Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Clinical Research

Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue

Abstract

Exposure to low ambient temperatures has previously been demonstrated to markedly improve glucose homeostasis in both rodents and humans. Although the brown adipose tissue is key in mediating these beneficial effects in rodents, its contribution appears more limited in humans. Hence, the exact tissues and underlying mechanisms that mediate cold-induced improvements in glucose homeostasis in humans remain to be fully established. In this review, we evaluated the response of the main organs involved in glucose metabolism (i.e. pancreas, liver, (white) adipose tissue, and skeletal muscle) to cold exposure and discuss their potential contribution to cold-induced improvements in glucose homeostasis in humans. We here show that cold exposure has widespread effects on metabolic organs involved in glucose regulation. Nevertheless, cold-induced improvements in glucose homeostasis appear primarily mediated via adaptations within the skeletal muscle and (presumably) white adipose tissue. Since the underlying mechanisms remain elusive, future studies should be aimed at pinpointing the exact physiological and molecular mechanisms involved in humans. Nonetheless, cold exposure holds great promise as a novel, additive lifestyle approach to improve glucose homeostasis in insulin resistant individuals.

Parts of this graphical abstract were created using (modified) images from Servier Medical Art, licensed under the Creative Commons Attribution 3.0 Unported License. TG = thermogenesis, TAG = triacylglycerol, FFA = free fatty acid, SLN = sarcolipin, UCP3 = uncoupling protein 3, β2-AR = beta-2 adrenergic receptor, SNS = sympathetic nervous system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of uncoupling protein 1 (UCP1)-dependent and independent thermogenic mechanisms.

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed for the present review.

References

  1. Dulloo AG, Young JB, Landsberg L. Sympathetic nervous system responses to cold exposure and diet in rat skeletal muscle. Am J Physiol. 1988;255:E180–8. 2 Pt 1

    CAS  PubMed  Google Scholar 

  2. Depocas F, Behrens WA. Levels of noradrenaline in plasma during thermogenesis induced by cold-exposure or by noradrenaline infusion in warm- and in cold-acclimated rats. Experientia Suppl. 1978;32:135–46.

    Article  CAS  PubMed  Google Scholar 

  3. Picotti GB, Carruba MO, Ravazzani C, Cesura AM, Galva MD, Da Prada M. Plasma catecholamines in rats exposed to cold: effects of ganglionic and adrenoreceptor blockade. Eur J Pharmacol. 1981;69:321–9.

    Article  CAS  PubMed  Google Scholar 

  4. Nakamura K, Morrison SF. Central efferent pathways for cold-defensive and febrile shivering. J Physiol. 2011;589:3641–58. Pt 14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Haman F, Blondin DP. Shivering thermogenesis in humans: origin, contribution and metabolic requirement. Temperature. 2017;4:217–26.

    Article  Google Scholar 

  6. van Marken Lichtenbelt WD, Schrauwen P. Implications of nonshivering thermogenesis for energy balance regulation in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301:R285–96.

    Article  PubMed  Google Scholar 

  7. Vallerand AL, Lupien J, Bukowiecki LJ. Interactions of cold exposure and starvation on glucose tolerance and insulin response. Am J Physiol. 1983;245:E575–81.

    CAS  PubMed  Google Scholar 

  8. Smith OL, Davidson SB. Shivering thermogenesis and glucose uptake by muscles of normal or diabetic rats. Am J Physiol. 1982;242:R109–15.

    CAS  PubMed  Google Scholar 

  9. Smith OL. Insulin response in rats acutely exposed to cold. Can J Physiol Pharmacol. 1984;62:924–7.

    Article  CAS  PubMed  Google Scholar 

  10. Vallerand AL, Perusse F, Bukowiecki LJ. Cold exposure potentiates the effect of insulin on in vivo glucose uptake. Am J Physiol. 1987;253:E179–86. 2 Pt 1

    CAS  PubMed  Google Scholar 

  11. Vallerand AL, Perusse F, Bukowiecki LJ. Stimulatory effects of cold exposure and cold acclimation on glucose uptake in rat peripheral tissues. Am J Physiol. 1990;259:R1043–9. 5 Pt 2

    CAS  PubMed  Google Scholar 

  12. Vallerand AL, Lupien J, Bukowiecki LJ. Cold exposure reverses the diabetogenic effects of high-fat feeding. Diabetes. 1986;35:329–34.

    Article  CAS  PubMed  Google Scholar 

  13. Cunningham JJ, Gulino MA, Meara PA, Bode HH. Enhanced hepatic insulin sensitivity and peripheral glucose uptake in cold acclimating rats. Endocrinology. 1985;117:1585–9.

    Article  CAS  PubMed  Google Scholar 

  14. Vallerand AL, Zamecnik J, Jacobs I. Plasma glucose turnover during cold stress in humans. J Appl Physiol. 1995;78:1296–302.

    Article  CAS  PubMed  Google Scholar 

  15. Vallerand AL, Frim J, Kavanagh MF. Plasma glucose and insulin responses to oral and intravenous glucose in cold-exposed humans. J Appl Physiol. 1988;65:2395–9.

