Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HDAC7 is an actionable driver of therapeutic antibody resistance by macrophages from CLL patients

A Correction to this article was published on 22 December 2020

This article has been updated

Abstract

Resistance, to therapeutic antibodies used to treat chronic lymphocytic leukemia (CLL) patients is common. Monocyte-derived macrophages (MDMs) are a major effector of antitumour responses to therapeutic antibodies and we have previously reported that resistance to therapeutic antibodies, by MDMs, increases as CLL disease progresses. In this study, we examine the effect of a Class IIa-selective HDAC inhibitor (TMP195) on the phagocytic response to opsonised tumor cells or non-opsonised targets by MDMs derived from CLL patients. We report that TMP195 enhances phagocytic responses to antibody-opsonised CLL cells and E. coli within 30 min of treatment. The enhanced response is phenocopied by knockdown of the Class IIa HDAC, HDAC7, or by low concentrations of the pan-HDAC inhibitor, vorinostat. HDAC7 knockdown and inhibition induces hyperacetylation and hyperphosphorylation of Bruton’s tyrosine kinase (BTK). Moreover, BTK inhibitors abrogated the enhanced response to HDAC7 inhibition. Our data show that HDAC7 is an actionable driver of resistance to therapeutic antibodies by MDMs derived from CLL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: TMP195 and vorinostat enhances FcγR-dependent ADP responses to obinutuzumab and rituximab.
Fig. 2: TMP195 and vorinostat increase FcγR-independent phagocytosis.
Fig. 3: Global histone H3 hyperacetylation is not required for TMP195/vorinostat-enhanced ADP.
Fig. 4: HDAC7 knockdown enhances FcγR-dependent and FcγR-independent phagocytosis.
Fig. 5: TMP195 and vorinostat induce rapid changes in ADP and phagocytic responses in MDMs.
Fig. 6: HDAC7-dependent regulation of phagocytosis is mediated via BTK.
Fig. 7: Diagram of the proposed shared pathway controlling FcγR-dependent and FcγR-independent phagocytic responses in MDMs from CLL patients.

Similar content being viewed by others

Change history

References

  1. Bosch F, Dalla-Favera R. Chronic lymphocytic leukaemia: from genetics to treatment. Nat Rev Clin Oncol. 2019;16:684–701.

    Article  CAS  Google Scholar 

  2. Burgess M, Mapp S, Mazzieri R, Cheung C, Chambers L, Mattarollo SR, et al. Increased FcgammaRIIB dominance contributes to the emergence of resistance to therapeutic antibodies in chronic lymphocytic leukaemia patients. Oncogene. 2017;36:2366–76.

    Article  CAS  Google Scholar 

  3. Chen YCE, Mapp S, Blumenthal A, Burgess ML, Mazzieri R, Mattarollo SR, et al. The duality of macrophage function in chronic lymphocytic leukaemia. Biochim Biophys Acta Rev Cancer. 2017;1868:176–82.

    Article  CAS  Google Scholar 

  4. Hanna BS, McClanahan F, Yazdanparast H, Zaborsky N, Kalter V, Rossner PM, et al. Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia. 2016;30:570–9.

    Article  CAS  Google Scholar 

  5. Galletti G, Scielzo C, Barbaglio F, Rodriguez TV, Riba M, Lazarevic D, et al. Targeting macrophages sensitizes chronic lymphocytic leukemia to apoptosis and inhibits disease progression. Cell Rep. 2016;14:1748–60.

    Article  CAS  Google Scholar 

  6. Salvagno C, Ciampricotti M, Tuit S, Hau CS, van Weverwijk A, Coffelt SB, et al. Therapeutic targeting of macrophages enhances chemotherapy efficacy by unleashing type I interferon response. Nat Cell Biol. 2019;21:511–21.

    Article  CAS  Google Scholar 

  7. Guerriero JL, Sotayo A, Ponichtera HE, Castrillon JA, Pourzia AL, Schad S, et al. Class IIa HDAC inhibition reduces breast tumours and metastases through anti-tumour macrophages. Nature. 2017;543:428–32.

    Article  CAS  Google Scholar 

  8. Barkal AA, Brewer RE, Markovic M, Kowarsky M, Barkal SA, Zaro BW, et al. CD24 signalling through macrophage Siglec-10 is a target for cancer immunotherapy. Nature. 2019;572:392–6.

    Article  CAS  Google Scholar 

  9. Enya Chen YC, Burgess M, Mapp S, Mollee P, Gill D, Blumenthal A, et al. PI3K-p110delta contributes to antibody responses by macrophages in chronic lymphocytic leukemia. Leukemia. 2020;35:451–61.

    Article  Google Scholar 

  10. Church AK, VanDerMeid KR, Baig NA, Baran AM, Witzig TE, Nowakowski GS, et al. Anti-CD20 monoclonal antibody-dependent phagocytosis of chronic lymphocytic leukaemia cells by autologous macrophages. Clin Exp Immunol. 2016;183:90–101.

    Article  CAS  Google Scholar 

  11. VanDerMeid KR, Elliott MR, Baran AM, Barr PM, Chu CC, Zent CS. Cellular cytotoxicity of next-generation CD20 monoclonal antibodies. Cancer Immunol Res. 2018;6:1150–60.

    Article  CAS  Google Scholar 

  12. Gul N, Babes L, Siegmund K, Korthouwer R, Bogels M, Braster R, et al. Macrophages eliminate circulating tumor cells after monoclonal antibody therapy. J Clin Investig. 2014;124:812–23.

    Article  Google Scholar 

  13. Uribe-Querol E, Rosales C. Control of phagocytosis by microbial pathogens. Front Immunol. 2017;8:1368.

    Article  Google Scholar 

  14. Veillette A, Chen J. SIRPalpha-CD47 immune checkpoint blockade in anticancer therapy. Trends Immunol. 2018;39:173–84.

    Article  CAS  Google Scholar 

  15. Weiskopf K. Cancer immunotherapy targeting the CD47/SIRPalpha axis. Eur J Cancer. 2017;76:100–9.

    Article  CAS  Google Scholar 

  16. Burgess M, Gill D, Singhania R, Cheung C, Chambers L, Renyolds BA, et al. CD62L as a therapeutic target in chronic lymphocytic leukemia. Clin Cancer Res. 2013;19:5675–85.

    Article  CAS  Google Scholar 

  17. Roghanian A, Teige I, Martensson L, Cox KL, Kovacek M, Ljungars A, et al. Antagonistic human FcgammaRIIB (CD32B) antibodies have anti-tumor activity and overcome resistance to antibody therapy in vivo. Cancer Cell. 2015;27:473–88.

    Article  CAS  Google Scholar 

  18. Murray PJ. Macrophage polarization. Annu Rev Physiol. 2017;79:541–66.

    Article  CAS  Google Scholar 

  19. Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat Immunol. 2016;17:34–40.

    Article  CAS  Google Scholar 

  20. Kimbrough D, Wang SH, Wright LH, Mani SK, Kasiganesan H, LaRue AC, et al. HDAC inhibition helps post-MI healing by modulating macrophage polarization. J Mol Cell Cardiol. 2018;119:51–63.

    Article  CAS  Google Scholar 

  21. Qi X, Wang P. Class IIa HDACs inhibitor TMP269 promotes M1 polarization of macrophages after spinal cord injury. J Cell Biochem. 2018;119:3081–90.

    Article  CAS  Google Scholar 

  22. Bobrowicz M, Dwojak M, Pyrzynska B, Stachura J, Muchowicz A, Berthel E, et al. HDAC6 inhibition upregulates CD20 levels and increases the efficacy of anti-CD20 monoclonal antibodies. Blood. 2017;130:1628–38.

    Article  CAS  Google Scholar 

  23. Lobera M, Madauss KP, Pohlhaus DT, Wright QG, Trocha M, Schmidt DR, et al. Selective class IIa histone deacetylase inhibition via a nonchelating zinc-binding group. Nat Chem Biol. 2013;9:319–25.

    Article  CAS  Google Scholar 

  24. Boissard F, Fournie JJ, Laurent C, Poupot M, Ysebaert L. Nurse like cells: chronic lymphocytic leukemia associated macrophages. Leuk Lymphoma. 2015;56:1570–2.

    Article  CAS  Google Scholar 

  25. Ribes S, Ebert S, Regen T, Agarwal A, Tauber SC, Czesnik D, et al. Toll-like receptor stimulation enhances phagocytosis and intracellular killing of nonencapsulated and encapsulated Streptococcus pneumoniae by murine microglia. Infect Immun. 2010;78:865–71.

    Article  CAS  Google Scholar 

  26. Khan N, Jeffers M, Kumar S, Hackett C, Boldog F, Khramtsov N, et al. Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochemical J. 2007;409:581–9.

    Article  Google Scholar 

  27. Marek L, Hamacher A, Hansen FK, Kuna K, Gohlke H, Kassack MU, et al. Histone deacetylase (HDAC) inhibitors with a novel connecting unit linker region reveal a selectivity profile for HDAC4 and HDAC5 with improved activity against chemoresistant cancer cells. J Medicinal Chem. 2013;56:427–36.

    Article  CAS  Google Scholar 

  28. Liu Z, Mai A, Sun J. Lysine acetylation regulates Bruton’s tyrosine kinase in B cell activation. J Immunol. 2010;184:244–54.

    Article  CAS  Google Scholar 

  29. Ackerman ME, Moldt B, Wyatt RT, Dugast A-S, McAndrew E, Tsoukas S, et al. A robust, high-throughput assay to determine the phagocytic activity of clinical antibody samples. J Immunol Methods. 2011;366:8–19.

    Article  CAS  Google Scholar 

  30. Van Damme M, Crompot E, Meuleman N, Mineur P, Dessars B, El Housni H, et al. Global histone deacetylase enzymatic activity is an independent prognostic marker associated with a shorter overall survival in chronic lymphocytic leukemia patients. Epigenetics. 2014;9:1374–81.

    Article  Google Scholar 

  31. Jung JW, Veitch M, Bridge JA, Overgaard NH, Cruz JL, Linedale R, et al. Clinically-relevant rapamycin treatment regimens enhance CD8(+) effector memory T cell function in the skin and allow their infiltration into cutaneous squamous cell carcinoma. Oncoimmunology. 2018;7:e1479627.

    Article  Google Scholar 

  32. Ramsay HM, Fryer AA, Hawley CM, Smith AG, Harden PN. Non-melanoma skin cancer risk in the Queensland renal transplant population. Br J Dermatol. 2002;147:950–6.

    Article  CAS  Google Scholar 

  33. Lindelof B, Sigurgeirsson B, Gabel H, Stern RS. Incidence of skin cancer in 5356 patients following organ transplantation. Br J Dermatol. 2000;143:513–9.

    CAS  PubMed  Google Scholar 

  34. Varughese T, Taur Y, Cohen N, Palomba ML, Seo SK, Hohl TM, et al. Serious infections in patients receiving ibrutinib for treatment of lymphoid cancer. Clin Infect Dis Off Publ Infect Dis Soc Am. 2018;67:687–92.

    Article  CAS  Google Scholar 

  35. Rogers KA, Mousa L, Zhao Q, Bhat SA, Byrd JC, E Boghdadly Z, et al. Incidence of opportunistic infections during ibrutinib treatment for B-cell malignancies. Leukemia. 2019;33:2527–30.

    Article  Google Scholar 

  36. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    Article  CAS  Google Scholar 

  37. Burgess M, Cheung C, Chambers L, Ravindranath K, Minhas G, Knop L, et al. CCL2 and CXCL2 enhance survival of primary chronic lymphocytic leukemia cells in vitro. Leuk Lymphoma. 2012;53:1988–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the generosity of the patients who donated their time and blood for this study. This work was supported by a generous donation from Jeff and Fran Maclean and a research support package to DG from Queensland Health, Princess Alexandra Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Saunders.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burgess, M., Chen, Y.C.E., Mapp, S. et al. HDAC7 is an actionable driver of therapeutic antibody resistance by macrophages from CLL patients. Oncogene 39, 5756–5767 (2020). https://doi.org/10.1038/s41388-020-01394-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-01394-w

This article is cited by

Search

Quick links