Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit

Abstract

Structural studies of RNA polymerase II have suggested two possible exit paths for the nascent RNA: groove 1, which points toward the subcomplex of subunits Rpb4 and Rpb7, and groove 2, which points toward Rpb8. These alternatives could not be distinguished previously because less than 10 nucleotides (nt) of transcript were resolved in the structures. We have approached this question by UV cross-linking nascent RNA to components of the transcription complex through uridine analogs located within the first six nucleotides of the RNA. We find that the emerging transcript cross-links to the Rpb7 subunit of RNA polymerase II in various complexes containing 26- to 32-nt transcripts. This interaction is greatly reduced in complexes with 41- or 43-nt RNAs and absent when the transcript is 125 nt. Our results are consistent with groove 1 being the exit path for nascent RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The transcript cross-links to Rpb7 as the RNA emerges from within RNA polymerase II.
Figure 2: RNA length dependence of cross-linking to Rpb7.
Figure 3: Competition between U2AF65 and Rpb7 for the emerging transcript.

Similar content being viewed by others

References

  1. Cramer, P. RNA polymerase II structure: from core to functional complexes. Curr. Opin. Genet. Dev. 14, 218–226 (2004).

    Article  CAS  Google Scholar 

  2. Kettenberger, H., Armache, K.-J. & Cramer, P. Complete RNA polymerase II elongation complex structure and its interaction with NTPs and TFIIS. Mol. Cell 16, 955–965 (2004).

    Article  CAS  Google Scholar 

  3. Gu, W., Wind, M. & Reines, D. Increased accommodation of nascent RNA in a product site on RNA polymerase II during arrest. Proc. Natl. Acad. Sci. USA 93, 6935–6940 (1996).

    Article  CAS  Google Scholar 

  4. Reeder, T.C. & Hawley, D.K. Promoter proximal sequences modulate RNA polymerase II elongation by a novel mechanism. Cell 87, 767–777 (1996).

    Article  CAS  Google Scholar 

  5. Cramer, P. et al. Architecture of RNA polymerase II and implications for the transcription mechanism. Science 288, 640–649 (2000).

    Article  CAS  Google Scholar 

  6. Cramer, P., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: RNA polymerase II at 2.8 Å resolution. Science 292, 1863–1876 (2001).

    Article  CAS  Google Scholar 

  7. Gnatt, A.L., Cramer, P., Fu, J., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292, 1876–1882 (2001).

    Article  CAS  Google Scholar 

  8. Westover, K.D., Bushnell, D.A. & Kornberg, R.D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303, 1014–1016 (2004).

    Article  CAS  Google Scholar 

  9. Todone, F., Brick, P., Werner, F., Weinzierl, R.O. & Onesti, S. Structure of an archaeal homolog of the eukaryotic RNA polymerase II RPB4/RPB7 complex. Mol. Cell 8, 1137–1143 (2001).

    Article  CAS  Google Scholar 

  10. Orlicky, S.M., Tran, P.T., Sayre, M.H. & Edwards, A.M. Dissociable Rpb4-Rpb7 subassembly of RNA polymerase II binds to single-strand nucleic acid and mediates a post-recruitment step in transcription initiation. J. Biol. Chem. 276, 10097–10102 (2001).

    Article  CAS  Google Scholar 

  11. Ebright, R.H. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304, 687–698 (2000).

    Article  CAS  Google Scholar 

  12. Proudfoot, N.J., Furger, A. & Dye, M.J. Integrating rnRNA processing with transcription. Cell 108, 501–512 (2002).

    Article  CAS  Google Scholar 

  13. Maniatis, T. & Reed, R. An extensive network of coupling among gene expression machines. Nature 416, 499–506 (2002).

    Article  CAS  Google Scholar 

  14. Howe, K.J. RNA polymerase II conducts a symphony of pre-mRNA processing activities. Biochim. Biophys. Acta 1577, 308–324 (2002).

    Article  CAS  Google Scholar 

  15. Zorio, D.A. & Bentley, D.L. The link between mRNA processing and transcription: communication works both ways. Exp. Cell Res. 296, 91–97 (2004).

    Article  CAS  Google Scholar 

  16. Újvári, A. & Luse, D.S. Newly initiated RNA encounters a factor involved in splicing immediately upon emerging from within RNA polymerase II. J. Biol. Chem. 279, 49773–49779 (2004).

    Article  Google Scholar 

  17. Choder, M. Rpb4 and Rpb7: subunits of RNA polymerase II and beyond. Trends Biochem. Sci. 29, 674–681 (2004).

    Article  CAS  Google Scholar 

  18. Bushnell, D.A. & Kornberg, R.D. Complete, 12-subunit RNA polymerase II at 4.1-Å resolution: implications for the initiation of transcription. Proc. Natl. Acad. Sci. USA 100, 6969–6973 (2003).

    Article  CAS  Google Scholar 

  19. Meisenheimer, K.M., Meisenheimer, P.L. & Koch, T.H. Nucleoprotein photo-cross-linking using halopyrimidine-substituted RNAs. Methods Enzymol. 318, 88–104 (2000).

    Article  CAS  Google Scholar 

  20. Armache, K.-J., Kettenberger, H. & Cramer, P. Architecture of initiation-competent 12-subunit RNA polymerase II. Proc. Natl. Acad. Sci. USA 100, 6964–6968 (2003).

    Article  CAS  Google Scholar 

  21. Edwards, A.M., Kane, C.M., Young, R.A. & Kornberg, R.D. Two dissociable subunits of yeast RNA polymerase II stimulate the initiation of transcription at a promoter in vitro. J. Biol. Chem. 266, 71–75 (1991).

    CAS  PubMed  Google Scholar 

  22. Chung, W.H. et al. RNA polymerase II/TFIIF structure and conserved organization of the initiation complex. Mol. Cell 12, 1003–1013 (2003).

    Article  CAS  Google Scholar 

  23. Kimura, M., Suzuki, H. & Ishihama, A. Formation of a carboxy-terminal domain phosphatase (Fcp1)/TFIIF/RNA polymerase II (pol II) complex in Schizosaccharomyces pombe involves direct interaction between Fcp1 and the Rpb4 subunit of pol II. Mol. Cell. Biol. 22, 1577–1588 (2002).

    Article  CAS  Google Scholar 

  24. Kamenski, T., Heilmeier, S., Meinhart, A. & Cramer, P. Structure and mechanism of RNA polymerase II CTD phosphatases. Mol. Cell 15, 399–407 (2004).

    Article  CAS  Google Scholar 

  25. Moore, M.J. Intron recognition comes of AGe. Nat. Struct. Biol. 7, 14–16 (2000).

    Article  CAS  Google Scholar 

  26. Zolotukhin, A.S., Tan, W., Bear, J., Smulevitch, S. & Felber, B.K. U2AF participates in the binding of TAP (NXF1) to mRNA. J. Biol. Chem. 277, 3935–3942 (2002).

    Article  CAS  Google Scholar 

  27. Blanchette, M., Labourier, E., Green, R.E., Brenner, S.E. & Rio, D.C. Genome-wide analysis reveals an unexpected function for the Drosophila splicing factor U2AF(50) in the nuclear export of intronless mRNAs. Mol. Cell 14, 775–786 (2004).

    Article  CAS  Google Scholar 

  28. Robert, F., Blanchette, M., Maes, O., Chabot, B. & Coulombe, B. A human RNA polymerase II-containing complex associated with factors necessary for spliceosome assembly. J. Biol. Chem. 277, 9302–9306 (2002).

    Article  CAS  Google Scholar 

  29. Samkurashvili, I. & Luse, D.S. Structural changes in the RNA polymerase II transcription complex during transition from initiation to elongation. Mol. Cell. Biol. 18, 5343–5354 (1998).

    Article  CAS  Google Scholar 

  30. Újvári, A., Pal, M. & Luse, D.S. RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides. J. Biol. Chem. 277, 32527–32537 (2002).

    Article  Google Scholar 

  31. Pal, M., McKean, D. & Luse, D.S. Promoter clearance by RNA polymerase II is an extended, multistep process strongly affected by sequence. Mol. Cell. Biol. 21, 5815–5825 (2001).

    Article  CAS  Google Scholar 

  32. Pal, M. & Luse, D.S. The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc. Natl. Acad. Sci. USA 100, 5700–5705 (2003).

    Article  CAS  Google Scholar 

  33. Pal, M. & Luse, D.S. Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA. Mol. Cell. Biol. 22, 30–40 (2002).

    Article  CAS  Google Scholar 

  34. Werner, F., Eloranta, J.J. & Weinzierl, R.O. Archaeal RNA polymerase subunits F and P are bona fide homologs of eukaryotic RPB4 and RPB12. Nucleic Acids Res. 28, 4299–4305 (2000).

    Article  CAS  Google Scholar 

  35. Eloranta, J.J., Kato, A., Teng, M.S. & Weinzierl, R.O. In vitro assembly of an archaeal D-L-N RNA polymerase subunit complex reveals a eukaryote-like structural arrangement. Nucleic Acids Res. 26, 5562–5567 (1998).

    Article  CAS  Google Scholar 

  36. Pal, M., Ponticelli, A.S. & Luse, D.S. The role of the transcription bubble and TFIIB in promoter clearance by RNA polymerase II. Mol. Cell 19, 101–110 (2005).

    Article  CAS  Google Scholar 

  37. Maldonado, E., Drapkin, R. & Reinberg, D. Purification of human RNA polymerase II and general transcription factors. Methods Enzymol. 274, 72–100 (1996).

    Article  CAS  Google Scholar 

  38. Komissarova, N. & Kashlev, M. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. Proc. Natl. Acad. Sci. USA 95, 14699–14704 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Werner for human Rpb4 and Rpb7 and the expression constructs to prepare these proteins, M. Gama-Carvalho (University of Lisbon) for the antibody to U2AF65 (MC3), R. Padgett (Cleveland Clinic Foundation) both for an initial gift of the MC3 antibody and for the U2AF-expressing baculovirus, and M. Pal for establishing the protocol for releasing transcription complexes from magnetic beads. We also thank R. Padgett and M. Pal for advice during the course of these experiments. HeLa cells for preparation of nuclear extracts were provided by the US National Cell Culture Center. This work was supported by grant GM 29487 from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donal S Luse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Újvári, A., Luse, D. RNA emerging from the active site of RNA polymerase II interacts with the Rpb7 subunit. Nat Struct Mol Biol 13, 49–54 (2006). https://doi.org/10.1038/nsmb1026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb1026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing