Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination

Abstract

During the first meiotic division, homologous chromosomes (homologs) have to separate to opposite poles of the cell to ensure the right complement in the progeny. Homologous recombination provides a mechanism for a genome-wide homology search and physical linkage among the homologs before their orderly segregation. Rad51 and Dmc1 recombinases are the major players in these processes. Disruption of meiosis-specific HOP2 or MND1 genes leads to severe defects in homologous synapsis and an early-stage recombination failure resulting in sterility. Here we show that mouse Hop2 can efficiently form D-loops, the first recombination intermediates, but this activity is abrogated upon association with Mnd1. Furthermore, the Hop2–Mnd1 heterodimer physically interacts with Rad51 and Dmc1 recombinases and stimulates their activity up to 35-fold. Our data reveal an interplay among Hop2, Mnd1 and Rad51 and Dmc1 in the formation of the first recombination intermediates during meiosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The mouse Hop2 protein promotes D-loop formation.
Figure 2: The Hop2–Mnd1 complex stimulates D-loop formation mediated by Dmc1 and Rad51 proteins.
Figure 3: Functional interaction of Hop2, Mnd1, Rad51 and Dmc1 proteins.
Figure 4: The role of the Hop2–Mnd1 proteins in recombination.

Similar content being viewed by others

References

  1. Zierhut, C., Berlinger, M., Rupp, C., Shinohara, A. & Klein, F. Mnd1 is required for meiotic interhomolog repair. Curr. Biol. 14, 752–762 (2004).

    Article  CAS  Google Scholar 

  2. Saito, T.T., Tougan, T., Kasama, T., Okuzaki, D. & Nojima, H. Mcp7, a meiosis-specific coiled-coil protein of fission yeast, associates with Meu13 and is required for meiotic recombination. Nucleic Acids Res. 32, 3325–3339 (2004).

    Article  CAS  Google Scholar 

  3. Enomoto, R. et al. Positive Role of the Mammalian TBPIP/HOP2 protein in DMC1-mediated homologous pairing. J Biol. Chem. 279, 35263–35272 (2004).

    Article  CAS  Google Scholar 

  4. Chen, Y.K. et al. Heterodimeric complexes of Hop2 and Mnd1 function with Dmc1 to promote meiotic homolog juxtaposition and strand assimilation. Proc. Natl. Acad. Sci. USA 101, 10572–10577 (2004).

    Article  CAS  Google Scholar 

  5. Tsubouchi, H. & Roeder, G.S. The importance of genetic recombination for fidelity of chromosome pairing in meiosis. Dev. Cell 5, 915–925 (2003).

    Article  CAS  Google Scholar 

  6. Schommer, C., Beven, A., Lawrenson, T., Shaw, P. & Sablowski, R. AHP2 is required for bivalent formation and for segregation of homologous chromosomes in Arabidopsis meiosis. Plant J. 36, 1–11 (2003).

    Article  CAS  Google Scholar 

  7. Petukhova, G.V., Romanienko, P.J. & Camerini-Otero, R.D. The Hop2 protein has a direct role in promoting interhomolog interactions during mouse meiosis. Dev. Cell 5, 927–936 (2003).

    Article  CAS  Google Scholar 

  8. Tsubouchi, H. & Roeder, G.S. The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol. Cell. Biol. 22, 3078–3088 (2002).

    Article  CAS  Google Scholar 

  9. Gerton, J.L. & DeRisi, J.L. Mnd1p: an evolutionarily conserved protein required for meiotic recombination. Proc. Natl. Acad. Sci. USA 99, 6895–6900 (2002).

    Article  CAS  Google Scholar 

  10. Rabitsch, K.P. et al. A screen for genes required for meiosis and spore formation based on whole-genome expression. Curr. Biol. 11, 1001–1009 (2001).

    Article  CAS  Google Scholar 

  11. Nabeshima, K., Kakihara, Y., Hiraoka, Y. & Nojima, H. A novel meiosis-specific protein of fission yeast, Meu13p, promotes homologous pairing independently of homologous recombination. EMBO J. 20, 3871–3881 (2001).

    Article  CAS  Google Scholar 

  12. Leu, J.Y., Chua, P.R. & Roeder, G.S. The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94, 375–386 (1998).

    Article  CAS  Google Scholar 

  13. Cox, M.M. The bacterial RecA protein as a motor protein. Annu. Rev. Microbiol. 57, 551–577 (2003).

    Article  CAS  Google Scholar 

  14. Noirot, P., Gupta, R.C., Radding, C.M. & Kolodner, R.D. Hallmarks of homology recognition by RecA-like recombinases are exhibited by the unrelated Escherichia coli RecT protein. EMBO J. 22, 324–334 (2003).

    Article  CAS  Google Scholar 

  15. Sung, P. & Robberson, D.L. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82, 453–461 (1995).

    Article  CAS  Google Scholar 

  16. Sehorn, M.G., Sigurdsson, S., Bussen, W., Unger, V.M. & Sung, P. Human meiotic recombinase Dmc1 promotes ATP-dependent homologous DNA strand exchange. Nature 429, 433–437 (2004).

    Article  CAS  Google Scholar 

  17. Gasior, S.L. et al. Assembly of RecA-like recombinases: distinct roles for mediator proteins in mitosis and meiosis. Proc. Natl. Acad. Sci. USA 98, 8411–8418 (2001).

    Article  CAS  Google Scholar 

  18. Conway, A.B. et al. Crystal structure of a Rad51 filament. Nat. Struct. Mol. Biol. 11, 791–796 (2004).

    Article  CAS  Google Scholar 

  19. Bugreev, D.V. & Mazin, A.V. Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc. Natl. Acad. Sci. USA 101, 9988–9993 (2004).

    Article  CAS  Google Scholar 

  20. Shinohara, A. & Shinohara, M. Roles of RecA homologues Rad51 and Dmc1 during meiotic recombination. Cytogenet. Genome Res. 107, 201–207 (2004).

    Article  CAS  Google Scholar 

  21. Lio, Y.C., Mazin, A.V., Kowalczykowski, S.C. & Chen, D.J. Complex formation by the human Rad51B and Rad51C DNA repair proteins and their activities in vitro. J. Biol. Chem. 278, 2469–2478 (2003).

    Article  CAS  Google Scholar 

  22. Zickler, D. & Kleckner, N. Meiotic chromosomes: integrating structure and function. Annu. Rev. Genet. 33, 603–754 (1999).

    Article  CAS  Google Scholar 

  23. Hayase, A. et al. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1. Cell 119, 927–940 (2004).

    Article  CAS  Google Scholar 

  24. Tsubouchi, H. & Roeder, G.S. The budding yeast mei5 and sae3 proteins act together with dmc1 during meiotic recombination. Genetics 168, 1219–1230 (2004).

    Article  CAS  Google Scholar 

  25. Rijkers, T. et al. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18, 6423–6429 (1998).

    Article  CAS  Google Scholar 

  26. Essers, J. et al. Disruption of mouse RAD54 reduces ionizing radiation resistance and homologous recombination. Cell 89, 195–204 (1997).

    Article  CAS  Google Scholar 

  27. Krogh, B.O. & Symington, L.S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

  28. Sung, P., Krejci, L., Van Komen, S. & Sehorn, M.G. Rad51 recombinase and recombination mediators. J. Biol. Chem. 278, 42729–42732 (2003).

    Article  CAS  Google Scholar 

  29. Baumann, P., Benson, F.E., Hajibagheri, N. & West, S.C. Purification of human Rad51 protein by selective spermidine precipitation. Mutat. Res. 384, 65–72 (1997).

    Article  CAS  Google Scholar 

  30. Masson, J.Y. et al. The meiosis-specific recombinase hDmc1 forms ring structures and interacts with hRad51. EMBO J. 18, 6552–6560 (1999).

    Article  CAS  Google Scholar 

  31. Sigurdsson, S., Trujillo, K., Song, B., Stratton, S. & Sung, P. Basis for avid homologous DNA strand exchange by human Rad51 and RPA. J. Biol. Chem. 276, 8798–8806 (2001).

    Article  CAS  Google Scholar 

  32. Hsieh, P., Camerini-Otero, C.S. & Camerini-Otero, R.D. The synapsis event in the homologous pairing of DNAs: RecA recognizes and pairs less than one helical repeat of DNA. Proc. Natl. Acad. Sci. USA 89, 6492–6496 (1992).

    Article  CAS  Google Scholar 

  33. Borde, V. et al. Association of Mre11p with double-strand break sites during yeast meiosis. Mol. Cell 13, 389–401 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

J.Y.M. is a Canadian Institutes of Health Research new investigator and this work is supported by grants from the National Cancer Institute of Canada and the National Science and Engineering Research Council of Canada. We thank O. Voloshin for the RecA protein, P. Romanienko for the Hop2 cDNA, and P. Hsieh, M. Lichten and O. Voloshin for valuable comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Daniel Camerini-Otero.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

DNA binding of Hop2–Mnd1 complex. (PDF 280 kb)

Supplementary Fig. 2

Single-strand annealing activity is not sufficient for D-loop formation. (PDF 1038 kb)

Supplementary Fig. 3

Hop2 does not denature dsDNA. (PDF 1371 kb)

Supplementary Methods (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petukhova, G., Pezza, R., Vanevski, F. et al. The Hop2 and Mnd1 proteins act in concert with Rad51 and Dmc1 in meiotic recombination. Nat Struct Mol Biol 12, 449–453 (2005). https://doi.org/10.1038/nsmb923

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb923

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing