Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-resolution structure of the Escherichia coli ribosome

Abstract

Protein synthesis by the ribosome is highly dependent on the ionic conditions in the cellular environment, but the roles of ribosome solvation have remained poorly understood. Moreover, the functions of modifications to ribosomal RNA and ribosomal proteins have also been unclear. Here we present the structure of the Escherichia coli 70S ribosome at 2.4-Å resolution. The structure reveals details of the ribosomal subunit interface that are conserved in all domains of life, and it suggests how solvation contributes to ribosome integrity and function as well as how the conformation of ribosomal protein uS12 aids in mRNA decoding. This structure helps to explain the phylogenetic conservation of key elements of the ribosome, including post-transcriptional and post-translational modifications, and should serve as a basis for future antibiotic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: E. coli 70S ribosome I in an intermediate rotated state.
Figure 2: Solvation at the ribosomal subunit interface and in the nascent peptide–exit tunnel.
Figure 3: Post-transcriptional and post-translational modifications in functional centers of the ribosome.
Figure 4: Pseudouridines and syn-pyrimidines in the ribosome.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Jelenc, P.C. & Kurland, C.G. Nucleoside triphosphate regeneration decreases the frequency of translation errors. Proc. Natl. Acad. Sci. USA 76, 3174–3178 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kim, H.D., Puglisi, J.D. & Chu, S. Fluctuations of transfer RNAs between classical and hybrid states. Biophys. J. 93, 3575–3582 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wohlgemuth, I., Pohl, C. & Rodnina, M.V. Optimization of speed and accuracy of decoding in translation. EMBO J. 29, 3701–3709 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Feldman, M.B., Terry, D.S., Altman, R.B. & Blanchard, S.C. Aminoglycoside activity observed on single pre-translocation ribosome complexes. Nat. Chem. Biol. 6, 244 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Munro, J.B., Wasserman, M.R., Altman, R.B., Wang, L. & Blanchard, S.C. Correlated conformational events in EF-G and the ribosome regulate translocation. Nat. Struct. Mol. Biol. 17, 1470–1477 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Alden, C.J. & Kim, S.H. Solvent-accessible surfaces of nucleic acids. J. Mol. Biol. 132, 411–434 (1979).

    CAS  PubMed  Google Scholar 

  7. Rozenski, J., Crain, P.F. & McCloskey, J.A. The RNA Modification Database: 1999 update. Nucleic Acids Res. 27, 196–197 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chow, C.S., Lamichhane, T.N. & Mahto, S.K. Expanding the nucleotide repertoire of the ribosome with post-transcriptional modifications. ACS Chem. Biol. 2, 610–619 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Agris, P.F. The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog. Nucleic Acid Res. Mol. Biol. 53, 79–129 (1996).

    CAS  PubMed  Google Scholar 

  10. Grosjean, H. et al. Predicting the minimal translation apparatus: lessons from the reductive evolution of mollicutes. PLoS Genet. 10, e1004363 (2014).

    PubMed  PubMed Central  Google Scholar 

  11. O'Connor, M. & Gregory, S.T. Inactivation of the RluD pseudouridine synthase has minimal effects on growth and ribosome function in wild-type Escherichia coli and Salmonella enterica. J. Bacteriol. 193, 154–162 (2011).

    CAS  PubMed  Google Scholar 

  12. Gutgsell, N.S., Deutscher, M.P. & Ofengand, J. The pseudouridine synthase RluD is required for normal ribosome assembly and function in Escherichia coli. RNA 11, 1141–1152 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ejby, M., Sorensen, M.A. & Pedersen, S. Pseudouridylation of helix 69 of 23S rRNA is necessary for an effective translation termination. Proc. Natl. Acad. Sci. USA 104, 19410–19415 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Tollervey, D., Lehtonen, H., Jansen, R., Kern, H. & Hurt, E.C. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72, 443–457 (1993).

    CAS  PubMed  Google Scholar 

  15. Basturea, G.N., Rudd, K.E. & Deutscher, M.P. Identification and characterization of RsmE, the founding member of a new RNA base methyltransferase family. RNA 12, 426–434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Purta, E., O'Connor, M., Bujnicki, J.M. & Douthwaite, S. YgdE is the 2′-O-ribose methyltransferase RlmM specific for nucleotide C2498 in bacterial 23S rRNA. Mol. Microbiol. 72, 1147–1158 (2009).

    CAS  PubMed  Google Scholar 

  17. Katz, M.J. et al. Sudestada1, a Drosophila ribosomal prolyl-hydroxylase required for mRNA translation, cell homeostasis, and organ growth. Proc. Natl. Acad. Sci. USA 111, 4025–4030 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Loenarz, C. et al. Hydroxylation of the eukaryotic ribosomal decoding center affects translational accuracy. Proc. Natl. Acad. Sci. USA 111, 4019–4024 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Singleton, R.S. et al. OGFOD1 catalyzes prolyl hydroxylation of RPS23 and is involved in translation control and stress granule formation. Proc. Natl. Acad. Sci. USA 111, 4031–4036 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Moore, P.B. How should we think about the ribosome? Annu. Rev. Biophys. 41, 1–19 (2012).

    CAS  PubMed  Google Scholar 

  21. Polikanov, Y.S., Steitz, T.A. & Innis, C.A. A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat. Struct. Mol. Biol. 21, 787–793 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Polikanov, Y.S. et al. Amicoumacin A inhibits translation by stabilizing mRNA interaction with the ribosome. Mol. Cell 56, 531–540 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang, W., Dunkle, J.A. & Cate, J.H.D. Structures of the ribosome in intermediate states of ratcheting. Science 325, 1014–1017 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Karplus, P.A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, V.B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS  PubMed  Google Scholar 

  26. Nesterchuk, M.V., Sergiev, P.V. & Dontsova, O.A. Posttranslational modifications of ribosomal proteins in Escherichia coli. Acta Naturae 3, 22–33 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ge, W. et al. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat. Chem. Biol. 8, 960–962 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Andersen, T.E., Porse, B.T. & Kirpekar, F. A novel partial modification at C2501 in Escherichia coli 23S ribosomal RNA. RNA 10, 907–913 (2004).

    PubMed  PubMed Central  Google Scholar 

  29. McMurry, L.M. & Algranati, I.D. Effect of polyamines on translation fidelity in vivo. Eur. J. Biochem. 155, 383–390 (1986).

    CAS  PubMed  Google Scholar 

  30. Blanchard, S.C., Kim, H.D., Gonzalez, R.L.J., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Blanchard, S.C., Gonzalez, R.L., Kim, H.D., Chu, S. & Puglisi, J.D. tRNA selection and kinetic proofreading in translation. Nat. Struct. Mol. Biol. 11, 1008–1014 (2004).

    CAS  PubMed  Google Scholar 

  32. Draper, D.E. A guide to ions and RNA structure. RNA 10, 335–343 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Schuwirth, B.S. et al. Structures of the bacterial ribosome at 3.5 Å resolution. Science 310, 827–834 (2005).

    CAS  PubMed  Google Scholar 

  34. Dunkle, J.A. et al. Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science 332, 981–984 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nissen, P., Ippolito, J.A., Ban, N., Moore, P.B. & Steitz, T.A. RNA tertiary interactions in the large ribosomal subunit: the A-minor motif. Proc. Natl. Acad. Sci. USA 98, 4899–4903 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ben-Shem, A. et al. The structure of the eukaryotic ribosome at 3.0 Å resolution. Science 334, 1524–1529 (2011).

    CAS  PubMed  Google Scholar 

  37. Kannan, K., Vazquez-Laslop, N. & Mankin, A.S. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 151, 508–520 (2012).

    CAS  PubMed  Google Scholar 

  38. Sothiselvam, S. et al. Macrolide antibiotics allosterically predispose the ribosome for translation arrest. Proc. Natl. Acad. Sci. USA 111, 9804–9809 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Roberts, M.C. Resistance to macrolide, lincosamide, streptogramin, ketolide, and oxazolidinone antibiotics. Mol. Biotechnol. 28, 47–62 (2004).

    CAS  PubMed  Google Scholar 

  40. Bulkley, D., Innis, C.A., Blaha, G. & Steitz, T.A. Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc. Natl. Acad. Sci. USA 107, 17158–17163 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Dunkle, J.A., Xiong, L., Mankin, A.S. & Cate, J.H. Structures of the Escherichia coli ribosome with antibiotics bound near the peptidyl transferase center explain spectra of drug action. Proc. Natl. Acad. Sci. USA 107, 17152–17157 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289, 905–920 (2000).

    CAS  PubMed  Google Scholar 

  43. Harms, J. et al. High resolution structure of the large ribosomal subunit from a mesophilic eubacterium. Cell 107, 679–688 (2001).

    CAS  PubMed  Google Scholar 

  44. Bhushan, S. et al. SecM-stalled ribosomes adopt an altered geometry at the peptidyl transferase center. PLoS Biol. 9, e1000581 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Gumbart, J., Schreiner, E., Wilson, D.N., Beckmann, R. & Schulten, K. Mechanisms of SecM-mediated stalling in the ribosome. Biophys. J. 103, 331–341 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bischoff, L., Berninghausen, O. & Beckmann, R. Molecular basis for the ribosome functioning as an L-tryptophan sensor. Cell Reports 9, 469–475 (2014).

    CAS  PubMed  Google Scholar 

  47. Bhushan, S. et al. Structural basis for translational stalling by human cytomegalovirus and fungal arginine attenuator peptide. Mol. Cell 40, 138–146 (2010).

    CAS  PubMed  Google Scholar 

  48. Martínez, A.K. et al. Crucial elements that maintain the interactions between the regulatory TnaC peptide and the ribosome exit tunnel responsible for Trp inhibition of ribosome function. Nucleic Acids Res. 40, 2247–2257 (2012).

    PubMed  Google Scholar 

  49. Selmer, M. et al. Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313, 1935–1942 (2006).

    CAS  PubMed  Google Scholar 

  50. Kawai, G. et al. Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2′-hydroxyl group. Biochemistry 31, 1040–1046 (1992).

    CAS  PubMed  Google Scholar 

  51. Dalluge, J.J., Hashizume, T., Sopchik, A.E., McCloskey, J.A. & Davis, D.R. Conformational flexibility in RNA: the role of dihydrouridine. Nucleic Acids Res. 24, 1073–1079 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Song, J., Burrage, K., Yuan, Z. & Huber, T. Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information. BMC Bioinformatics 7, 124 (2006).

    PubMed  PubMed Central  Google Scholar 

  53. Strader, M.B. et al. A proteomic and transcriptomic approach reveals new insight into beta-methylthiolation of Escherichia coli ribosomal protein S12. Mol. Cell Proteomics 10, M110.005199 (2011).

    PubMed  Google Scholar 

  54. Anton, B.P. et al. RimO, a MiaB-like enzyme, methylthiolates the universally conserved Asp88 residue of ribosomal protein S12 in Escherichia coli. Proc. Natl. Acad. Sci. USA 105, 1826–1831 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sokoloski, J.E., Godfrey, S.A., Dombrowski, S.E. & Bevilacqua, P.C. Prevalence of syn nucleobases in the active sites of functional RNAs. RNA 17, 1775–1787 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhou, J., Lancaster, L., Donohue, J.P. & Noller, H.F. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 345, 1188–1191 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schmeing, T.M., Huang, K.S., Kitchen, D.E., Strobel, S.A. & Steitz, T.A. Structural insights into the roles of water and the 2′ hydroxyl of the P site tRNA in the peptidyl transferase reaction. Mol. Cell 20, 437–448 (2005).

    CAS  PubMed  Google Scholar 

  58. Gabdulkhakov, A., Nikonov, S. & Garber, M. Revisiting the Haloarcula marismortui 50S ribosomal subunit model. Acta Crystallogr. D Biol. Crystallogr. 69, 997–1004 (2013).

    CAS  PubMed  Google Scholar 

  59. Karplus, P.A. & Faerman, C. Ordered water in macromolecular structure. Curr. Opin. Struct. Biol. 4, 770–776 (1994).

    CAS  Google Scholar 

  60. Jenner, L.B., Demeshkina, N., Yusupova, G. & Yusupov, M. Structural aspects of messenger RNA reading frame maintenance by the ribosome. Nat. Struct. Mol. Biol. 17, 555–560 (2010).

    CAS  PubMed  Google Scholar 

  61. Wang, L. et al. Allosteric control of the ribosome by small-molecule antibiotics. Nat. Struct. Mol. Biol. 19, 957–963 (2012).

    PubMed  PubMed Central  Google Scholar 

  62. Munro, J.B., Altman, R.B., O'Connor, N. & Blanchard, S.C. Identification of two distinct hybrid state intermediates on the ribosome. Mol. Cell 25, 505–517 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Aitken, C.E., Marshall, R.A. & Puglisi, J.D. An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophys. J. 94, 1826–1835 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Dave, R., Terry, D.S., Munro, J.B. & Blanchard, S.C. Mitigating unwanted photophysical processes for improved single-molecule fluorescence imaging. Biophys. J. 96, 2371–2381 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Qin, F. Restoration of single-channel currents using the segmental k-means method based on hidden Markov modeling. Biophys. J. 86, 1488–1501 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kabsch, W. Xds. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Adams, P.D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  69. Winn, M.D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sayre, D. Least-squares phase refinement. II. High-resolution phasing of a small protein. Acta Crystallogr. A 30, 180–184 (1974).

    Google Scholar 

  71. Zhang, K.Y.J. & Main, P. The use of Sayre's equation with solvent flattening and histogram matching for phase extension and refinement of protein structures. Acta Crystallogr. A 46, 377–381 (1990).

    Google Scholar 

  72. Wimberly, B.T., Guymon, R., McCutcheon, J.P., White, S.W. & Ramakrishnan, V. A detailed view of a ribosomal active site: the structure of the L11-RNA complex. Cell 97, 491–502 (1999).

    CAS  PubMed  Google Scholar 

  73. Cho, J.-H. et al. Energetically significant networks of coupled interactions within an unfolded protein. Proc. Natl. Acad. Sci. USA 111, 12079–12084 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Byrgazov, K. et al. Structural basis for the interaction of protein S1 with the Escherichia coli ribosome. Nucleic Acids Res. 43, 661–673 (2015).

    CAS  PubMed  Google Scholar 

  75. Lombardi, C. et al. A compact viral processing proteinase/ubiquitin hydrolase from the OTU family. PLoS Pathog. 9, e1003560 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wallgren, M. et al. Extreme temperature tolerance of a hyperthermophilic protein coupled to residual structure in the unfolded state. J. Mol. Biol. 379, 845–858 (2008).

    CAS  PubMed  Google Scholar 

  77. Luo, X. et al. Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex. Mol. Cell 32, 791–802 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Afonine, P.V. et al. FEM: feature-enhanced map. Acta Crystallogr. D Biol. Crystallogr. 71, 646–666 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Noeske, J. et al. Synergy of streptogramin antibiotics occurs independently of their effects on translation. Antimicrob. Agents Chemother. 58, 5269–5279 (2014).

    PubMed  PubMed Central  Google Scholar 

  80. Cannone, J.J. et al. The comparative RNA web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs. BMC Bioinformatics 3, 2 (2002).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J. Doudna, A.S.-Y. Lee, A. Pulk and P. Kranzusch for helpful discussions; P. Afonine and P. Adams for advice on the use of feature-enhanced maps; G. Meigs and J. Holton for assistance at beamline 8.3.1 at the Advanced Light Source (ALS); and K. Diederichs for help with XDS. This work was supported by US National Institutes of Health (NIH) grant R01-GM65050 to J.H.D.C.; by NIH grant 2R01GM079238 to S.C.B., D.S.T., M.R.W. and R.B.A.; by the NIH project Macromolecular Insights on Nucleic acids Optimized by Scattering (MINOS), grant R01GM105404, for beamline 8.3.1 at the ALS; and by the US Department of Energy, grant DEAC02-05CH11231, for beamline 8.3.1 at the ALS. J.N. was funded by a Human Frontiers in Science Program Long-Term Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

J.N. optimized crystal growth and cryostabilization procedures, measured the X-ray diffraction data, solved the structure and carried out refinement and structural analysis. J.H.D.C. assisted with data reduction, refinement and structural analysis. M.R.W., D.S.T., R.B.A. and S.C.B. conducted the smFRET experiments. J.N., J.H.D.C. and S.C.B. wrote the manuscript.

Corresponding author

Correspondence to Jamie H D Cate.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Integrated supplementary information

Supplementary Figure 1 Rotational dynamics of the E. coli ribosome.

(a) E. coli 70S ribosome II in the unrotated state. Ribosomal subunits are colored by atomic displacement factor (ADP) from 20 to 150 Å2. The views are from the perspective of the subunit interface. Features in the 50S subunit include the central protuberance (CP), L1 arm (L1), protein L9 (L9), L7-L12 region (L12), A-site finger (ASF) and the GTPase center (G). In the 30S subunit, these include the head (H), body (B), and platform (PL). (b) Single-molecule imaging of the modulation of tRNA binding states by magnesium ions. Occupancy in classical and hybrid tRNA binding states as measured by smFRET between fluorophores on P- and A-site tRNAs, shown with standard deviations of three technical replicates (Online methods).

Supplementary Figure 2 Feature-enhanced maps of the refined ribosome structure, using structure factors to 2.4-Å or 2.1-Å resolution.

Maps are shown in the vicinity of: (a) β-hydroxy-Arg81 in uL16; (b) D2449 in 23S rRNA; (c) Pro45 in uS12; (d) β-methylthio-Asp89 in uS12; (e) ψ955 in 23S rRNA; (f) U960 in 16S rRNA; and (g) U1779 in 23S rRNA. All maps are contoured at 2.5 standard deviations from the mean, except panel (b) and (d), which are at 2.0 and 2.2 standard deviations from the mean, respectively.

Supplementary Figure 3 Quality of electron density maps in well-ordered regions of the ribosome.

(a) Section of 23S rRNA. (b-d) Different amino acids of ribosomal protein uL2. The feature enhanced maps are contoured at 2.0 standard deviations from the mean. (e) Density consistent with a spermidine, possibly bound in two modes (waters to the right mark extended tube of density), in close proximity to bridge B3. The phosphate of G1935, which would be above the plane, has been removed for clarity. (f) A putrescine molecule bound at the base of H69. In panels e and f, the feature enhanced map is contoured at 2.5 and 2.3 standard deviations from the mean, respectively.

Supplementary Figure 4 Feature-enhanced map of modified nucleotides and amino acids in the ribosome.

(a) Modifications in the 30S subunit, with the map contoured at 1.8 standard deviations from the mean. Amino acid modification in protein uS12 is shown (β-methylthio-Asp81). (b) Modifications in the 50S subunit, with the map contoured at 2.0 standard deviations from the mean. Amino acid modifications in uL3 (N-methyl-Gln150) and uL16 (β-hydroxy-Arg81), respectively, are modeled in alternative conformations, based on the unbiased electron density maps. The arrow points to the β-hydroxy group in β-hydroxy-Arg81. In both panels (a) and (b) the map was generated prior to modeling of the modifications.

Supplementary Figure 5 Solvation of the nascent peptide–exit tunnel.

(a) Antibiotics that bind in the exit tunnel. Shown are erythromycin (white), telithromycine (green), the streptogramin B quinupristin (cyan). (b) View of the constriction site formed by ribosomal proteins uL4 and uL22 in the nascent peptide exit tunnel. An MPD molecule stacks on A751 further constricting the exit tunnel. Feature enhanced map shown at a contour of 2.5 standard deviations from the mean. (c) SecM stalling peptide interactions with the exit tunnel. Stacking of Trp155 of the SecM stalling peptide on A751 of the ribosome, proposed to be critical for ribosome stalling. Panel c is adapted from Gumbart et al.

Supplementary Figure 6 Examples of syn pyrimidines in the ribosome.

(a) U1345 in 16S rRNA forms reverse U-U base pair with U1376. The feature enhanced map is contoured at 2.5 standard deviations from the mean. (b) In 23S rRNA, C1838 in a syn conformation is part of a base triple with A1901 and U1841. The feature enhanced map is contoured at 2.3 standard deviations from the mean.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 and Supplementary Tables 1–11 (PDF 3222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noeske, J., Wasserman, M., Terry, D. et al. High-resolution structure of the Escherichia coli ribosome. Nat Struct Mol Biol 22, 336–341 (2015). https://doi.org/10.1038/nsmb.2994

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2994

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research