    Article  CAS  PubMed  Google Scholar 

  16. Iwen KA, Backhaus J, Cassens M, Waltl M, Hedesan OC, Merkel M, et al. Cold-induced brown adipose tissue activity alters plasma fatty acids and improves glucose metabolism in men. J Clin Endocrinol Metab. 2017;102:4226–34.

    Article  PubMed  Google Scholar 

  17. Hanssen MJ, Hoeks J, Brans B, van der Lans AA, Schaart G, van den Driessche JJ, et al. Short-term cold acclimation improves insulin sensitivity in patients with type 2 diabetes mellitus. Nat Med. 2015;21:863–5.

    Article  CAS  PubMed  Google Scholar 

  18. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  19. Shibata H, Perusse F, Vallerand A, Bukowiecki LJ. Cold exposure reverses inhibitory effects of fasting on peripheral glucose uptake in rats. Am J Physiol. 1989;257:R96–101. 1 Pt 2

    CAS  PubMed  Google Scholar 

  20. Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab. 2011;14:272–9.

    Article  CAS  PubMed  Google Scholar 

  21. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17:200–5.

    Article  CAS  PubMed  Google Scholar 

  22. Xiao C, Goldgof M, Gavrilova O, Reitman ML. Anti-obesity and metabolic efficacy of the beta3-adrenergic agonist, CL316243, in mice at thermoneutrality compared to 22 degrees C. Obesity. 2015;23:1450–9.

    Article  CAS  PubMed  Google Scholar 

  23. Olsen JM, Csikasz RI, Dehvari N, Lu L, Sandstrom A, Oberg AI, et al. beta3-Adrenergically induced glucose uptake in brown adipose tissue is independent of UCP1 presence or activity: mediation through the mTOR pathway. Mol Metab. 2017;6:611–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  PubMed  Google Scholar 

  25. Brendle C, Werner MK, Schmadl M, la Fougere C, Nikolaou K, Stefan N, et al. Correlation of brown adipose tissue with other body fat compartments and patient characteristics: a retrospective analysis in a large patient cohort using PET/CT. Acad Radiol. 2018;25:102–10.

    Article  PubMed  Google Scholar 

  26. Blondin DP, Labbe SM, Noll C, Kunach M, Phoenix S, Guerin B, et al. Selective impairment of glucose but not fatty acid or oxidative metabolism in brown adipose tissue of subjects with type 2 diabetes. Diabetes. 2015;64:2388–97.

    Article  CAS  PubMed  Google Scholar 

  27. Roder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016;48:e219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Seitz HJ, Krone W, Wilke H, Tarnowski W. Rapid rise in plasma glucagon induced by acute cold exposure in man and rat. Pflugers Arch. 1981;389:115–20.

    Article  CAS  PubMed  Google Scholar 

  29. Kuroshima A, Yahata T, Ohno T. Changes in plasma glucagon levels to stressful environmental temperatures. Jpn J Physiol. 1981;31:43–52.

    Article  CAS  PubMed  Google Scholar 

  30. Kuroshima A, Yahata T, Doi K, Ohno T. Thermal and metabolic responses of temperature-acclimated rats during cold and heat exposures. Jpn J Physiol. 1982;32:561–71.

    Article  CAS  PubMed  Google Scholar 

  31. Sepa-Kishi DM, Katsnelson G, Bikopoulos G, Iqbal A, Ceddia RB. Cold acclimation reduces hepatic protein Kinase B and AMP-activated protein kinase phosphorylation and increases gluconeogenesis in Rats. Physiol Rep. 2018;6:e13592.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Doi K, Ohno T, Kuroshima A. Role of endocrine pancreas in temperature acclimation. Life Sci. 1982;30:2253–9.

    Article  CAS  PubMed  Google Scholar 

  33. Morton GJ, Muta K, Kaiyala KJ, Rojas JM, Scarlett JM, Matsen ME, et al. Evidence that the sympathetic nervous system elicits rapid, coordinated, and reciprocal adjustments of insulin secretion and insulin sensitivity during cold exposure. Diabetes. 2017;66:823–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gasparetti AL, de Souza CT, Pereira-da-Silva M, Oliveira RL, Saad MJ, Carneiro EM, et al. Cold exposure induces tissue-specific modulation of the insulin-signalling pathway in Rattus norvegicus. J Physiol. 2003;552:149–62. Pt 1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Beck LV, Zaharko DS, Kalser SC. Variation in serum insulin and glucose of rats with chronic cold exposure. Life Sci. 1967;6:1501–6.

    Article  CAS  PubMed  Google Scholar 

  36. Harada E, Habara Y, Kanno T. Cold acclimation in insulin secretion of isolated perfused pancreas of the rat. Am J Physiol. 1982;242:E360–7.

    CAS  PubMed  Google Scholar 

  37. Hanssen MJ, van der Lans AA, Brans B, Hoeks J, Jardon KM, Schaart G, et al. Short-term cold acclimation recruits brown adipose tissue in obese humans. Diabetes. 2016;65:1179–89.

    Article  CAS  PubMed  Google Scholar 

  38. Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014;63:4089–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sellers AJ, Pallubinsky H, Rense P, Bijnens W, van de Weijer T, Moonen-Kornips E, et al. The effect of cold exposure with shivering on glucose tolerance in healthy men. J Appl Physiol. 2021;130:193–205.

    Article  PubMed  Google Scholar 

  40. Habara Y, Ohno T, Yahata T, Kuroshima A. Effects of adrenal demedullation combined with chemical sympathectomy on cold-induced responses of endocrine pancreas in rats. Experientia. 1983;39:399–400.

    Article  CAS  PubMed  Google Scholar 

  41. Young JB, Landsberg L. Effect of diet and cold exposure on norepinephrine turnover in pancreas and liver. Am J Physiol. 1979;236:E524–33.

    CAS  PubMed  Google Scholar 

  42. van der Lans AA, Hoeks J, Brans B, Vijgen GH, Visser MG, Vosselman MJ, et al. Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J Clin Invest. 2013;123:3395–403.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Remie CME, Moonen MPB, Roumans KHM, Nascimento EBM, Gemmink A, Havekes B, et al. Metabolic responses to mild cold acclimation in type 2 diabetes patients. Nat Commun. 2021;12:1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grefhorst A, van den Beukel JC, Dijk W, Steenbergen J, Voortman GJ, Leeuwenburgh S, et al. Multiple effects of cold exposure on livers of male mice. J Endocrinol. 2018;238:91–106.

    Article  CAS  PubMed  Google Scholar 

  45. Bobbioni-Harsch E, Assimacopoulos-Jeannet F, Jeanrenaud B. Modifications of glucose and lipid metabolism in cold-acclimated lean and genetically obese rats. J Appl Physiol. 1994;76:1106–12.

    Article  CAS  PubMed  Google Scholar 

  46. Guezennec CY, Nonglaton J, Serrurier B, Merino D, Defer G. Hormonal and metabolic response to physical exercise, fasting and cold exposure in the rat. Effects on ketogenesis in isolated hepatocytes. Eur J Appl Physiol Occup Physiol. 1988;57:114–9.

    Article  CAS  PubMed  Google Scholar 

  47. Penner PE, Himms-Hagen J. Gluconeogenesis in rats during cold acclimation. Can J Biochem. 1968;46:1205–13.

    Article  CAS  PubMed  Google Scholar 

  48. Nakagawa H, Nagai K. Cold adaptation. I. Effect of cold-exposure on gluconeogenesis. J Biochem. 1971;69:923–34.

    Article  CAS  PubMed  Google Scholar 

  49. Smith SA, Young P, Cawthorne MA. Quantification in vivo of the effects of insulin on glucose utilization in individual tissues of warm- and cold-acclimated rats. Biochem J. 1986;237:789–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnstone AM, Murison SD, Duncan JS, Rance KA, Speakman JR. Factors influencing variation in basal metabolic rate include fat-free mass, fat mass, age, and circulating thyroxine but not sex, circulating leptin, or triiodothyronine. Am J Clin Nutr. 2005;82:941–8.

    Article  CAS  PubMed  Google Scholar 

  51. Blondin DP, Nielsen S, Kuipers EN, Severinsen MC, Jensen VH, Miard S, et al. Human brown adipocyte thermogenesis is driven by beta2-AR stimulation. Cell Metab. 2020;32:287–300. e7

    Article  CAS  PubMed  Google Scholar 

  52. Granneman JG, Burnazi M, Zhu Z, Schwamb LA. White adipose tissue contributes to UCP1-independent thermogenesis. Am J Physiol Endocrinol Metab. 2003;285:E1230–6.

    Article  CAS  PubMed  Google Scholar 

  53. Liu X, Perusse F, Bukowiecki LJ. Chronic norepinephrine infusion stimulates glucose uptake in white and brown adipose tissues. Am J Physiol. 1994;266:R914–20. 3 Pt 2

    CAS  PubMed  Google Scholar 

  54. Castro E, Vieira TS, Oliveira TE, Ortiz-Silva M, Andrade ML, Tomazelli CA, et al. Adipocyte-specific mTORC2 deficiency impairs BAT and iWAT thermogenic capacity without affecting glucose uptake and energy expenditure in cold-acclimated mice. Am J Physiol Endocrinol Metab. 2021;321:E592–E605.

    Article  CAS  PubMed  Google Scholar 

  55. Agosto E, Cimmino M, Minaire Y, Geloen A. Short-term cold-exposure does not improve insulin sensitivity in rats. Comp Biochem Physiol A Physiol. 1997;117:231–8.

    Article  CAS  PubMed  Google Scholar 

  56. Walden TB, Hansen IR, Timmons JA, Cannon B, Nedergaard J. Recruited vs. nonrecruited molecular signatures of brown, “brite,” and white adipose tissues. Am J Physiol Endocrinol Metab. 2012;302:E19–31.

    Article  CAS  PubMed  Google Scholar 

  57. Nedergaard J, Cannon B. The browning of white adipose tissue: some burning issues. Cell Metab. 2014;20:396–407.

    Article  CAS  PubMed  Google Scholar 

  58. Sepa-Kishi DM, Jani S, Da Eira D, Ceddia RB. Cold acclimation enhances UCP1 content, lipolysis, and triacylglycerol resynthesis, but not mitochondrial uncoupling and fat oxidation, in rat white adipocytes. Am J Physiol Cell Physiol. 2019;316:C365–C76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L, et al. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci. 1992;103:931–42. Pt 4

    Article  CAS  PubMed  Google Scholar 

  60. Okamatsu-Ogura Y, Fukano K, Tsubota A, Uozumi A, Terao A, Kimura K, et al. Thermogenic ability of uncoupling protein 1 in beige adipocytes in mice. PLoS One. 2013;8:e84229.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J. UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Rep. 2013;5:1196–203.

    Article  CAS  PubMed  Google Scholar 

  62. Young P, Arch JR, Ashwell M. Brown adipose tissue in the parametrial fat pad of the mouse. FEBS Lett. 1984;167:10–4.

    Article  CAS  PubMed  Google Scholar 

  63. Wang Z, Ning T, Song A, Rutter J, Wang QA, Jiang L. Chronic cold exposure enhances glucose oxidation in brown adipose tissue. EMBO Rep. 2020;21:e50085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mossenbock K, Vegiopoulos A, Rose AJ, Sijmonsma TP, Herzig S, Schafmeier T. Browning of white adipose tissue uncouples glucose uptake from insulin signaling. PLoS One. 2014;9:e110428.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Jia XW, Fang DL, Shi XY, Lu T, Yang C, Gao Y. Inducible beige adipocytes improve impaired glucose metabolism in interscapular BAT-removal mice. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866:158871.

    Article  CAS  PubMed  Google Scholar 

  67. Finlin BS, Memetimin H, Confides AL, Kasza I, Zhu B, Vekaria HJ, et al. Human adipose beiging in response to cold and mirabegron. JCI Insight. 2018;3:e121510.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sidossis LS, Porter C, Saraf MK, Borsheim E, Radhakrishnan RS, Chao T, et al. Browning of subcutaneous white adipose tissue in humans after severe adrenergic stress. Cell Metab. 2015;22:219–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Finlin BS, Memetimin H, Zhu B, Confides AL, Vekaria HJ, El Khouli RH, et al. The beta3-adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J Clin Invest. 2020;130:2319–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Meyer CW, Willershauser M, Jastroch M, Rourke BC, Fromme T, Oelkrug R, et al. Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice. Am J Physiol Regul Integr Comp Physiol. 2010;299:R1396–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, Kozak LP. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1-/- mice. J Biol Chem. 2006;281:31894–908.

    CAS  PubMed  Google Scholar 

  72. Roesler A, Kazak L. UCP1-independent thermogenesis. Biochem J. 2020;477:709–25.

    Article  CAS  PubMed  Google Scholar 

  73. Chouchani ET, Kazak L, Spiegelman BM. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 2019;29:27–37.

    Article  CAS  PubMed  Google Scholar 

  74. Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, et al. A creatine-driven substrate cycle enhances energy expenditure and thermogenesis in beige fat. Cell. 2015;163:643–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kazak L, Chouchani ET, Lu GZ, Jedrychowski MP, Bare CJ, Mina AI, et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 2017;26:693.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Rahbani JF, Roesler A, Hussain MF, Samborska B, Dykstra CB, Tsai L, et al. Creatine kinase B controls futile creatine cycling in thermogenic fat. Nature. 2021;590:480–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Brownstein AJ, Veliova M, Acin-Perez R, Liesa M, Shirihai OS. ATP-consuming futile cycles as energy dissipating mechanisms to counteract obesity. Rev Endocr Metab Disord. 2022;23:121–31.

    Article  CAS  PubMed  Google Scholar 

  78. Flachs P, Rossmeisl M, Kuda O, Kopecky J. Stimulation of mitochondrial oxidative capacity in white fat independent of UCP1: a key to lean phenotype. Biochim Biophys Acta. 2013;1831:986–1003.

    Article  CAS  PubMed  Google Scholar 

  79. Hammond VA, Johnston DG. Substrate cycling between triglyceride and fatty acid in human adipocytes. Metabolism. 1987;36:308–13.

    Article  CAS  PubMed  Google Scholar 

  80. Bottcher H, Furst P. Decreased white fat cell thermogenesis in obese individuals. Int J Obes Relat Metab Disord. 1997;21:439–44.

    Article  CAS  PubMed  Google Scholar 

  81. Wolfe RR, Klein S, Carraro F, Weber JM. Role of triglyceride-fatty acid cycle in controlling fat metabolism in humans during and after exercise. Am J Physiol. 1990;258:E382–9. 2 Pt 1

    CAS  PubMed  Google Scholar 

  82. Flachs P, Adamcova K, Zouhar P, Marques C, Janovska P, Viegas I, et al. Induction of lipogenesis in white fat during cold exposure in mice: link to lean phenotype. Int J Obes. 2017;41:997.

    Article  CAS  Google Scholar 

  83. Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res. 2014;55:2276–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vallerand AL, Zamecnik J, Jones PJ, Jacobs I. Cold stress increases lipolysis, FFA Ra and TG/FFA cycling in humans. Aviat Space Environ Med. 1999;70:42–50.

    CAS  PubMed  Google Scholar 

  85. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76:149–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes. 1981;30:1000–7.

    Article  CAS  PubMed  Google Scholar 

  87. Blondin DP, Labbe SM, Phoenix S, Guerin B, Turcotte EE, Richard D, et al. Contributions of white and brown adipose tissues and skeletal muscles to acute cold-induced metabolic responses in healthy men. J Physiol. 2015;593:701–14.

    Article  CAS  PubMed  Google Scholar 

  88. Oliveira RL, Ueno M, de Souza CT, Pereira-da-Silva M, Gasparetti AL, Bezzera RM, et al. Cold-induced PGC-1alpha expression modulates muscle glucose uptake through an insulin receptor/Akt-independent, AMPK-dependent pathway. Am J Physiol Endocrinol Metab. 2004;287:E686–95.

    Article  CAS  PubMed  Google Scholar 

  89. Blondin DP, Daoud A, Taylor T, Tingelstad HC, Bezaire V, Richard D, et al. Four-week cold acclimation in adult humans shifts uncoupling thermogenesis from skeletal muscles to brown adipose tissue. J Physiol. 2017;595:2099–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wijers SL, Schrauwen P, Saris WH, van Marken, Lichtenbelt WD. Human skeletal muscle mitochondrial uncoupling is associated with cold induced adaptive thermogenesis. PLoS One. 2008;3:e1777.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wijers SL, Schrauwen P, van Baak MA, Saris WH, van Marken Lichtenbelt WD. Beta-adrenergic receptor blockade does not inhibit cold-induced thermogenesis in humans: possible involvement of brown adipose tissue. J Clin Endocrinol Metab. 2011;96:E598–605.

    Article  CAS  PubMed  Google Scholar 

  92. Schrauwen P, Westerterp-Plantenga MS, Kornips E, Schaart G, van Marken Lichtenbelt WD. The effect of mild cold exposure on UCP3 mRNA expression and UCP3 protein content in humans. Int J Obes Relat Metab Disord. 2002;26:450–7.

    Article  CAS  PubMed  Google Scholar 

  93. Blondin DP, Haman F. Shivering and nonshivering thermogenesis in skeletal muscles. Handb Clin Neurol. 2018;156:153–73.

    Article  PubMed  Google Scholar 

  94. Samec S, Seydoux J, Dulloo AG. Role of UCP homologues in skeletal muscles and brown adipose tissue: mediators of thermogenesis or regulators of lipids as fuel substrate? FASEB J. 1998;12:715–24.

    Article  CAS  PubMed  Google Scholar 

  95. Schrauwen P, Hesselink MK. The role of uncoupling protein 3 in fatty acid metabolism: protection against lipotoxicity? Proc Nutr Soc. 2004;63:287–92.

    Article  CAS  PubMed  Google Scholar 

  96. Pant M, Bal NC, Periasamy M. Sarcolipin: a key thermogenic and metabolic regulator in skeletal muscle. Trends Endocrinol Metab. 2016;27:881–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Maurya SK, Herrera JL, Sahoo SK, Reis FCG, Vega RB, Kelly DP, et al. Sarcolipin signaling promotes mitochondrial biogenesis and oxidative metabolism in skeletal muscle. Cell Rep. 2018;24:2919–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mall S, Broadbridge R, Harrison SL, Gore MG, Lee AG, East JM. The presence of sarcolipin results in increased heat production by Ca(2+)-ATPase. J Biol Chem. 2006;281:36597–602.

    Article  CAS  PubMed  Google Scholar 

  99. Bal NC, Maurya SK, Singh S, Wehrens XH, Periasamy M. Increased reliance on muscle-based thermogenesis upon acute minimization of brown adipose tissue function. J Biol Chem. 2016;291:17247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Rowland LA, Bal NC, Kozak LP, Periasamy M. Uncoupling protein 1 and sarcolipin are required to maintain optimal thermogenesis, and loss of both systems compromises survival of mice under cold stress. J Biol Chem. 2015;290:12282–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bal NC, Maurya SK, Sopariwala DH, Sahoo SK, Gupta SC, Shaikh SA, et al. Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med. 2012;18:1575–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Paran CW, Verkerke AR, Heden TD, Park S, Zou K, Lawson HA, et al. Reduced efficiency of sarcolipin-dependent respiration in myocytes from humans with severe obesity. Obesity. 2015;23:1440–9.

    Article  CAS  PubMed  Google Scholar 

  103. Maurya SK, Bal NC, Sopariwala DH, Pant M, Rowland LA, Shaikh SA, et al. Sarcolipin is a key determinant of the basal metabolic rate, and its overexpression enhances energy expenditure and resistance against diet-induced obesity. J Biol Chem. 2015;290:10840–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bombardier E, Smith IC, Vigna C, Fajardo VA, Tupling AR. Ablation of sarcolipin decreases the energy requirements for Ca2+ transport by sarco(endo)plasmic reticulum Ca2+-ATPases in resting skeletal muscle. FEBS Lett. 2013;587:1687–92.

    Article  CAS  PubMed  Google Scholar 

  105. Periasamy M, Herrera JL, Reis FCG. Skeletal muscle thermogenesis and its role in whole body energy metabolism. Diabetes Metab J. 2017;41:327–36.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Morales-Alamo D, Martinez-Canton M, Gelabert-Rebato M, Martin-Rincon M, de Pablos-Velasco P, Holmberg HC, et al. Sarcolipin expression in human skeletal muscle: influence of energy balance and exercise. Scand J Med Sci Sports. 2020;30:408–20.

    Article  PubMed  Google Scholar 

  107. Eyolfson DA, Tikuisis P, Xu X, Weseen G, Giesbrecht GG. Measurement and prediction of peak shivering intensity in humans. Eur J Appl Physiol. 2001;84:100–6.

    Article  CAS  PubMed  Google Scholar 

  108. Haman F, Peronnet F, Kenny GP, Massicotte D, Lavoie C, Scott C, et al. Effect of cold exposure on fuel utilization in humans: plasma glucose, muscle glycogen, and lipids. J Appl Physiol. 2002;93:77–84.

    Article  CAS  PubMed  Google Scholar 

  109. Horvath SM. Exercise in a cold environment. Exerc Sport Sci Rev. 1981;9:221–63.

    Article  CAS  PubMed  Google Scholar 

  110. Jamerson KA, Smith SD, Amerena JV, Grant E, Julius S. Vasoconstriction with norepinephrine causes less forearm insulin resistance than a reflex sympathetic vasoconstriction. Hypertension. 1994;23:1006–11. 6 Pt 2

    Article  CAS  PubMed  Google Scholar 

  111. Wasserman DH, Ayala JE. Interaction of physiological mechanisms in control of muscle glucose uptake. Clin Exp Pharmacol Physiol. 2005;32:319–23.

    Article  CAS  PubMed  Google Scholar 

  112. Shimazu T, Sudo M, Minokoshi Y, Takahashi A. Role of the hypothalamus in insulin-independent glucose uptake in peripheral tissues. Brain Res Bull. 1991;27:501–4.

    Article  CAS  PubMed  Google Scholar 

  113. Sudo M, Minokoshi Y, Shimazu T. Ventromedial hypothalamic stimulation enhances peripheral glucose uptake in anesthetized rats. Am J Physiol. 1991;261:E298–303. 3 Pt 1

    CAS  PubMed  Google Scholar 

  114. Minokoshi Y, Okano Y, Shimazu T. Regulatory mechanism of the ventromedial hypothalamus in enhancing glucose uptake in skeletal muscles. Brain Res. 1994;649:343–7.

    Article  CAS  PubMed  Google Scholar 

  115. Cypess AM, Chen YC, Sze C, Wang K, English J, Chan O, et al. Cold but not sympathomimetics activates human brown adipose tissue in vivo. Proc Natl Acad Sci USA. 2012;109:10001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Scriven AJ, Brown MJ, Murphy MB, Dollery CT. Changes in blood pressure and plasma catecholamines caused by tyramine and cold exposure. J Cardiovasc Pharmacol. 1984;6:954–60.

    Article  CAS  PubMed  Google Scholar 

  117. O’Malley BP, Cook N, Richardson A, Barnett DB, Rosenthal FD. Circulating catecholamine, thyrotrophin, thyroid hormone and prolactin responses of normal subjects to acute cold exposure. Clin Endocrinol. 1984;21:285–91.

    Article  Google Scholar 

  118. Molinoff PB. Alpha- and beta-adrenergic receptor subtypes properties, distribution and regulation. Drugs. 1984;28:1–15.

    Article  CAS  PubMed  Google Scholar 

  119. Baker JG. The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br J Pharmacol. 2010;160:1048–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nevzorova J, Bengtsson T, Evans BA, Summers RJ. Characterization of the beta-adrenoceptor subtype involved in mediation of glucose transport in L6 cells. Br J Pharmacol. 2002;137:9–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Liggett SB, Shah SD, Cryer PE. Characterization of beta-adrenergic receptors of human skeletal muscle obtained by needle biopsy. Am J Physiol. 1988;254:E795–8. 6 Pt 1

    CAS  PubMed  Google Scholar 

  122. Sato M, Dehvari N, Oberg AI, Dallner OS, Sandstrom AL, Olsen JM, et al. Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle. Diabetes. 2014;63:4115–29.

    Article  CAS  PubMed  Google Scholar 

  123. Kalinovich A, Dehvari N, Åslund A, van Beek S, Halleskog C, Olsen J, et al. Treatment with a β-2-adrenoceptor agonist stimulates glucose uptake in skeletal muscle and improves glucose homeostasis, insulin resistance and hepatic steatosis in mice with diet-induced obesity. Diabetologia. 2020;63:1603–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nevzorova J, Evans BA, Bengtsson T, Summers RJ. Multiple signalling pathways involved in beta2-adrenoceptor-mediated glucose uptake in rat skeletal muscle cells. Br J Pharmacol. 2006;147:446–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Tanishita T, Shimizu Y, Minokoshi Y, Shimazu T. The beta3-adrenergic agonist BRL37344 increases glucose transport into L6 myocytes through a mechanism different from that of insulin. J Biochem. 1997;122:90–5.

    Article  CAS  PubMed  Google Scholar 

  126. Mukaida S, Sato M, Oberg AI, Dehvari N, Olsen JM, Kocan M, et al. BRL37344 stimulates GLUT4 translocation and glucose uptake in skeletal muscle via beta2-adrenoceptors without causing classical receptor desensitization. Am J Physiol Regul Integr Comp Physiol. 2019;316:R666–R77.

    Article  CAS  PubMed  Google Scholar 

  127. Abe H, Minokoshi Y, Shimazu T. Effect of a beta 3-adrenergic agonist, BRL35135A, on glucose uptake in rat skeletal muscle in vivo and in vitro. J Endocrinol. 1993;139:479–86.

    Article  CAS  PubMed  Google Scholar 

  128. Liu YL, Cawthorne MA, Stock MJ. Biphasic effects of the beta-adrenoceptor agonist, BRL 37344, on glucose utilization in rat isolated skeletal muscle. Br J Pharmacol. 1996;117:1355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Philipson LH. beta-Agonists and metabolism. J Allergy Clin Immunol. 2002;110:S313–7.

    Article  CAS  PubMed  Google Scholar 

  130. Guhan AR, Cooper S, Oborne J, Lewis S, Bennett J, Tattersfield AE. Systemic effects of formoterol and salmeterol: a dose-response comparison in healthy subjects. Thorax. 2000;55:650–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Burgess C, Ayson M, Rajasingham S, Crane J, Della Cioppa G, Till MD. The extrapulmonary effects of increasing doses of formoterol in patients with asthma. Eur J Clin Pharmacol. 1998;54:141–7.

    Article  CAS  PubMed  Google Scholar 

  132. Liu YL, Stock MJ. Acute effects of the beta 3-adrenoceptor agonist, BRL 35135, on tissue glucose utilisation. Br J Pharmacol. 1995;114:888–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Smith SA, Levy AL, Sennitt MV, Simson DL, Cawthorne MA. Effects of BRL 26830, a novel beta-adrenoceptor agonist, on glucose tolerance, insulin sensitivity and glucose turnover in Zucker (fa/fa) rats. Biochem Pharmacol. 1985;34:2425–9.

    Article  CAS  PubMed  Google Scholar 

  134. Castle A, Yaspelkis BB 3rd, Kuo CH, Ivy JL. Attenuation of insulin resistance by chronic beta2-adrenergic agonist treatment possible muscle specific contributions. Life Sci. 2001;69:599–611.

    Article  CAS  PubMed  Google Scholar 

  135. Torgan CE, Brozinick JT Jr, Banks EA, Cortez MY, Wilcox RE, Ivy JL. Exercise training and clenbuterol reduce insulin resistance of obese Zucker rats. Am J Physiol. 1993;264:E373–9. 3 Pt 1

    CAS  PubMed  Google Scholar 

  136. van Beek S, Kalinovich A, Schaart G, Bengtsson T, Hoeks J. Prolonged beta2-adrenergic agonist treatment improves glucose homeostasis in diet-induced obese UCP1(-/-) mice. Am J Physiol Endocrinol Metab. 2021;320:E619–628.

    Article  CAS  PubMed  Google Scholar 

  137. Pan SJ, Hancock J, Ding Z, Fogt D, Lee M, Ivy JL. Effects of clenbuterol on insulin resistance in conscious obese Zucker rats. Am J Physiol Endocrinol Metab. 2001;280:E554–61.

    Article  CAS  PubMed  Google Scholar 

  138. Meister J, Bone DBJ, Knudsen JR, Barella LF, Velenosi TJ, Akhmedov D, et al. Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nat Commun. 2022;13:22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Elayan H, Milic M, Sun P, Gharaibeh M, Ziegler MG. Chronic beta2 adrenergic agonist, but not exercise, improves glucose handling in older type 2 diabetic mice. Cell Mol Neurobiol. 2012;32:871–7.

    Article  CAS  PubMed  Google Scholar 

  140. Kalinovich A, Dehvari N, Aslund A, van Beek S, Halleskog C, Olsen J, et al. Treatment with a beta-2-adrenoceptor agonist stimulates glucose uptake in skeletal muscle and improves glucose homeostasis, insulin resistance and hepatic steatosis in mice with diet-induced obesity. Diabetologia. 2020;63:1603–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Onslev J, Jensen J, Bangsbo J, Wojtaszewski J, Hostrup M. beta2-agonist induces net leg glucose uptake and free fatty acid release at rest but not during exercise in young men. J Clin Endocrinol Metab. 2019;104:647–57.

    Article  PubMed  Google Scholar 

  142. Massara F, Fassio V, Camanni F, Martina V, Molinatti G. Some metabolic and hormonal effects of salbutamol in man. Acta Diabetol Lat. 1976;13:146–53.

    Article  CAS  PubMed  Google Scholar 

  143. Kendall MJ, Dean S, Bradley D, Gibson R, Worthington DJ. Cardiovascular and metabolic effects of terbutaline. J Clin Hosp Pharm. 1982;7:31–6.

    CAS  PubMed  Google Scholar 

  144. Mitchell TH, Ellis RD, Smith SA, Robb G, Cawthorne MA. Effects of BRL 35135, a beta-adrenoceptor agonist with novel selectivity, on glucose tolerance and insulin sensitivity in obese subjects. Int J Obes. 1989;13:757–66.

    CAS  PubMed  Google Scholar 

  145. Scheidegger K, Robbins DC, Danforth E Jr. Effects of chronic beta receptor stimulation on glucose metabolism. Diabetes. 1984;33:1144–9.

    Article  CAS  PubMed  Google Scholar 

  146. Jessen S, Baasch-Skytte T, Onslev J, Eibye K, Backer V, Bangsbo J, et al. Muscle hypertrophic effect of inhaled beta2 -agonist is associated with augmented insulin-stimulated whole-body glucose disposal in young men. J Physiol. 2022;600:2345–57.

    Article  CAS  PubMed  Google Scholar 

  147. Rodriguez A, Becerril S, Ezquerro S, Mendez-Gimenez L, Fruhbeck G. Crosstalk between adipokines and myokines in fat browning. Acta Physiol. 2017;219:362–81.

    Article  CAS  Google Scholar 

  148. Scheja L, Heeren J. Metabolic interplay between white, beige, brown adipocytes and the liver. J Hepatol. 2016;64:1176–86.

    Article  CAS  PubMed  Google Scholar 

  149. Krapf S, Schjolberg T, Asoawe L, Honkanen SK, Kase ET, Thoresen GH, et al. Novel methods for cold exposure of skeletal muscle in vivo and in vitro show temperature-dependent myokine production. J Therm Biol. 2021;98:102930.

    Article  CAS  PubMed  Google Scholar 

  150. Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123:215–23.

    Article  CAS  PubMed  Google Scholar 

  151. Lee P, Brychta RJ, Linderman J, Smith S, Chen KY, Celi FS. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab. 2013;98:E98–102.

    Article  CAS  PubMed  Google Scholar 

  152. Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19:302–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115:1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55:2470–8.

    Article  CAS  PubMed  Google Scholar 

  157. Zhang Y, Li R, Meng Y, Li S, Donelan W, Zhao Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63:514–25.

    Article  CAS  PubMed  Google Scholar 

  158. Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes. 2014;38:1538–44.

    Article  CAS  Google Scholar 

  159. Vosselman MJ, Hoeks J, Brans B, Pallubinsky H, Nascimento EB, van der Lans AA, et al. Low brown adipose tissue activity in endurance-trained compared with lean sedentary men. Int J Obes. 2015;39:1696–702.

    Article  CAS  Google Scholar 

  160. Norheim F, Langleite TM, Hjorth M, Holen T, Kielland A, Stadheim HK, et al. The effects of acute and chronic exercise on PGC-1alpha, irisin and browning of subcutaneous adipose tissue in humans. FEBS J. 2014;281:739–49.

    Article  CAS  PubMed  Google Scholar 

  161. Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, et al. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes. 2014;63:3686–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Speakman JR, Heidari-Bakavoli S. Type 2 diabetes, but not obesity, prevalence is positively associated with ambient temperature. Sci Rep. 2016;6:30409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Soberg S, Lofgren J, Philipsen FE, Jensen M, Hansen AE, Ahrens E, et al. Altered brown fat thermoregulation and enhanced cold-induced thermogenesis in young, healthy, winter-swimming men. Cell Rep Med. 2021;2:100408.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Ivanova YM, Blondin DP. Examining the benefits of cold exposure as a therapeutic strategy for obesity and type 2 diabetes. J Appl Physiol. 2021;130:1448–59.

    Article  CAS  PubMed  Google Scholar 

  165. Miyai N, Arita M, Miyashita K, Morioka I, Shiraishi T, Nishio I. Blood pressure response to heart rate during exercise test and risk of future hypertension. Hypertension. 2002;39:761–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding

SvB is supported by a grant from the Nutrim NWO graduate program.

Author information

Authors and Affiliations

Authors

Contributions

SvB and JH conceived the idea and designed the review. SvB performed the literature search and drafted the manuscript. TB and DH contributed to the further development of the review. All authors revised the manuscript and gave approval for the final version to be published.

Corresponding author

Correspondence to Joris Hoeks.

Ethics declarations

Competing interests

TB owns stock in Atrogi A.B. Other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Beek, S., Hashim, D., Bengtsson, T. et al. Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue. Int J Obes 47, 338–347 (2023). https://doi.org/10.1038/s41366-023-01270-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41366-023-01270-z

Search

Quick links