Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Splicing regulates NAD metabolite binding to histone macroH2A

Abstract

Histone macroH2A is a hallmark of mammalian heterochromatin. Here we show that human macroH2A1.1 binds the SirT1-metabolite O-acetyl-ADP-ribose (OAADPR) through its macro domain. The 1.6-Å crystal structure and mutants reveal how the metabolite is recognized. Mutually exclusive exon use in the gene H2AFY produces macroH2A1.2, whose tissue distribution differs. MacroH2A1.2 shows only subtle structural changes but cannot bind nucleotides. Alternative splicing may thus regulate the binding of nicotinamide adenine dinucleotide (NAD) metabolites to chromatin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The human heterochromatic histone mH2A1.1 binds NAD metabolites.
Figure 2: Alternative splicing regulates NAD metabolite binding to human histone macroH2A1 isoforms.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

Protein Data Bank

References

  1. Pehrson, J.R. & Fried, V.A. Science 257, 1398–1400 (1992).

    Article  CAS  Google Scholar 

  2. Allen, M.D., Buckle, A.M., Cordell, S.C., Lowe, J. & Bycroft, M. J. Mol. Biol. 330, 503–511 (2003).

    Article  CAS  Google Scholar 

  3. Ladurner, A.G. Mol. Cell 12, 1–3 (2003).

    Article  CAS  Google Scholar 

  4. Costanzi, C. & Pehrson, J.R. Nature 393, 599–601 (1998).

    Article  CAS  Google Scholar 

  5. Zhang, R. et al. Dev. Cell 8, 19–30 (2005).

    Article  CAS  Google Scholar 

  6. Grigoryev, S.A., Nikitina, T., Pehrson, J.R., Singh, P.B. & Woodcock, C.L. J. Cell Sci. 117, 6153–6162 (2004).

    Article  CAS  Google Scholar 

  7. Karras, G.I. et al. EMBO J. 24, 1911–1920 (2005).

    Article  CAS  Google Scholar 

  8. Kim, M.Y., Mauro, S., Gevry, N., Lis, J.T. & Kraus, W.L. Cell 119, 803–814 (2004).

    Article  CAS  Google Scholar 

  9. Rosenberg, M.I. & Parkhurst, S.M. Cell 109, 447–458 (2002).

    Article  CAS  Google Scholar 

  10. Vaquero, A. et al. Mol. Cell 16, 93–105 (2004).

    Article  CAS  Google Scholar 

  11. Smith, J.S. et al. Proc. Natl. Acad. Sci. USA 97, 6658–6663 (2000).

    Article  CAS  Google Scholar 

  12. Landry, J. et al. Proc. Natl. Acad. Sci. USA 97, 5807–5811 (2000).

    Article  CAS  Google Scholar 

  13. Imai, S., Armstrong, C.M., Kaeberlein, M. & Guarente, L. Nature 403, 795–800 (2000).

    Article  CAS  Google Scholar 

  14. Jackson, M.D. & Denu, J.M. J. Biol. Chem. 277, 18535–18544 (2002).

    Article  CAS  Google Scholar 

  15. Pehrson, J.R., Costanzi, C. & Dharia, C. J. Cell. Biochem. 65, 107–113 (1997).

    Article  CAS  Google Scholar 

  16. Bordone, L. & Guarente, L. Nat. Rev. Mol. Cell Biol. 6, 298–305 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Wilm for mass spectrometry; G. Karras, A. Bianco, G. Stier, H. Buhecha, M. Breitenbach and H. Koller for assorted help; S. Fribourg for beamline data collection; A. Akhtar, E. Conti, E. Izaurralde, C. Margulies, I. Mattaj, J. Müller and C. Schultz for discussion; and the staff at beamline ID14-1/ID14-4 of the ESRF for technical support. M.H. acknowledges financial support from the Peter and Traudl Engelhorn Foundation, Germany.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Klaus Scheffzek or Andreas G Ladurner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic group II intron secondary structure. (PDF 460 kb)

Supplementary Fig. 2

The products of splicing from a D56 molecule containing a single-nucleotide 3′-exon. (PDF 445 kb)

Supplementary Table 1

Data collection and refinement statistics (Molecular Replacement). (PDF 75 kb)

Supplementary Methods (PDF 173 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kustatscher, G., Hothorn, M., Pugieux, C. et al. Splicing regulates NAD metabolite binding to histone macroH2A. Nat Struct Mol Biol 12, 624–625 (2005). https://doi.org/10.1038/nsmb956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing