Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

JNK signaling in apoptosis

Abstract

Jun N-terminal kinases or JNKs play a critical role in death receptor-initiated extrinsic as well as mitochondrial intrinsic apoptotic pathways. JNKs activate apoptotic signaling by the upregulation of pro-apoptotic genes through the transactivation of specific transcription factors or by directly modulating the activities of mitochondrial pro- and antiapoptotic proteins through distinct phosphorylation events. This review analyses our present understanding of the role of JNK in apoptotic signaling and the various mechanisms by which JNK promotes apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M et al. (2002). Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277: 10244–10250.

    Article  CAS  PubMed  Google Scholar 

  • Barone MC, Desouza LA, Freeman RS . (2008). Pin1 promotes cell death in NGF-dependent neurons through a mechanism requiring c-Jun activity. J Neurochem 106: 734–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrens A, Sibilia M, Wagner EF . (1999). Amino-terminal phosphorylation of c-Jun regulates stress-induced apoptosis and cellular proliferation. Nat Genet 21: 326–329.

    Article  CAS  PubMed  Google Scholar 

  • Björkblom B, Vainio JC, Hongisto V, Herdegen T, Courtney MJ, Coffey ET . (2008). All JNKs can kill, but nuclear localization is critical for neuronal death. J Biol Chem 283: 19704–19713.

    Article  PubMed  Google Scholar 

  • Bossy-Wetzel E, Green DR . (1999). Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem 274: 17484–17490.

    Article  CAS  PubMed  Google Scholar 

  • Cano E, Hazzalin CA, Mahadevan LC . (1994). Anisomycin-activated protein kinases p45 and p55 but not mitogen-activated protein kinases ERK-1 and -2 are implicated in the induction of c-fos and c-jun. Mol Cell Biol 14: 7352–7362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cano E, Mahadevan LC . (1995). Parallel signal processing among mammalian MAPKs. Trends Biochem Sci 20: 117–122.

    Article  CAS  PubMed  Google Scholar 

  • Chang L, Karin M . (2001). Mammalian MAP kinase signalling cascades. Nature 410: 37–40.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N et al. (2003). JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 278: 17593–17596.

    Article  CAS  PubMed  Google Scholar 

  • Chen YR, Meyer CF, Tan TH . (1996). Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. J Biol Chem 271: 631–634.

    Article  CAS  PubMed  Google Scholar 

  • Chen YR, Tan TH . (2000). The c-Jun N-terminal kinase pathway and apoptotic signaling. Int J Oncol 16: 651–662.

    CAS  PubMed  Google Scholar 

  • Chen Z, Seimiya H, Naito M, Mashima T, Kizaki A, Dan S et al. (1999). ASK1 mediates apoptotic cell death induced by genotoxic stress. Oncogene 18: 173–180.

    Article  CAS  PubMed  Google Scholar 

  • Chinnaiyan AM . (1999). The apoptosome: heart and soul of the cell death machine. Neoplasia 1: 5–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dai T, Rubie E, Franklin CC, Kraft A, Gillespie DA, Avruch J et al. (1995). Stress-activated protein kinases bind directly to the delta domain of c-Jun in resting cells: implications for repression of c-Jun function. Oncogene 10: 849–855.

    CAS  PubMed  Google Scholar 

  • Davis RJ . (1994). MAPKs: new JNK expands the group. Trends Biochem Sci 19: 470–473.

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ . (2000). Signal transduction by the JNK group of MAP kinases. Cell 103: 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Deng Y, Ren X, Yang L, Lin Y, Wu X . (2003). A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell 115: 61–70.

    Article  CAS  PubMed  Google Scholar 

  • Dérijard B, Hibi M, Wu IH, Barrett T, Su B, Deng T et al. (1994). JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76: 1025–1037.

    Article  PubMed  Google Scholar 

  • Dhanasekaran DN, Johnson GL . (2007). MAPKs: function, regulation, role in cancer and therapeutic targeting. Oncogene 26: 3097–3099. Review.

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP . (2007). Scaffold proteins of MAP-kinase modules. Oncogene 26: 3185–3202. Review.

    Article  CAS  PubMed  Google Scholar 

  • Dhanasekaran N, Reddy EP . (1998). Signaling by dual specificity kinases. Oncogene 17: 1447–1755.

    Article  CAS  PubMed  Google Scholar 

  • Donovan N, Becker EB, Konishi Y, Bonni A . (2002). JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 277: 40944–40949.

    Article  CAS  PubMed  Google Scholar 

  • Elmore S . (2007). Apoptosis: a review of programmed cell death. Toxicol Pathol 35: 495–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan M, Chambers TC . (2001). Role of mitogen-activated protein kinases in the response of tumor cells to chemotherapy. Drug Resist Updat 4: 253–267.

