Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct ribosomal binding by a cellular inhibitor of translation

Abstract

During apoptosis and under conditions of cellular stress, several signaling pathways promote inhibition of cap-dependent translation while allowing continued translation of specific messenger RNAs encoding regulatory and stress-response proteins. We report here that the apoptotic regulator Reaper inhibits protein synthesis by binding directly to the 40S ribosomal subunit. This interaction does not affect either ribosomal association of initiation factors or formation of 43S or 48S complexes. Rather, it interferes with late initiation events upstream of 60S subunit joining, apparently modulating start-codon recognition during scanning. CrPV IRES–driven translation, involving direct ribosomal recruitment to the start site, is relatively insensitive to Reaper. Thus, Reaper is the first known cellular ribosomal binding factor with the potential to allow selective translation of mRNAs initiating at alternative start codons or from certain IRES elements. This function of Reaper may modulate gene expression programs to affect cell fate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ribosomes restore Reaper's inhibitory activity.
Figure 2: Reaper binds ribosomes through direct interaction with the 40S subunit.
Figure 3: Reaper inhibits translation initiation and induces accumulation of 48S half-mers.
Figure 4: Reaper does not affect eIF2α phosphorylation or 43S complex formation.
Figure 5: Reaper-induced 48S half-mers inefficiently recognize the AUG start site.
Figure 6: Reaper induces differential pausing in bicistronic mRNA messages.
Figure 7: Reaper induces differential inhibition of translation in an mRNA-dependent manner.

Similar content being viewed by others

References

  1. Holcik, M. & Sonenberg, N. Translational control in stress and apoptosis. Nat. Rev. Mol. Cell Biol. 6, 318–327 (2005).

    Article  CAS  Google Scholar 

  2. Marash, L. & Kimchi, A. DAP5 and IRES-mediated translation during programmed cell death. Cell Death Differ. 12, 554–562 (2005).

    Article  CAS  Google Scholar 

  3. Bushell, M. et al. Cleavage of polypeptide chain initiation factor eIF4GI during apoptosis in lymphoma cells: characterisation of an internal fragment generated by caspase-3-mediated cleavage. Cell Death Differ. 7, 628–636 (2000).

    Article  CAS  Google Scholar 

  4. Marissen, W.E., Gradi, A., Sonenberg, N. & Lloyd, R.E. Cleavage of eukaryotic translation initiation factor 4GII correlates with translation inhibition during apoptosis. Cell Death Differ. 7, 1234–1243 (2000).

    Article  CAS  Google Scholar 

  5. Sonenberg, N. & Dever, T.E. Eukaryotic translation initiation factors and regulators. Curr. Opin. Struct. Biol. 13, 56–63 (2003).

    Article  CAS  Google Scholar 

  6. Qin, X. & Sarnow, P. Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J. Biol. Chem. 279, 13721–13728 (2004).

    Article  CAS  Google Scholar 

  7. Hellen, C.U. & Sarnow, P. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev. 15, 1593–1612 (2001).

    Article  CAS  Google Scholar 

  8. Holcik, M. Targeting translation for treatment of cancer–a novel role for IRES? Curr. Cancer Drug Targets 4, 299–311 (2004).

    Article  CAS  Google Scholar 

  9. Hinnebusch, A.G. & Natarajan, K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1, 22–32 (2002).

    Article  CAS  Google Scholar 

  10. Clemens, M.J. Translational control in virus-infected cells: models for cellular stress responses. Semin. Cell Dev. Biol. 16, 13–20 (2005).

    Article  CAS  Google Scholar 

  11. Kozak, M. Pushing the limits of the scanning mechanism for initiation of translation. Gene 299, 1–34 (2002).

    Article  CAS  Google Scholar 

  12. Pestova, T.V. & Hellen, C.U. Functions of eukaryotic factors in initiation of translation. Cold Spring Harb. Symp. Quant. Biol. 66, 389–396 (2001).

    Article  CAS  Google Scholar 

  13. Kolupaeva, V.G., Unbehaun, A., Lomakin, I.B., Hellen, C.U. & Pestova, T.V. Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11, 470–486 (2005).

    Article  CAS  Google Scholar 

  14. Asano, K. et al. A multifactor complex of eIF1, eIF2, eIF3, eIF5, and tRNA(i)Met promotes initiation complex assembly and couples GTP hydrolysis to AUG recognition. Cold Spring Harb. Symp. Quant. Biol. 66, 403–415 (2001).

    Article  CAS  Google Scholar 

  15. Pestova, T.V., Borukhov, S.I. & Hellen, C.U. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394, 854–859 (1998).

    Article  CAS  Google Scholar 

  16. Gingras, A.C., Raught, B. & Sonenberg, N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913–963 (1999).

    Article  CAS  Google Scholar 

  17. Fernandez, J. et al. Regulation of internal ribosome entry site-mediated translation by eukaryotic initiation factor-2alpha phosphorylation and translation of a small upstream open reading frame. J. Biol. Chem. 277, 2050–2058 (2002).

    Article  CAS  Google Scholar 

  18. Schneider, R. et al. New ways of initiating translation in eukaryotes. Mol. Cell. Biol. 21, 8238–8246 (2001).

    Article  CAS  Google Scholar 

  19. Holcik, M., Gordon, B.W. & Korneluk, R.G. The internal ribosome entry site-mediated translation of antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. Mol. Cell. Biol. 23, 280–288 (2003).

    Article  CAS  Google Scholar 

  20. Spriggs, K.A., Bushell, M., Mitchell, S.A. & Willis, A.E. Internal ribosome entry segment-mediated translation during apoptosis: the role of IRES-trans-acting factors. Cell Death Differ. 12, 585–591 (2005).

    Article  CAS  Google Scholar 

  21. Pickering, B.M., Mitchell, S.A., Spriggs, K.A., Stoneley, M. & Willis, A.E. Bag-1 internal ribosome entry segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and recruitment of polypyrimidine tract binding protein 1. Mol. Cell. Biol. 24, 5595–5605 (2004).

    Article  CAS  Google Scholar 

  22. Mitchell, S.A., Spriggs, K.A., Coldwell, M.J., Jackson, R.J. & Willis, A.E. The Apaf-1 internal ribosome entry segment attains the correct structural conformation for function via interactions with PTB and unr. Mol. Cell 11, 757–771 (2003).

    Article  CAS  Google Scholar 

  23. Narayanan, S., Surendranath, K., Bora, N., Surolia, A. & Karande, A.A. Ribosome inactivating proteins and apoptosis. FEBS Lett. 579, 1324–1331 (2005).

    Article  CAS  Google Scholar 

  24. Tait, S.W., Werner, A.B., de Vries, E. & Borst, J. Mechanism of action of Drosophila Reaper in mammalian cells: Reaper globally inhibits protein synthesis and induces apoptosis independent of mitochondrial permeability. Cell Death Differ. 11, 800–811 (2004).

    Article  CAS  Google Scholar 

  25. Colon-Ramos, D.A. et al. Inhibition of translation and induction of apoptosis by Bunyaviral nonstructural proteins bearing sequence similarity to reaper. Mol. Biol. Cell 14, 4162–4172 (2003).

    Article  CAS  Google Scholar 

  26. Holley, C.L., Olson, M.R., Colon-Ramos, D.A. & Kornbluth, S. Reaper eliminates IAP proteins through stimulated IAP degradation and generalized translational inhibition. Nat. Cell Biol. 4, 439–444 (2002).

    Article  CAS  Google Scholar 

  27. Yoo, S.J. et al. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. Cell Biol. 4, 416–424 (2002).

    Article  CAS  Google Scholar 

  28. Voorma, H.O., Thomas, A., Goumans, H., Amesz, H. & van der Mast, C. Isolation and purification of initiation factors of protein synthesis from rabbit reticulocyte lysate. Methods Enzymol. 60, 124–135 (1979).

