Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

The application of human pluripotent stem cells to model the neuronal and glial components of neurodevelopmental disorders

Abstract

Cellular models of neurodevelopmental disorders provide a valuable experimental system to uncover disease mechanisms and novel therapeutic strategies. The ability of induced pluripotent stem cells (iPSCs) to generate diverse brain cell types offers great potential to model several neurodevelopmental disorders. Further patient-derived iPSCs have the unique genetic and molecular signature of the affected individuals, which allows researchers to address limitations of transgenic behavioural models, as well as generate hypothesis-driven models to study disorder-relevant phenotypes at a cellular level. In this article, we review the extant literature that has used iPSC-based modelling to understand the neuronal and glial contributions to neurodevelopmental disorders including autism spectrum disorder (ASD), Rett syndrome, bipolar disorder (BP), and schizophrenia. For instance, several molecular candidates have been shown to influence cellular phenotypes in three-dimensional iPSC-based models of ASD patients. Delays in differentiation of astrocytes and morphological changes of neurons are associated with Rett syndrome. In the case of bipolar disorders and schizophrenia, patient-derived models helped to identify cellular phenotypes associated with neuronal deficits (e.g., excitability) and mutation-specific abnormalities in oligodendrocytes (e.g., CSPG4). Further we provide a critical review of the current limitations of this field and provide methodological suggestions to enhance future modelling efforts of neurodevelopmental disorders. Future developments in experimental design and methodology of disease modelling represent an exciting new avenue relevant to neurodevelopmental disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gratten J, Wray NR, Keller MC, Visscher PM. Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nat Neurosci. 2014;17:782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Griesi-Oliveira K, Acab A, Gupta AR, Sunaga DY, Chailangkarn T, Nicol X, et al. Modeling non-syndromic autism and the impact of TRPC6 disruption in human neurons. Mol Psychiatry. 2015;20:1350–65.

    Article  CAS  PubMed  Google Scholar 

  3. Sloan SA, Barres BA. Mechanisms of astrocyte development and their contributions to neurodevelopmental disorders. Curr Opin Neurobiol. 2014;27:75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Windrem MS, Osipovitch M, Liu Z, Bates J, Chandler-Militello D, Zou L, et al. Human iPSC Glial Mouse Chimeras Reveal Glial Contributions to Schizophrenia. Cell Stem Cell. 2017;21:195–208.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol. 2017;13:265–78.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Soliman MA, Aboharb F, Zeltner N, Studer L. Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry. 2017;22:1241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. O’Shea KS, McInnis MG. Neurodevelopmental origins of bipolar disorder: IPSC models. Mol Cell Neurosci. 2016;73:63–83.

    Article  CAS  PubMed  Google Scholar 

  8. Gao Y, Galante M, El-Mallakh J, Nurnberger JI, Delamere NA, Lei Z, et al. BDNF expression in lymphoblastoid cell lines carrying BDNF SNPs associated with bipolar disorder. Psychiatry Genet. 2012;22:253–5.

    Article  CAS  Google Scholar 

  9. Herculano-Houzel S. The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci. 2009;3:31.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Piven J, Palmer P, Jacobi D, Childress D, Arndt S. Broader autism phenotype: evidence from a family history study of multiple-incidence autism families. Am J Psychiatry. 1997;154:185–90.

    Article  CAS  PubMed  Google Scholar 

  11. Ronald A, Happé F, Bolton P, Butcher LM, Price TS, Wheelwright S, et al. Genetic heterogeneity between the three components of the autism spectrum: A twin study. J Am Acad Child Adolesc Psychiatry. 2006;45:691–9.

    Article  PubMed  Google Scholar 

  12. Won H, Mah W, Kim E. Autism spectrum disorder causes, mechanisms, and treatments: focus on neuronal synapses. Front Mol Neurosci. 2013;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mariani J, Vittoria M, Palejev D, Tomasini Livia, Coppola G, Szekely AM, et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci USA. 2012;109:12770–5.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Russo FB, Freitas BC, Pignatari GC, Fernandes IR, Sebat J, Muotri AR, et al. Modeling the Interplay Between Neurons and Astrocytes in Autism Using Human Induced Pluripotent Stem Cells. Biol Psychiatry. 2018;83:569–78.

    Article  PubMed  Google Scholar 

  15. Gupta S, Aggarwal S, Rashanravan B, Lee T. Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J Neuroimmunol. 1998;85:106–9.

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki K, Sugihara G, Ouchi Y, Nakamura K, Futatsubashi M, Takebayashi K, et al. Microglial Activation in Young Adults With Autism Spectrum Disorder. JAMA. Psychiatry. 2013;70:49.

    Google Scholar 

  17. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57:67–81.

    Article  CAS  PubMed  Google Scholar 

  18. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162:375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet. 1999;23:185–8.

    Article  CAS  PubMed  Google Scholar 

  20. Lyst MJ, Ekiert R, Ebert DH, Merusi C, Nowak J, Selfridge J, et al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor. Nat Neurosci. 2013;16:898–902.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen DR, Matarazzo V, Palmer AM, Tu Y, Jeon O-H, Pevsner J, et al. Expression of MeCP2 in olfactory receptor neurons is developmentally regulated and occurs before synaptogenesis. Mol Cell Neurosci. 2003;22:417–29.

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Z, Hong EJ, Cohen S, Zhao W, Ho HH, Schmidt L, et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 2006;52:255–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marchetto MCN, Carromeu C, Acab A, Yu D, Yeo GW, Mu Y, et al. A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells. Cell. 2010;143:527–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Andoh-Noda T, Akamatsu W, Miyake K, Matsumoto T, Yamaguchi R, Sanosaka T, et al. Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Mol Brain. 2015;8:1–11.

    Article  CAS  Google Scholar 

  25. Williams EC, Zhong X, Mohamed A, Li R, Liu Y, Dong Q. et al. Mutant astrocytes differentiated from Rett syndrome patients-specific iPSCs have adverse effects on wild- type neurons. Hum Mol Genet. 2014;23:2968–80.

  26. Dusetzina SB, Farley JF, Weinberger M, Gaynes BN, Sleath B, Hansen RA. Treatment use and costs among privately insured youths with diagnoses of bipolar disorder. Psychiatr Serv. 2012;63:1019–25.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Benes FM, Vincent SL, Todtenkopf M. The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry. 2001;50:395–406.

    Article  CAS  PubMed  Google Scholar 

  28. Cotter D, Mackay D, Landau S, Kerwin R, Everall I. Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry. 2001;58:545–53.

    Article  CAS  PubMed  Google Scholar 

  29. Gittins RA, Harrison PJ. A morphometric study of glia and neurons in the anterior cingulate cortex in mood disorder. J Affect Disord. 2011;133:328–32.

    Article  PubMed  Google Scholar 

  30. Gos T, Schroeter ML, Lessel W, Bernstein HG, Dobrowolny H, Schiltz K, et al. S100B-immunopositive astrocytes and oligodendrocytes in the hippocampus are differentially afflicted in unipolar and bipolar depression: a postmortem study. J Psychiatr Res. 2013;47:1694–9.

    Article  PubMed  Google Scholar 

  31. Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res. 2004;67:269–75.

    Article  PubMed  Google Scholar 

  32. Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J, et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: A study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry. 2003;53:906–13.

    Article  PubMed  Google Scholar 

  33. Deicken RF, Pegues MP, Anzalone S, Feiwell R, Soher B. Lower concentration of hippocampal N-acetylaspartate in familial bipolar I disorder. Am J Psychiatry. 2003;160:873–82.

    Article  PubMed  Google Scholar 

  34. Mertens J, Wang Q, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madison J, Zhou F, Nigam A, Hussain A, Barker D, Nehme R, et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry. 2015;20:703–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sullivan PF, Kendler KS, Neale MC. Schizophrenia as a Complex Trait. Arch Gen Psychiatry. 2003;60:1187.

    Article  PubMed  Google Scholar 

  37. Wong AHC, Van Tol HHM. Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev. 2003;27:269–306.

    Article  PubMed  Google Scholar 

  38. Javitt DC. Glycine transport inhibitors and the treatment of schizophrenia. Biol Psychiatry. 2008;63:6–8.

    Article  CAS  PubMed  Google Scholar 

  39. Rubinov M, Bullmore E. Schizophrenia and abnormal brain network hubs. Dialog Clin Neurosci. 2013;15:339–49.

    Google Scholar 

  40. Federspiel A, Begré S, Kiefer C, Schroth G, Strik WK, Dierks T. Alterations of white matter connectivity in first episode schizophrenia. Neurobiol Dis. 2006;22:702–9.

    Article  PubMed  Google Scholar 

  41. Begré S, Koenig T. Cerebral disconnectivity: An early event in schizophrenia. Neuroscientist. 2008;14:19–45.

    Article  PubMed  Google Scholar 

  42. Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G. et al. Amyloid-β protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat Chem. 2009;1:326–31.

  43. Regenold WT, Phatak P, Marano CM, Gearhart L, Viens CH, Hisley KC. Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res. 2007;151:179–88.

    Article  CAS  PubMed  Google Scholar 

  44. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473:221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Robicsek O, Karry R, Petit I, Salman-Kesner N, Müller F-J, Klein E, et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 2013;18:1067–76.

    Article  CAS  PubMed  Google Scholar 

  46. Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL, et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry. 2011;16:358–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clarke LE, Barres BA. Glia keep synapse distribution under wraps. Cell. 2013;154:267–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Vrij FM, Bouwkamp CG, Gunhanlar N, Shpak G, Lendemeijer B, Baghdadi M et al. Candidate CSPG4 mutations and induced pluripotent stem cell modeling implicate oligodendrocyte progenitor cell dysfunction in familial schizophrenia. Mol Psychiatry 2018;24:757–71.

  49. Katsel P, Davis KL, Gorman JM, Haroutunian V. Variations in differential gene expression patterns across multiple brain regions in schizophrenia. Schizophr Res. 2005;77:241–52.

    Article  CAS  PubMed  Google Scholar 

  50. Bauer D, Haroutunian V, Meador-Woodruff JH, McCullumsmith RE. Abnormal glycosylation of EAAT1 and EAAT2 in prefrontal cortex of elderly patients with schizophrenia. Schizophr Res. 2010;117:92–8.

    Article  PubMed  Google Scholar 

  51. Inoue H, Yamanaka S. The use of induced pluripotent stem cells in drug development. Clin Pharmcol Ther. 2011;89:655–61.

    Article  CAS  Google Scholar 

  52. Hadida S, Van Goor F, Zhou J, Arumugam V, McCartney J, Hazlewood A, et al. Discovery of N -(2,4-Di- tert -butyl-5-hydroxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carboxamide (VX-770, Ivacaftor), a potent and orally bioavailable CFTR potentiator. J Med Chem. 2014;57:9776–95.

    Article  CAS  PubMed  Google Scholar 

  53. Wainger BJ, Kiskinis E, Mellin C, Wiskow O, Han SSW, Sandoe J, et al. Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons. Cell Rep. 2014;7:1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haggarty SJ, Silva MC, Cross A, Brandon NJ, Perlis RH. Advancing drug discovery for neuropsychiatric disorders using patient-specific stem cell models. Mol Cell Neurosci. 2016;73:104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kimbrel EA, Robert L. Current status of pluripotent stem cells: moving the first therapies to the clinic. Nat Rev Drug Discov. 2015;14:681–92.

    Article  CAS  PubMed  Google Scholar 

  56. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep. 2014;2:337–50.

    Article  CAS  Google Scholar 

  57. Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012;1:703–14.

    Article  CAS  PubMed  Google Scholar 

  58. Kriks S, Shim J-W, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hemmer K, Zhang M, Van Wüllen T, Sakalem M, Tapia N, Baumuratov A, et al. Induced neural stem cells achieve long-term survival and functional integration in the adult mouse brain. Stem Cell Rep. 2014;3:423–31.

    Article  Google Scholar 

  60. Johnson MA, Weick JP, Pearce RA, Zhang S. Functional neural development from human embryonic stem cells: accelerated synaptic activity via astrocyte coculture. J Neurosci. 2007;27:3069–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ilieva M, Fex Svenningsen Å, Thorsen M, Michel TM. Psychiatry in a dish: stem cells and brain organoids modeling autism spectrum disorders. Biol Psychiatry. 2018;83:558–68.

    Article  CAS  PubMed  Google Scholar 

  62. Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell. 2008;3:519–32.

    Article  CAS  PubMed  Google Scholar 

  63. Edmondson R, Broglie JJ, Adcock AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12:207–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baharvand H, Hashemi SM, Ashtiani SK, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. Int J Dev Biol. 2006;50:645–52.

    Article  CAS  PubMed  Google Scholar 

  65. Ishizuka K, Kamiya A, Oh EC, Kanki H, Seshadri S, Robinson JF, et al. DISC1-dependent switch from progenitor proliferation to migration in the developing cortex. Nature. 2011;473:92–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Laurent LC, Ulitsky I, Slavin I, Tran H, Schork A, Morey R, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8:106–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pera MF. The dark side of induced pluripotency. Nature. 2011;471:46–7.

    Article  CAS  PubMed  Google Scholar 

  68. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY.et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol. 2010;28:848–55.

  69. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, et al. Epigenetic memory in induced pluripotent stem cells. Nature. 2010;467:285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support of the National Health and Medical Research Council (NHMRC) [Early Career Fellowship ID 1112452 (JT)], the Society for Mental Health Research [Early Career Research Project Grant Award (JT)], the Rebecca L Cooper Medical Research Foundation [Medical Research Grant ID 10409 (JT)] and Monash University [Strategic Grant Scheme ID SGS16-0410 (JT)]. MAB is supported by a Senior Research Fellowship from the NHMRC (APP1154378). MAB, JT, and ZH are supported by project funding from the NHMRC (APP1146644).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K.M., Hawi, Z.H., Parkington, H.C. et al. The application of human pluripotent stem cells to model the neuronal and glial components of neurodevelopmental disorders. Mol Psychiatry 25, 368–378 (2020). https://doi.org/10.1038/s41380-019-0495-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-019-0495-0

This article is cited by

Search

Quick links