    Article  CAS  PubMed  Google Scholar 

  • Fanger GR, Gerwins P, Widmann C, Jarpe MB, Johnson GL . (1997). MEKKs, GCKs, MLKs, PAKs, TAKs, and tpls: upstream regulators of the c-Jun amino-terminal kinases? Curr Opin Genet Dev 7: 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Ferrandi C, Ballerio R, Gaillard P, Giachetti C, Carboni S, Vitte PA et al. (2004). Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 142: 953–960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs SY, Adler V, Pincus MR, Ronai Z . (1998). MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci USA 95: 10541–10546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino G, Noguchi T, Matsuzawa A, Yamauchi S, Saitoh M, Takeda K et al. (2007). Thioredoxin and TRAF family proteins regulate reactive oxygen species-dependent activation of ASK1 through reciprocal modulation of the N-terminal homophilic interaction of ASK1. Mol Cell Biol 27: 8152–8163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ . (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911.

    Article  CAS  PubMed  Google Scholar 

  • Hibi M, Lin A, Smeal T, Minden A, Karin M . (1993). Identification of an oncoprotein- and UV-responsive protein kinase that binds and potentiates the c-Jun activation domain. Genes Dev 7: 2135–2148.

    Article  CAS  PubMed  Google Scholar 

  • Hill MM, Adrain C, Duriez PJ, Creagh EM, Martin SJ . (2004). Analysis of the composition, assembly kinetics and activity of native Apaf-1 apoptosomes. EMBO J 23: 2134–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson GL, Nakamura K . (2007). The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta 1773: 1341–1348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones EV, Dickman MJ, Whitmarsh AJ . (2007). Regulation of p73-mediated apoptosis by c-Jun N-terminal kinase. Biochem J 405: 617–623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q et al. (2000). Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 275: 322–327.

    Article  CAS  PubMed  Google Scholar 

  • Kolomeichuk SN, Terrano DT, Lyle CS, Sabapathy K, Chambers TC . (2008). Distinct signaling pathways of microtubule inhibitors--vinblastine and Taxol induce JNK-dependent cell death but through AP-1-dependent and AP-1-independent mechanisms, respectively. FEBS J 275: 1889–1899.

    Article  CAS  PubMed  Google Scholar 

  • Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R et al. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111: 331–342.

    Article  CAS  PubMed  Google Scholar 

  • Lei K, Davis RJ . (2003). NK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 100: 2432–2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB et al. (2002). The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 22: 4929–4942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ . (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2: 183–192.

    Article  CAS  PubMed  Google Scholar 

  • Lin A, Dibling B . (2002). The true face of JNK activation in apoptosis. Aging Cell 1: 112–116.

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Nishitoh H, Ichijo H, Kyriakis JM . (2000b). Activation of apoptosis signal-regulating kinase 1 (ASK1) by tumor necrosis factor receptor-associated factor 2 requires prior dissociation of the ASK1 inhibitor thioredoxin. Mol Cell Biol 20: 2198–2208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Lin A . (2005). Role of JNK activation in apoptosis: a double-edged sword. Cell Res 15: 36–42.

    Article  PubMed  Google Scholar 

  • Liu TC, Huang CJ, Chu YC, Wei CC, Chou CC, Chou MY et al. (2000a). Cloning and expression of ZAK, a mixed lineage kinase-like protein containing a leucine-zipper and a sterile-alpha motif. Biochem Biophys Res Commun 274: 811–816.

    Article  CAS  PubMed  Google Scholar 

  • Madesh M, Antonsson B, Srinivasula SM, Alnemri ES, Hajnóczky G . (2002). Rapid kinetics of tBid-induced cytochrome c and Smac/DIABLO release and mitochondrial depolarization. J Biol Chem 277: 5651–5659.

    Article  CAS  PubMed  Google Scholar 

  • Marani M, Tenev T, Hancock D, Downward J, Lemoine NR . (2002). Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol Cell Biol 22: 3577–3589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuzawa A, Ichijo H . (2001). Molecular mechanisms of the decision between life and death: regulation of apoptosis by apoptosis signal-regulating kinase 1. J Biochem 130: 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Mei Y, Yuan Z, Song B, Li D, Ma C, Hu C et al. (2008). Activating transcription factor 3 up-regulated by c-Jun NH(2)-terminal kinase/c-Jun contributes to apoptosis induced by potassium deprivation in cerebellar granule neurons. Neuroscience 151: 771–779.

    Article  CAS  PubMed  Google Scholar 

  • Nagai H, Noguchi T, Takeda K, Ichijo H . (2007). Pathophysiological roles of ASK1-MAP kinase signaling pathways. J Biochem Mol Biol 40: 1–6.

    CAS  PubMed  Google Scholar 

  • Oleinik NV, Krupenko NI, Krupenko SA . (2007). Cooperation between JNK1 and JNK2 in activation of p53 apoptotic pathway. Oncogene 26: 7222–7230.

    Article  CAS  PubMed  Google Scholar 

  • Prasad MV, Dermott JM, Heasley LE, Johnson GL, Dhanasekaran N . (1995). Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of Gα12 and Gα13. J Biol Chem 270: 18655–18659.

    Article  CAS  PubMed  Google Scholar 

  • Puthalakath H, Huang DC, O′Reilly LA, King SM, Strasser A . (1999). The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3: 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Puthalakath H, Strasser A . (2002). Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ 9: 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Raman M, Chen W, Cobb MH . (2007). Differential regulation and properties of MAPKs. Oncogene 26: 3100–3112.

    Article  CAS  PubMed  Google Scholar 

  • Robitaille K, Daviau A, Lachance G, Couture JP, Blouin R . (2008). Calphostin C induced apoptosis is mediated by a tissue transglutaminase-dependent mechanism involving the DLK/JNK signaling pathway. Cell Death Differ. (e-pub ahead of print).

  • Sánchez-Perez I, Murguía JR, Perona R . (1998). Cisplatin induces a persistent activation of JNK that is related to cell death. Oncogene 16: 533–540.

    Article  PubMed  Google Scholar 

  • Schroeter H, Boyd CS, Ahmed R, Spencer JP, Duncan RF, Rice-Evans C et al. (2003). c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: new target proteins for JNK signalling in mitochondrion-dependent apoptosis. Biochem J 372: 359–369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sluss HK, Barrett T, Dérijard B, Davis RJ . (1994). Signal transduction by tumor necrosis factor mediated by JNK protein kinases. Mol Cell Biol 14: 8376–8384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava RK, Mi QS, Hardwick JM, Longo DL . (1999). Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. Proc Natl Acad Sci USA 96: 3775–3780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunayama J, Tsuruta F, Masuyama N, Gotoh Y . (2005). JNK antagonizes Akt-mediated survival signals by phosphorylating 14-3-3. J Cell Biol 170: 295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Morita K, Takeda K et al. (2001). ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep 2: 222–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A et al. (2000). Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science 288: 870–874.

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y et al. (2004). JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 23: 1889–1899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turjanski AG, Vaqué JP, Gutkind JS . (2007). MAP kinases and the control of nuclear events. Oncogene 26: 3240–3253.

    Article  CAS  PubMed  Google Scholar 

  • Uehara T, Bennett B, Sakata ST, Satoh Y, Bilter GK, Westwick JK et al. (2005). JNK mediates hepatic ischemia reperfusion injury. J Hepatol 242: 850–859.

    Article  Google Scholar 

  • Verheij M, Bose R, Lin XH, Yao B, Jarvis WD, Grant S et al. (1996). Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature 380: 75–79.

    Article  CAS  PubMed  Google Scholar 

  • Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM et al. (2007). Opposing effects of Bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal 19: 1844–1856.

    Article  CAS  PubMed  Google Scholar 

  • Westwick JK, Weitzel C, Minden A, Karin M, Brenner DA . (1994). Tumor necrosis factor alpha stimulates AP-1 activity through prolonged activation of the c-Jun kinase. J Biol Chem 269: 26396–26401.

    CAS  PubMed  Google Scholar 

  • Widmann C, Gerwins P, Johnson NL, Jarpe MB, Johnson GL . (1998). MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis. Mol Cell Biol 18: 2416–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson DJ, Fortner KA, Lynch DH, Mattingly RR, Macara IG, Posada JA et al. (1996). JNK, but not MAPK, activation is associated with Fas-mediated apoptosis in human T cells. Eur J Immunol 26: 989–994.

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Maroney AC, Dobrzanski P, Kukekov NV, Greene LA . (2001). The MLK family mediates c-Jun N-terminal kinase activation in neuronal apoptosis. Mol Cell Biol 21: 4713–4724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto K, Ichijo H, Korsmeyer SJ . (1999). BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 19: 8469–8478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincón M, Zheng TS, Davis RJ et al. (1997). Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature 389: 865–870.

    Article  CAS  PubMed  Google Scholar 

  • Zanke BW, Boudreau K, Rubie E, Winnett E, Tibbles LA, Zon L et al. (1996). The stress-activated protein kinase pathway mediates cell death following injury induced by cis-platinum, UV irradiation or heat. Curr Biol 6: 606–613.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Studies presented in the authors' laboratories were supported by the National Institutes of Health grants CA123233 (to DND) and CA109820 (to EPR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D N Dhanasekaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanasekaran, D., Reddy, E. JNK signaling in apoptosis. Oncogene 27, 6245–6251 (2008). https://doi.org/10.1038/onc.2008.301

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.301

Keywords

This article is cited by

Search

Quick links