Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids

Abstract

Synaptotagmin acts as a Ca2+ sensor in neurotransmitter release through its two C2 domains. Ca2+-dependent phospholipid binding is key for synaptotagmin function, but it is unclear how this activity cooperates with the SNARE complex involved in release or why Ca2+ binding to the C2B domain is more crucial for release than Ca2+ binding to the C2A domain. Here we show that Ca2+ induces high-affinity simultaneous binding of synaptotagmin to two membranes, bringing them into close proximity. The synaptotagmin C2B domain is sufficient for this ability, which arises from the abundance of basic residues around its surface. We propose a model wherein synaptotagmin cooperates with the SNAREs in bringing the synaptic vesicle and plasma membranes together and accelerates membrane fusion through the highly positive electrostatic potential of its C2B domain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The synaptotagmin-1 C2 domains are flexibly linked.
Figure 2: Analysis of Ca2+-dependent synaptotagmin-1–phospholipid interactions by NBD fluorescence.
Figure 3: The synaptotagmin-1 C2AB fragment does not oligomerize on phospholipid vesicles.
Figure 4: Synaptotagmin-1 clusters phospholipid vesicles.
Figure 5: The C2AB fragment brings two membranes into close proximity.
Figure 6: Proposed model of Ca2+-triggered neurotransmitter release.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sudhof, T.C. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27, 509–547 (2004).

    Article  PubMed  Google Scholar 

  2. Chapman, E.R. Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat. Rev. Mol. Cell Biol. 3, 498–508 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Sutton, R.B., Davletov, B.A., Berghuis, A.M., Sudhof, T.C. & Sprang, S.R. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80, 929–938 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Shao, X., Fernandez, I., Sudhof, T.C. & Rizo, J. Solution structures of the Ca2+-free and Ca2+-bound C2A domain of synaptotagmin I: does Ca2+ induce a conformational change? Biochemistry 37, 16106–16115 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Fernandez, I. et al. Three-dimensional structure of the synaptotagmin 1 c(2)b-domain. Synaptotagmin 1 as a phospholipid binding machine. Neuron 32, 1057–1069 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Shao, X., Davletov, B.A., Sutton, R.B., Sudhof, T.C. & Rizo, J. Bipartite Ca2+-binding motif in C2 domains of synaptotagmin and protein kinase C. Science 273, 248–251 (1996).

    Article  CAS  PubMed  Google Scholar 

  7. Ubach, J., Zhang, X., Shao, X., Sudhof, T.C. & Rizo, J. Ca2+ binding to synaptotagmin: how many Ca2+ ions bind to the tip of a C2-domain? EMBO J. 17, 3921–3930 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Davletov, B.A. & Sudhof, T.C. A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding. J. Biol. Chem. 268, 26386–26390 (1993).

    CAS  PubMed  Google Scholar 

  9. Chapman, E.R. & Davis, A.F. Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers. J. Biol. Chem. 273, 13995–14001 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, X., Rizo, J. & Sudhof, T.C. Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37, 12395–12403 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Fernandez-Chacon, R. et al. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410, 41–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Rhee, J.S. et al. Augmenting neurotransmitter release by enhancing the apparent Ca2+-affinity of synaptotagmin 1. Proc. Natl. Acad. Sci. USA 102, 18664–18669 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shin, O.H., Rizo, J. & Sudhof, T.C. Synaptotagmin function in dense core vesicle exocytosis studied in cracked PC12 cells. Nat. Neurosci. 5, 649–656 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Arac, D., Murphy, T. & Rizo, J. Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy. Biochemistry 42, 2774–2780 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. Shin, O.H. et al. Sr2+ binding to the Ca2+ binding site of the synaptotagmin 1 C2B domain triggers fast exocytosis without stimulating SNARE interactions. Neuron 37, 99–108 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Hanson, P.I., Roth, R., Morisaki, H., Jahn, R. & Heuser, J.E. Structure and conformational changes in NSF and its membrane receptor complexes visualized by quick-freeze/deep-etch electron microscopy. Cell 90, 523–535 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Lin, R.C. & Scheller, R.H. Structural organization of the synaptic exocytosis core complex. Neuron 19, 1087–1094 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. Poirier, M.A. et al. The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 (1998).

    Article  CAS  PubMed  Google Scholar 

  19. Sutton, R.B., Fasshauer, D., Jahn, R. & Brunger, A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Hu, K. et al. Vesicular restriction of synaptobrevin suggests a role for calcium in membrane fusion. Nature 415, 646–650 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Kweon, D.H., Kim, C.S. & Shin, Y.K. Regulation of neuronal SNARE assembly by the membrane. Nat. Struct. Biol. 10, 440–447 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Sorensen, J.B. et al. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc. Natl. Acad. Sci. USA 99, 1627–1632 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen, X., Tang, J., Sudhof, T.C. & Rizo, J. Are neuronal SNARE proteins Ca2+ sensors? J. Mol. Biol. 347, 145–158 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Rickman, C. et al. Synaptotagmin interaction with the syntaxin/SNAP-25 dimer is mediated by an evolutionarily conserved motif and is sensitive to inositol hexakisphosphate. J. Biol. Chem. 279, 12574–12579 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Chapman, E.R., Desai, R.C., Davis, A.F. & Tornehl, C.K. Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin. J. Biol. Chem. 273, 32966–32972 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Garcia, R.A., Forde, C.E. & Godwin, H.A. Calcium triggers an intramolecular association of the C2 domains in synaptotagmin. Proc. Natl. Acad. Sci. USA 97, 5883–5888 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ubach, J. et al. The C2B domain of synaptotagmin I is a Ca2+-binding module. Biochemistry 40, 5854–5860 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Mackler, J.M., Drummond, J.A., Loewen, C.A., Robinson, I.M. & Reist, N.E. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418, 340–344 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Robinson, I.M., Ranjan, R. & Schwarz, T.L. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain. Nature 418, 336–340 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Fernandez-Chacon, R. et al. Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1. J. Neurosci. 22, 8438–8446 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishiki, T. & Augustine, G.J. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. J. Neurosci. 24, 8542–8550 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wu, Y. et al. Visualization of synaptotagmin I oligomers assembled onto lipid monolayers. Proc. Natl. Acad. Sci. USA 100, 2082–2087 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bai, J., Wang, P. & Chapman, E.R. C2A activates a cryptic Ca(2+)-triggered membrane penetration activity within the C2B domain of synaptotagmin I. Proc. Natl. Acad. Sci. USA 99, 1665–1670 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerber, S.H., Rizo, J. & Sudhof, T.C. Role of electrostatic and hydrophobic interactions in ca(2+)-dependent phospholipid binding by the c(2)a-domain from synaptotagmin I. Diabetes 51 Suppl 1, S12–S18 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Rufener, E., Frazier, A.A., Wieser, C.M., Hinderliter, A. & Cafiso, D.S. Membrane-bound orientation and position of the synaptotagmin C2B domain determined by site-directed spin labeling. Biochemistry 44, 18–28 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Frazier, A.A., Roller, C.R., Havelka, J.J., Hinderliter, A. & Cafiso, D.S. Membrane-bound orientation and position of the synaptotagmin I C2A domain by site-directed spin labeling. Biochemistry 42, 96–105 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Crowley, K.S., Reinhart, G.D. & Johnson, A.E. The signal sequence moves through a ribosomal tunnel into a noncytoplasmic aqueous environment at the ER membrane early in translocation. Cell 73, 1101–1115 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Wu, P. & Brand, L. Resonance energy transfer: methods and applications. Anal. Biochem. 218, 1–13 (1994).

    Article  CAS  PubMed  Google Scholar 

  40. Bai, J., Tucker, W.C. & Chapman, E.R. PIP2 increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11, 36–44 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Schiavo, G., Matteoli, M. & Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 80, 717–766 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Tucker, W.C., Weber, T. & Chapman, E.R. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304, 435–438 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Chen, X. et al. SNARE mediated lipid mixing depends on the physical state of the vesicles Biophys. J published online 16 December 2005 (10.1529/biophysj.105.071415).

  44. Chernomordik, L.V., Melikyan, G.B. & Chizmadzhev, Y.A. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim. Biophys. Acta 906, 309–352 (1987).

    Article  CAS  PubMed  Google Scholar 

  45. Hartmann, W. & Galla, H.J. Binding of polylysine to charged bilayer membranes: molecular organization of a lipid.peptide complex. Biochim. Biophys. Acta 509, 474–490 (1978).

    Article  CAS  PubMed  Google Scholar 

  46. Borden, C.R., Stevens, C.F., Sullivan, J.M. & Zhu, Y. Synaptotagmin mutants Y311N and K326/327A alter the calcium dependence of neurotransmission. Mol. Cell. Neurosci. 29, 462–470 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Ludtke, S.J., Jakana, J., Song, J.L., Chuang, D.T. & Chiu, W. A 11.5 A single particle reconstruction of GroEL using EMAN. J. Mol. Biol. 314, 253–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Kremer, J.R., Mastronarde, D.N. & McIntosh, J.R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  CAS  PubMed  Google Scholar 

  49. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association—insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins Struct. Funct. Genet. 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Kodadek and L. Burdine for assistance with the cross-linking experiments, M. Schmid for assistance on the three-dimensional tomographic reconstruction and N. Mizuno and Z. Metlagel for help with the negative-staining experiments. This work was supported by grants from the Welch Foundation (to A.E.J. and J.R.) and by US National Institutes of Health grants P41RR02250 (to W.C.), GM26494 (to A.E.J.) and NS40944 (to J.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep Rizo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Problems with labeling C277 of synaptotagmin 1 (PDF 690 kb)

Supplementary Fig. 2

Reconstruction of the oligomeric model of synaptotagmin 1 (PDF 618 kb)

Supplementary Fig. 3

Negative stain em analysis of synpatotagmin/calcium/lipid samples (PDF 1135 kb)

Supplementary Fig. 4

Synaptotagmin does not oligomerize (PDF 226 kb)

Supplementary Fig. 5

Calcium dependence of synaptotagmin induced vesicle clustering (PDF 77 kb)

Supplementary Fig. 6

Diverse considerations supporting the model of Figure 6 (PDF 256 kb)

Supplementary Video 1

Tomographic 3D reconstruction of a vesicle cluster (MPG 2310 kb)

Supplementary Methods (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Araç, D., Chen, X., Khant, H. et al. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat Struct Mol Biol 13, 209–217 (2006). https://doi.org/10.1038/nsmb1056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1056

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing