Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection

Abstract

The conjugation of small ubiquitin-like modifiers SUMO-1, SUMO-2 and SUMO-3 onto target proteins requires the concerted action of the specific E1-activating enzyme SAE1/SAE2, the E2-conjugating enzyme Ubc9, and an E3-like SUMO ligase. NMR chemical shift perturbation was used to identify the surface of Ubc9 that interacts with the SUMO ligase RanBP2. Unlike known ubiquitin E2-E3 interactions, RanBP2 binds to the β-sheet of Ubc9. Mutational disruption of Ubc9-RanBP2 binding affected SUMO-2 but not SUMO-1 conjugation to Sp100 and to a newly identified RanBP2 substrate, PML. RanBP2 contains a binding site specific for SUMO-1 but not SUMO-2, indicating that a Ubc9–SUMO-1 thioester could be recruited to RanBP2 via SUMO-1 in the absence of strong binding between Ubc9 and RanBP2. Thus we show that E2-E3 interactions are not conserved across the ubiquitin-like protein superfamily and identify a RanBP2-dependent mechanism for SUMO paralog–specific conjugation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of the RanBP2-binding site on Ubc9.
Figure 2: RanBP2-binding-site mutants of Ubc9 strongly affect SUMO-2 but not SUMO-1 conjugation to Sp100.
Figure 3: Effect of RanBP2-binding-site mutations on Ubc9 conjugation activity using PML as substrate.
Figure 4: Deletion analysis of the RanBP2 internal repeat region.
Figure 5: Comparison of SUMO conjugation to Sp100 and PML with the depletion of SUMO in assays.
Figure 6: A model for SUMO selection by RanBP2.

Similar content being viewed by others

References

  1. Saitoh, H. & Hinchey, J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275, 6252–6258 (2000).

    Article  CAS  Google Scholar 

  2. Tatham, M.H. et al. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276, 35368–35374 (2001).

    Article  CAS  Google Scholar 

  3. Tatham, M.H. & Hay, R.T. Ubiquitin and ubiquitin-like modifiers: conserved mechanisms and diverse functions. Chemtracts Biochem. Mol. Biol. 16, 759–782 (2003).

    CAS  Google Scholar 

  4. Seeler, J.S. & Dejean, A. Nuclear and unclear functions of SUMO. Nat. Rev. Mol. Cell. Biol. 4, 690–699 (2003).

    Article  CAS  Google Scholar 

  5. Melchior, F., Schergaut, M. & Pichler, A. SUMO: ligases, isopeptidases and nuclear pores. Trends Biochem. Sci. 28, 612–618 (2003).

    Article  CAS  Google Scholar 

  6. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  7. Johnson, E.S. & Gupta, A.A. An E3-like factor that promotes SUMO conjugation to the yeast septins. Cell 106, 735–744 (2001).

    Article  CAS  Google Scholar 

  8. Takahashi, Y., Toh-e, A. & Kikuchi, Y. A novel factor required for the SUMO1/Smt3 conjugation of yeast septins. Gene 275, 223–231 (2001).

    Article  CAS  Google Scholar 

  9. Kotaja, N., Karvonen, U., Janne, O.A. & Palvimo, J.J. PIAS proteins modulate transcription factors by functioning as SUMO-1 ligases. Mol. Cell. Biol. 22, 5222–5234 (2002).

    Article  CAS  Google Scholar 

  10. Nishida, T. & Yasuda, H. PIAS1 and PIASxα function as SUMO-E3 ligases toward androgen receptor and repress androgen receptor-dependent transcription. J. Biol. Chem. 277, 41311–41317 (2002).

    Article  CAS  Google Scholar 

  11. Huang, L. et al. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286, 1321–1326 (1999).

    Article  CAS  Google Scholar 

  12. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  Google Scholar 

  13. Pichler, A., Gast, A., Seeler, J.S., Dejean, A. & Melchior, F. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108, 109–120 (2002).

    Article  CAS  Google Scholar 

  14. Liu, Q. et al. The binding interface between an E2 (UBC9) and a ubiquitin homologue (UBL1). J. Biol. Chem. 274, 16979–16987 (1999).

    Article  CAS  Google Scholar 

  15. Ohi, M.D., Vander Kooi, C.W., Rosenberg, J.A., Chazin, W.J. & Gould, K.L. Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat. Struct. Biol. 10, 250–255 (2003).

    Article  CAS  Google Scholar 

  16. Tatham, M.H. et al. Role of an N-terminal site of Ubc9 in SUMO-1, -2, and -3 binding and conjugation. Biochemistry 42, 9959–9969 (2003).