    Article  CAS  Google Scholar 

  29. Safer, B., Jagus, R. & Kemper, W.M. Analysis of initiation factor function in highly fractionated and unfractionated reticulocyte lysate systems. Methods Enzymol. 60, 61–87 (1979).

    Article  CAS  Google Scholar 

  30. Lukavsky, P.J., Otto, G.A., Lancaster, A.M., Sarnow, P. & Puglisi, J.D. Structures of two RNA domains essential for hepatitis C virus internal ribosome entry site function. Nat. Struct. Biol. 7, 1105–1110 (2000).

    Article  CAS  Google Scholar 

  31. Merrick, W.C. Assays for eukaryotic protein synthesis. Methods Enzymol. 60, 108–123 (1979).

    Article  CAS  Google Scholar 

  32. Clemens, M.J. Initiation factor eIF2 alpha phosphorylation in stress responses and apoptosis. Prog. Mol. Subcell. Biol. 27, 57–89 (2001).

    Article  CAS  Google Scholar 

  33. Nielsen, K.H. et al. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO J. 23, 1166–1177 (2004).

    Article  CAS  Google Scholar 

  34. Kozak, M. Primer extension analysis of eukaryotic ribosome-mRNA complexes. Nucleic Acids Res. 26, 4853–4859 (1998).

    Article  CAS  Google Scholar 

  35. Dmitriev, S.E., Pisarev, A.V., Rubtsova, M.P., Dunaevsky, Y.E. & Shatsky, I.N. Conversion of 48S translation preinitiation complexes into 80S initiation complexes as revealed by toeprinting. FEBS Lett. 533, 99–104 (2003).

    Article  CAS  Google Scholar 

  36. Korneeva, N.L., First, E.A., Benoit, C.A. & Rhoads, R.E. Interaction between the NH2-terminal domain of eIF4A and the central domain of eIF4G modulates RNA-stimulated ATPase activity. J. Biol. Chem. 280, 1872–1881 (2005).

    Article  CAS  Google Scholar 

  37. Bridgen, A. & Elliott, R.M. Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc. Natl. Acad. Sci. USA 93, 15400–15404 (1996).

    Article  CAS  Google Scholar 

  38. Vagner, S., Galy, B. & Pyronnet, S. Irresistible IRES. Attracting the translation machinery to internal ribosome entry sites. EMBO Rep. 2, 893–898 (2001).

    Article  CAS  Google Scholar 

  39. Otto, G.A. & Puglisi, J.D. The pathway of HCV IRES-mediated translation initiation. Cell 119, 369–380 (2004).

    Article  CAS  Google Scholar 

  40. Jan, E. & Sarnow, P. Factorless ribosome assembly on the internal ribosome entry site of cricket paralysis virus. J. Mol. Biol. 324, 889–902 (2002).

    Article  CAS  Google Scholar 

  41. Pestova, T.V., Lomakin, I.B. & Hellen, C.U. Position of the CrPV IRES on the 40S subunit and factor dependence of IRES/80S ribosome assembly. EMBO Rep. 5, 906–913 (2004).

    Article  CAS  Google Scholar 

  42. Kolupaeva, V.G., Pestova, T.V. & Hellen, C.U. Ribosomal binding to the internal ribosomal entry site of classical swine fever virus. RNA 6, 1791–1807 (2000).

    Article  CAS  Google Scholar 

  43. Hellen, C.U. & Pestova, T.V. Translation of hepatitis C virus RNA. J. Viral Hepat. 6, 79–87 (1999).

    Article  CAS  Google Scholar 

  44. Ji, H., Fraser, C.S., Yu, Y., Leary, J. & Doudna, J.A. Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc. Natl. Acad. Sci. USA 101, 16990–16995 (2004).

    Article  CAS  Google Scholar 

  45. Holcik, M. & Korneluk, R.G. Functional characterization of the X-linked inhibitor of apoptosis (XIAP) internal ribosome entry site element: role of La autoantigen in XIAP translation. Mol. Cell. Biol. 20, 4648–4657 (2000).

    Article  CAS  Google Scholar 

  46. Henis-Korenblit, S. et al. The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. Proc. Natl. Acad. Sci. USA 99, 5400–5405 (2002).

    Article  CAS  Google Scholar 

  47. Coldwell, M.J., Mitchell, S.A., Stoneley, M., MacFarlane, M. & Willis, A.E. Initiation of Apaf-1 translation by internal ribosome entry. Oncogene 19, 899–905 (2000).

    Article  CAS  Google Scholar 

  48. Sherrill, K.W., Byrd, M.P., Van Eden, M.E. & Lloyd, R.E. BCL-2 translation is mediated via internal ribosome entry during cell stress. J. Biol. Chem. 279, 29066–29074 (2004).

    Article  CAS  Google Scholar 

  49. Hernandez, G., Vazquez-Pianzola, P., Sierra, J.M. & Rivera-Pomar, R. Internal ribosome entry site drives cap-independent translation of reaper and heat shock protein 70 mRNAs in Drosophila embryos. RNA 10, 1783–1797 (2004).

    Article  CAS  Google Scholar 

  50. Vogler, M. et al. Inhibition of clonogenic tumor growth: a novel function of Smac contributing to its antitumor activity. Oncogene 24, 7190–7202 (2005).

    Article  CAS  Google Scholar 

  51. Elliott, R.M. Emerging viruses: the Bunyaviridae. Mol. Med. 3, 572–577 (1997).

    Article  CAS  Google Scholar 

  52. Gonzalez-Scarano, F., Jacoby, D., Griot, C. & Nathanson, N. Genetics, infectivity and virulence of California serogroup viruses. Virus Res. 24, 123–135 (1992).

    Article  CAS  Google Scholar 

  53. Fuller, F., Bhown, A.S. & Bishop, D.H. Bunyavirus nucleoprotein, N, and a non-structural protein, NSS, are coded by overlapping reading frames in the S RNA. J. Gen. Virol. 64, 1705–1714 (1983).

    Article  CAS  Google Scholar 

  54. Sacerdot, C. et al. The role of the AUU initiation codon in the negative feedback regulation of the gene for translation initiation factor IF3 in Escherichia coli. Mol. Microbiol. 21, 331–346 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R.M. Elliott, S.S. Margolis, J.E. Irazoqui, K. Silva, T. Prince, A. Vila-Sanjurjo, S. Paranjape, B. Kaplan, E. Harris, R. Rhodes, I.N. Shatsky, E. Nogales and J. Doudna for helpful discussions and generous sharing of advice and reagents. We thank in particular C. Fraser (University of California at Berkeley) for advice and kindly providing purified eIF3 complex and the US National Cell Culture Center for supplying HeLa cells. This work was supported by US National Institutes of Health grants to S.K. (RO1 GM61919) and J.C. (R01 GM65050). R.M. was supported by the Oklahoma Agricultural Experiment Station (Project 1975). C.L.S. was supported by a Howard Hughes Medical Institute Predoctoral Fellowship. D.C.-R. was supported by a US National Institutes of Health Minority Supplement to grant R01 GM61919 and by the Gates Millennium Scholarship. D.C.-R. is a Damon Runyon Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally Kornbluth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Ribosomes restore Reaper's inhibitory activity but do not enhance translation of control-depleted extracts. (PDF 5728 kb)

Supplementary Fig. 2

Titratable effects of Reaper on polysome sedimentation profiles. (PDF 4561 kb)

Supplementary Fig. 3

Reaper induces accumulation of 80S not associated with the mRNAs. (PDF 5175 kb)

Supplementary Fig. 4

Reaper does not affect phosphorylation of eIF2α or its association with the 40S. (PDF 5121 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colón-Ramos, D., Shenvi, C., Weitzel, D. et al. Direct ribosomal binding by a cellular inhibitor of translation. Nat Struct Mol Biol 13, 103–111 (2006). https://doi.org/10.1038/nsmb1052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing