Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evaluation of the gene fusion landscape in early onset sporadic rectal cancer reveals association with chromatin architecture and genome stability

Abstract

Gene fusions represent a distinct class of structural variants identified frequently in cancer genomes across cancer types. Several gene fusions exhibit gain of oncogenic function and thus have been the focus of development of efficient targeted therapies. However, investigation of fusion landscape in early-onset sporadic rectal cancer, a poorly studied colorectal cancer subtype prevalent in developing countries, has not been performed. Here, we present a comprehensive landscape of gene fusions in EOSRC and CRC using patient derived tumor samples and data from The Cancer Genome Atlas, respectively. Gene Ontology analysis revealed enrichment of unique biological process terms associated with 5′- and 3′- fusion partner genes. Extensive network analysis highlighted genes exhibiting significant promiscuity in fusion formation and their association with chromosome fragile sites. Investigation of fusion formation in the context of global chromatin architecture unraveled a novel mode of gene activation that arose from fusion between genes located in orthogonal chromatin compartments. The study provides novel evidence linking fusions to genome stability and architecture and unearthed a hitherto unidentified mode of gene activation in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spectrum of GF events identified in EOSRC and TCGA-CRC.
Fig. 2: GF network in EOSRC.
Fig. 3: Overlap between GF breakpoints and CFS.
Fig. 4: Association between chromatin architecture and GFs.
Fig. 5: Alteration in the expression levels of 3'-fusion partners.
Fig. 6: Validating transcript level changes of 3'-fusion partners from A-B GFs.
Fig. 7: Schematic representing activation of 3′ partner gene in A–B GFs.

Similar content being viewed by others

Data availability

All the raw sequencing data generated in this study has been submitted to the GEO database with accession ID GSE253106. The list of all primers used has been provided in table S5. Custom R codes used for generating figures can be accessed from the Github repository (https://github.com/asmitagpta/crc_genomics).

Code availability

Custom R codes used for generating figures can be accessed from the Github repository (https://github.com/asmitagpta/crc_genomics).

References

  1. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12:31–46.

    Article  CAS  PubMed  Google Scholar 

  2. Mitelman F, Johansson B, Mertens F. The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer. 2007;7:233–45.

    Article  CAS  PubMed  Google Scholar 

  3. Mitelman F, Johansson B, Mertens F. Fusion genes and rearranged genes as a linear function of chromosome aberrations in cancer. Nat Genet. 2004;36:331–4.

    Article  CAS  PubMed  Google Scholar 

  4. Gao F, Ling C, Shi L, Commins D, Zada G, Mack WJ, et al. Inversion-mediated gene fusions involving NAB2-STAT6 in an unusual malignant meningioma. Br J Cancer. 2013;109:1051–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Newman S, Hermetz KE, Weckselblatt B, Rudd MK. Next-generation sequencing of duplication CNVs reveals that most are tandem and some create fusion genes at breakpoints. Am J Hum Genet. 2015;96:208–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nowell PC, Hungerford DA. Chromosome studies in human leukemia. II Chronic granulocytic leukemia. J Natl Cancer Inst. 1961;27:1013–35.

    CAS  PubMed  Google Scholar 

  7. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007;7:441–53.

    Article  CAS  PubMed  Google Scholar 

  8. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N. Engl J Med. 2003;348:994–1004.

    Article  PubMed  Google Scholar 

  9. Kantarjian HM, Hochhaus A, Saglio G, De Souza C, Flinn IW, Stenke L, et al. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol. 2011;12:841–51.

    Article  CAS  PubMed  Google Scholar 

  10. Zhou T, Commodore L, Huang W-S, Wang Y, Thomas M, Keats J, et al. Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des. 2011;77:1–11.

    Article  CAS  PubMed  Google Scholar 

  11. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 1982;79:7824–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kramer MHH, Hermans J, Wijburg E, Philippo K, Geelen E, van Krieken JHJM, et al. Clinical Relevance of BCL2, BCL6, and MYC Rearrangements in Diffuse Large B-Cell Lymphoma. Blood. 1998;92:3152–62.

    Article  CAS  PubMed  Google Scholar 

  13. Liquori A, Ibañez M, Sargas C, Sanz MÁ, Barragán E, Cervera J. Acute promyelocytic leukemia: a constellation of molecular events around a single PML-RARA fusion gene. Cancers (Basel). 2020;12:624.

    Article  CAS  PubMed  Google Scholar 

  14. Romana SP, Poirel H, Leconiat M, Flexor MA, Mauchauffé M, Jonveaux P, et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood. 1995;86:4263–9.

    Article  CAS  PubMed  Google Scholar 

  15. Piette C, Suciu S, Clappier E, Bertrand Y, Drunat S, Girard S, et al. Differential impact of drugs on the outcome of ETV6-RUNX1 positive childhood B-cell precursor acute lymphoblastic leukaemia: results of the EORTC CLG 58881 and 58951 trials. Leukemia. 2018;32:244–8.

    Article  CAS  PubMed  Google Scholar 

  16. Irons RD, Stillman WS. The process of leukemogenesis. Environ Health Perspect. 1996;104:1239–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y, et al. Frequent overexpression of ETS-related gene-1 (ERG1) in prostate cancer transcriptome. Oncogene. 2005;24:3847–52.

    Article  CAS  PubMed  Google Scholar 

  18. Salagierski M, Schalken JA. Molecular diagnosis of prostate cancer: PCA3 and TMPRSS2:ERG gene fusion. J Urol. 2012;187:795–801.

    Article  CAS  PubMed  Google Scholar 

  19. Cui JJ, Tran-Dubé M, Shen H, Nambu M, Kung P-P, Pairish M, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54:6342–63.

    Article  CAS  PubMed  Google Scholar 

  20. Gao Q, Liang W-W, Foltz SM, Mutharasu G, Jayasinghe RG, Cao S, et al. Driver fusions and their implications in the development and treatment of human cancers. Cell Rep. 2018;23:227–238.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49.

    Article  PubMed  Google Scholar 

  22. Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, Laversanne M, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut. 2023;72:338–44.

    Article  PubMed  Google Scholar 

  23. Kumar R, Raman R, Kotapalli V, Gowrishankar S, Pyne S, Pollack JR, et al. Ca2+/nuclear factor of activated T cells signaling is enriched in early-onset rectal tumors devoid of canonical Wnt activation. J Mol Med. 2018;96:135–46.

    Article  CAS  PubMed  Google Scholar 

  24. Pagani F, Randon G, Guarini V, Raimondi A, Prisciandaro M, Lobefaro R, et al. The landscape of actionable gene fusions in colorectal cancer. Int J Mol Sci. 2019;20:E5319.

    Article  Google Scholar 

  25. Santos C, Sanz-Pamplona R, Salazar R. RET-fusions: a novel paradigm in colorectal cancer. Ann Oncol. 2018;29:1340–3.

    Article  CAS  PubMed  Google Scholar 

  26. Singh H, Li YY, Spurr LF, Shinagare AB, Abhyankar R, Reilly E, et al. Molecular characterization and therapeutic targeting of colorectal cancers harboring receptor tyrosine kinase fusions. Clin Cancer Res. 2021;27:1695–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Finnis M, Dayan S, Hobson L, Chenevix-Trench G, Friend K, Ried K, et al. Common chromosomal fragile site FRA16D mutation in cancer cells. Hum Mol Genet. 2005;14:1341–9.

    Article  CAS  PubMed  Google Scholar 

  28. O’Keefe LV, Richards RI. Common chromosomal fragile sites and cancer: Focus on FRA16D. Cancer Lett. 2006;232:37–47.

    Article  PubMed  Google Scholar 

  29. Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet. 2003;34:287–91.

    Article  CAS  PubMed  Google Scholar 

  30. Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, et al. Recurrent R-spondin fusions in colon cancer. Nature. 2012;488:660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bass AJ, Lawrence MS, Brace LE, Ramos AH, Drier Y, Cibulskis K, et al. Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion. Nat Genet. 2011;43:964–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sondka Z, Bamford S, Cole CG, Ward SA, Dunham I, Forbes SA. The COSMIC Cancer Gene Census: describing genetic dysfunction across all human cancers. Nat Rev Cancer. 2018;18:696–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu H, Singh S, Xie Z, Li X, Li H. Landscape characterization of chimeric RNAs in colorectal cancer. Cancer Lett. 2020;489:56–65.

    Article  CAS  PubMed  Google Scholar 

  34. Latysheva NS, Oates ME, Maddox L, Flock T, Gough J, Buljan M, et al. Molecular Principles of Gene Fusion Mediated Rewiring of Protein Interaction Networks in Cancer. Mol Cell. 2016;63:579–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mukherjee SB, Mukherjee S, Frenkel-Morgenstern M. Fusion proteins mediate alternation of protein interaction networks in cancers. Adv Protein Chem Struct Biol. 2022;131:165–76.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Freudenreich CH. An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell. 2007;27:367–79.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kumar R, Nagpal G, Kumar V, Usmani SS, Agrawal P, Raghava GPS. HumCFS: a database of fragile sites in human chromosomes. BMC Genomics. 2019;19:985.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kleeman SO, Koelzer VH, Jones HJ, Vazquez EG, Davis H, East JE, et al. Exploiting differential Wnt target gene expression to generate a molecular biomarker for colorectal cancer stratification. Gut. 2020;69:1092–103.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Zhai J, Wong CC, Chen H, Wang X, Ji J, et al. A novel amplification gene PCI domain containing 2 (PCID2) promotes colorectal cancer through directly degrading a tumor suppressor promyelocytic leukemia (PML). Oncogene. 2021;40:6641–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Foltz SM, Gao Q, Yoon CJ, Sun H, Yao L, Li Y, et al. Evolution and structure of clinically relevant gene fusions in multiple myeloma. Nat Commun. 2020;11:2666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang J, Boxer LM. Regulatory elements in the immunoglobulin heavy chain gene 3′-enhancers induce c-myc deregulation and lymphomagenesis in murine B cells. J Biol Chem. 2005;280:12766–73.

    Article  CAS  PubMed  Google Scholar 

  42. Norrman K, Fischer Y, Bonnamy B, Wolfhagen Sand F, Ravassard P, Semb H. Quantitative comparison of constitutive promoters in human ES cells. PLoS ONE. 2010;5:e12413.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hellman A, Zlotorynski E, Scherer SW, Cheung J, Vincent JB, Smith DI, et al. A role for common fragile site induction in amplification of human oncogenes. Cancer Cell. 2002;1:89–97.

    Article  CAS  PubMed  Google Scholar 

  44. Parada LA, McQueen PG, Misteli T. Tissue-specific spatial organization of genomes. Genome Biol. 2004;5:R44.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Afshari MK, Fehr A, Nevado PT, Andersson MK, Stenman G. Activation of PLAG1 and HMGA2 by gene fusions involving the transcriptional regulator gene NFIB. Genes Chromosomes Cancer. 2020;59:652–60.

    Article  CAS  PubMed  Google Scholar 

  46. Ter Steege EJ, Boer M, Timmer NC, Ammerlaan CM, Song J, Derksen PW, et al. R‐spondin‐3 is an oncogenic driver of poorly differentiated invasive breast cancer. J Pathol. 2022;258:289–99.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mesci A, Lucien F, Huang X, Wang EH, Shin D, Meringer M, et al. RSPO3 is a prognostic biomarker and mediator of invasiveness in prostate cancer. J Transl Med. 2019;17:125.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gu H, Tu H, Liu L, Liu T, Liu Z, Zhang W, et al. RSPO3 is a marker candidate for predicting tumor aggressiveness in ovarian cancer. Ann Transl Med. 2020;8:1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goplen D, Wang J, Enger PØ, Tysnes BB, Terzis AJA, Laerum OD, et al. Protein disulfide isomerase expression is related to the invasive properties of malignant glioma. Cancer Res. 2006;66:9895–902.

    Article  CAS  PubMed  Google Scholar 

  50. Wang R, Shang Y, Chen B, Xu F, Zhang J, Zhang Z, et al. Protein disulfide isomerase blocks the interaction of LC3II-PHB2 and promotes mTOR signaling to regulate autophagy and radio/chemo-sensitivity. Cell Death Dis. 2022;13:851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Banting GS, Barak O, Ames TM, Burnham AC, Kardel MD, Cooch NS, et al. CECR2, a protein involved in neurulation, forms a novel chromatin remodeling complex with SNF2L. Hum Mol Genet. 2005;14:513–24.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang M, Liu ZZ, Aoshima K, Cai WL, Sun H, Xu T, et al. CECR2 drives breast cancer metastasis by promoting NF-κB signaling and macrophage-mediated immune suppression. Sci Transl Med. 2022;14:eabf5473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol. 2010;395:1–10.

    Article  CAS  PubMed  Google Scholar 

  54. Pan H, Zhao Z, Deng Y, Zheng Z, Huang Y, Huang S, et al. The global, regional, and national early-onset colorectal cancer burden and trends from 1990 to 2019: results from the Global Burden of Disease Study 2019. BMC Public Health. 2022;22:1896.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Weber D, Ibn-Salem J, Sorn P, Suchan M, Holtsträter C, Lahrmann U, et al. Accurate detection of tumor-specific gene fusions reveals strongly immunogenic personal neo-antigens. Nat Biotechnol. 2022;40:1276–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carlson RV, Boyd KM, Webb DJ. The revision of the Declaration of Helsinki: past, present and future. Br J Clin Pharm. 2004;57:695–713.

    Article  Google Scholar 

  57. Bala P, Singh AK, Kavadipula P, Kotapalli V, Sabarinathan R, Bashyam MD. Exome sequencing identifies ARID2 as a novel tumor suppressor in early-onset sporadic rectal cancer. Oncogene. 2021;40:863–74.

    Article  CAS  PubMed  Google Scholar 

  58. Raman R, Kotapalli V, Adduri R, Gowrishankar S, Bashyam L, Chaudhary A, et al. Evidence for possible non-canonical pathway(s) driven early-onset colorectal cancer in India. Mol Carcinog. 2014;53:E181–186.

    Article  CAS  PubMed  Google Scholar 

  59. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Jia W, Qiu K, He M, Song P, Zhou Q, Zhou F, et al. SOAPfuse: an algorithm for identifying fusion transcripts from pairedendRNA-Seq data. Genome Biol. 2013;14:R12.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Uhrig S, Ellermann J, Walther T, Burkhardt P, Fröhlich M, Hutter B, et al. Accurate and efficient detection of gene fusionsfrom RNA sequencing data. Genome Res. 2021;31:448–60.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–5.

    Article  CAS  Google Scholar 

  63. Babiceanu M, Qin F, Xie Z, Jia Y, Lopez K, Janus N, et al. Recurrent chimeric fusion RNAs in non-cancer tissues and cells. Nucleic Acids Res. 2016;44:2859–72.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, et al. COSMIC: the Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019;47:D941–D947.

    Article  CAS  PubMed  Google Scholar 

  65. Zhao M, Sun J, Zhao Z. TSGene: a web resource for tumor suppressor genes. Nucleic Acids Res. 2013;41:D970–976.

    Article  CAS  PubMed  Google Scholar 

  66. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinforma. 2013;14:128.

    Article  Google Scholar 

  67. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Johnstone SE, Reyes A, Qi Y, Adriaens C, Hegazi E, Pelka K, et al. Large-scale topological changes restrain malignant progression in colorectal cancer. Cell. 2020;182:1474–1489.e23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li J, Fang K, Choppavarapu L, Yang K, Yang Y, Wang J, et al. Hi-C profiling of cancer spheroids identifies 3D-growth-specific chromatin interactions in breast cancer endocrine resistance. Clin Epigenet. 2021;13:175.

    Article  CAS  Google Scholar 

  74. Taberlay PC, Achinger-Kawecka J, Lun ATL, Buske FA, Sabir K, Gould CM, et al. Three-dimensional disorganization of the cancer genome occurs coincident with long-range genetic and epigenetic alterations. Genome Res. 2016;26:719–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Du Y, Gu Z, Li Z, Yuan Z, Zhao Y, Zheng X, et al. Dynamic interplay between structural variations and 3D genome organization in pancreatic cancer. Adv Sci (Weinh). 2022;9:e2200818.

    Article  PubMed  Google Scholar 

  76. Servant N, Varoquaux N, Lajoie BR, Viara E, Chen C-J, Vert J-P, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A, Lajoie BR, et al. Iterative correction of Hi-C data reveals hallmarks of chromosome organization. Nat Methods. 2012;9:999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaul A, Bhattacharyya S, Ay F. Identifying statistically significant chromatin contacts from Hi-C data with FitHiC2. Nat Protoc. 2020;15:991–1012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. 2018;19:125.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Servant N, Lajoie BR, Nora EP, Giorgetti L, Chen C-J, Heard E, et al. HiTC: exploration of high-throughput ‘C’ experiments. Bioinformatics. 2012;28:2843–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  82. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  83. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinforma. 2011;12:323.

    Article  CAS  Google Scholar 

  84. Kwei KA, Bashyam MD, Kao J, Ratheesh R, Reddy EC, Kim YH, et al. Genomic profiling identifies GATA6 as a candidate oncogene amplified in pancreatobiliary cancer. PLoS Genet. 2008;4:e1000081.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mandla Vasanth Kumar for his assistance in carrying out RT-PCR. A.G. received funding from the Women Scientist Scheme – A, Department of Science and Technology (DST-WOSA), Government of India and the National Postdoctoral Fellowship (NPDF) scheme, Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India. The authors thank Dr Pratyusha Bala for designing the RNA-Seq experiments and the Sophisticated Equipment Facility (SEF), CDFD, for Sanger Sequencing. The authors thank Dr Sara Anisa George, Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India, Dr Jaya S Tyagi, Department of Biotechnology, All India Institute of Medical Sciences, N. Delhi, India and Dr J Gowrishankar, Indian Institute of Science, Education and Research, Mohali, India, for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.D.B. and A.G. conceived the study; A.G. performed the computational analyses; A.G. and S.A. performed RT-PCR and RT-qPCR assays. A.G. and M.D.B. compiled and analyzed the data. A.G. and M.D.B. wrote and revised the manuscript.

Corresponding author

Correspondence to Murali Dharan Bashyam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A., Avadhanula, S. & Bashyam, M.D. Evaluation of the gene fusion landscape in early onset sporadic rectal cancer reveals association with chromatin architecture and genome stability. Oncogene 43, 2449–2462 (2024). https://doi.org/10.1038/s41388-024-03088-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-024-03088-z

Search

Quick links