    Article  CAS  Google Scholar 

  17. Yokoyama, N. et al. A giant nucleopore protein that binds Ran/TC4. Nature 376, 184–188 (1995).

    Article  CAS  Google Scholar 

  18. Pichler, A., Knipscheer, P., Saitoh, H., Sixma, T.K. & Melchior, F. The RanBP2 SUMO E3 ligase is neither HECT- nor RING-type. Nat. Struct. Mol. Biol. 11, 984–991 (2004).

    Article  CAS  Google Scholar 

  19. Jentsch, S. The ubiquitin-conjugation system. Annu. Rev. Genet. 26, 179–207 (1992).

    Article  CAS  Google Scholar 

  20. Bencsath, K.P., Podgorski, M.S., Pagala, V.R., Slaughter, C.A. & Schulman, B.A. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J. Biol. Chem. 277, 47938–47945 (2002).

    Article  CAS  Google Scholar 

  21. Saitoh, H., Pizzi, M.D. & Wang, J. Perturbation of SUMOlation enzyme Ubc9 by distinct domain within nucleoporin RanBP2/Nup358. J. Biol. Chem. 277, 4755–4763 (2002).

    Article  CAS  Google Scholar 

  22. Song, J., Durrin, L.K., Wilkinson, T.A., Krontiris, T.G. & Chen, Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101, 14373–14378 (2004).

    Article  CAS  Google Scholar 

  23. Canning, M., Boutell, C., Parkinson, J. & Everett, R.D. A RING finger ubiquitin ligase is protected from autocatalyzed ubiquitination and degradation by binding to ubiquitin-specific protease USP7. J. Biol. Chem. 279, 38160–38168 (2004).

    Article  CAS  Google Scholar 

  24. Wu, X., Yen, L., Irwin, L., Sweeney, C. & Carraway, K.L., 3rd. Stabilization of the E3 ubiquitin ligase Nrdp1 by the deubiquitinating enzyme USP8. Mol. Cell. Biol. 24, 7748–7757 (2004).

    Article  CAS  Google Scholar 

  25. Siepmann, T.J., Bohnsack, R.N., Tokgoz, Z., Baboshina, O.V. & Haas, A.L. Protein interactions within the N-end rule ubiquitin ligation pathway. J. Biol. Chem. 278, 9448–9457 (2003).

    Article  CAS  Google Scholar 

  26. Sachdev, S. et al. PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies. Genes Dev. 15, 3088–3103 (2001).

    Article  CAS  Google Scholar 

  27. Desterro, J.M., Thomson, J. & Hay, R.T. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett. 417, 297–300 (1997).

    Article  CAS  Google Scholar 

  28. Jaffray, E., Wood, K.M. & Hay, R.T. Domain organization of IκBα and sites of interaction with NF-κB p65. Mol. Cell. Biol. 15, 2166–2172 (1995).

    Article  CAS  Google Scholar 

  29. Pervushin, K. Impact of transverse relaxation optimized spectroscopy (TROSY) on NMR as a technique in structural biology. Q. Rev. Biophys. 33, 161–197 (2000).

    Article  CAS  Google Scholar 

  30. Giraud, M.F., Desterro, J.M. & Naismith, J.H. Structure of ubiquitin-conjugating enzyme 9 displays significant differences with other ubiquitin-conjugating enzymes which may reflect its specificity for sumo rather than ubiquitin. Acta Crystallogr. D. 54, 891–898 (1998).

    Article  CAS  Google Scholar 

  31. Tong, H., Hateboer, G., Perrakis, A., Bernards, R. & Sixma, T.K. Crystal structure of murine/human Ubc9 provides insight into the variability of the ubiquitin-conjugating system. J. Biol. Chem. 272, 21381–21387 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Kemp (University of St. Andrews) for help with RanBP2 binding studies. This work was supported by the UK Medical Research Council, the Association for International Cancer Research (M.H.T. and R.T.H.) and US National Institutes of Health grant numbers GM 59887 and CA 94595 (Y.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald T Hay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Gel filtration chromatographic analysis of RanBP2–Ubc9 mutant complexes. (PDF 1129 kb)

Supplementary Fig. 2

Gel filtration chromatographic analysis of RanBP2–SUMO complexes. (PDF 907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatham, M., Kim, S., Jaffray, E. et al. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol 12, 67–74 (2005). https://doi.org/10.1038/nsmb878

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb878

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing