211–33.
Yang H, Wang H, Chavan SS, Andersson U. High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol Med. 2015;21:S6–s12.
Jahr S, Hentze H, Englisch S, Hardt D, Fackelmayer FO, Hesch RD, et al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 2001;61:1659–65.
Kaczmarek A, Vandenabeele P, Krysko DV. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity. 2013;38:209–23.
Murao A, Aziz M, Wang H, Brenner M, Wang P. Release mechanisms of major DAMPs. Apoptosis. 2021;26:152–62.
Gust AA, Pruitt R, Nurnberger T. Sensing danger: key to activating plant immunity. Trends Plant Sci. 2017;22:779–91.
Hou S, Liu Z, Shen H, Wu D. Damage-associated molecular pattern-triggered immunity in plants. Front Plant Sci. 2019;10:646.
Hou S, Liu D, He P. Phytocytokines function as immunological modulators of plant immunity. Stress Biol. 2021;1:8.
Hander T, Fernandez-Fernandez AD, Kumpf RP, Willems P, Schatowitz H, Rombaut D, et al. Damage on plants activates Ca(2+)-dependent metacaspases for release of immunomodulatory peptides. Science. 2019;363:eaar7486.
Wrzaczek M, Vainonen JP, Stael S, Tsiatsiani L, Help-Rinta-Rahko H, Gauthier A, et al. GRIM REAPER peptide binds to receptor kinase PRK5 to trigger cell death in Arabidopsis. EMBO J. 2015;34:55–66.
Yamaguchi Y, Huffaker A. Endogenous peptide elicitors in higher plants. Curr Opin Plant Biol. 2011;14:351–7.
Choi J, Tanaka K, Cao Y, Qi Y, Qiu J, Liang Y, et al. Identification of a plant receptor for extracellular ATP. Science. 2014;343:290–4.
Brutus A, Sicilia F, Macone A, Cervone F, De, Lorenzo G. A domain swap approach reveals a role of the plant wall-associated kinase 1 (WAK1) as a receptor of oligogalacturonides. Proc Natl Acad Sci USA. 2010;107:9452–7.
Andrews NW, Corrotte M. Plasma membrane repair. Curr Biol. 2018;28:R392–R397.
Jimenez AJ, Perez F. Plasma membrane repair: the adaptable cell life-insurance. Curr Opin Cell Biol. 2017;47:99–107.
Kristián T, Siesjö BK. Calcium in ischemic cell death. Stroke. 1998;29:705–18.
Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, et al. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta. 2009;1787:335–44.
Grassmé H, Cremesti A, Kolesnick R, Gulbins E. Ceramide-mediated cluster Grassmé ing is required for CD95-DISC formation. Oncogene. 2003;22:5457–70.
Babiychuk EB, Monastyrskaya K, Potez S, Draeger A. Intracellular Ca(2+) operates a switch between repair and lysis of streptolysin O-perforated cells. Cell Death Differ. 2009;16:1126–34.
Lee G-S, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and Camp. Nature. 2012;492:123–7.
Rossol M, Pierer M, Raulien N, Quandt D, Meusch U, Rothe K, et al. Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun. 2012;3:1329.
Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J. The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J. 2000;23:441–50.
Johnson AG, Wein T, Mayer ML, Duncan-Lowey B, Yirmiya E, Oppenheimer-Shaanan Y, et al. Bacterial gasdermins reveal an ancient mechanism of cell death. Science. 2022;375:221–5.
Clavé C, Dyrka W, Turcotte EA, Granger-Farbos A, Ibarlosa L, Pinson B, et al. Fungal gasdermin-like proteins are controlled by proteolytic cleavage. Proc Natl Acad Sci USA. 2022;119:e2109418119.
Funding
This work was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, SFB-1403–414786233 to T.M. and H.K.), a grant from the University of Cologne Centre of Excellence in Plant Sciences (T.M.). Research at CRAG was funded with grant PID2019-108595RB-I00 funded by MCIN/AEI/10.13039/501100011033 and through the “Severo Ochoa Programme for Centres of Excellence in R&D” (CEX2019-000902-S funded by MCIN/AEI/10.13039/501100011033) and by the CERCA Programme / Generalitat de Catalunya. Open Access funding enabled and organized by Projekt DEAL.
Author information
Authors and Affiliations
Contributions
TM, NC, and HM wrote the paper, edited the manuscript, and prepared the figures.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Edited by F Pentimalli
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Maekawa, T., Kashkar, H. & Coll, N.S. Dying in self-defence: a comparative overview of immunogenic cell death signalling in animals and plants. Cell Death Differ 30, 258–268 (2023). https://doi.org/10.1038/s41418-022-01060-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41418-022-01060-6
This article is cited by
-
Dying in self-defense: cell death signaling in animals and plants
Cell Death & Differentiation (2024)
-
Inflammasomes as regulators of mechano-immunity
EMBO Reports (2023)
-
How plants manage pathogen infection
EMBO Reports (2023)
-
Effect of respiratory tract co-colonizers on initial attachment of Neisseria meningitidis
Archives of Microbiology (2023)