Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanochemical basis of protein degradation by a double-ring AAA+ machine

Abstract

Molecular machines containing double or single AAA+ rings power energy-dependent protein degradation and other critical cellular processes, including disaggregation and remodeling of macromolecular complexes. How the mechanical activities of double-ring and single-ring AAA+ enzymes differ is unknown. Using single-molecule optical trapping, we determine how the double-ring ClpA enzyme from Escherichia coli, in complex with the ClpP peptidase, mechanically degrades proteins. We demonstrate that ClpA unfolds some protein substrates substantially faster than does the single-ring ClpX enzyme, which also degrades substrates in collaboration with ClpP. We find that ClpA is a slower polypeptide translocase and that it moves in physical steps that are smaller and more regular than steps taken by ClpX. These direct measurements of protein unfolding and translocation define the core mechanochemical behavior of a double-ring AAA+ machine and provide insight into the degradation of proteins that unfold via metastable intermediates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-molecule protein degradation by ClpAP.
Figure 2: ClpAP unfolding of different protein domains.
Figure 3: Polypeptide translocation.
Figure 4: Degradation of GFP-ssrA.

Similar content being viewed by others

References

  1. Neuwald, A.F., Aravind, L., Spouge, J.L. & Koonin, E.V. AAA+: A class of chaperone-like ATPases associated with assembly, operation, and disassembly of protein complexes. Genome Res. 9, 27–43 (1999).

    CAS  PubMed  Google Scholar 

  2. Ogura, T. & Wilkinson, A.J. AAA+ superfamily ATPases: common structure–diverse function. Genes Cells 6, 575–597 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Sauer, R.T. & Baker, T.A. AAA+ proteases: ATP-fueled machines of protein destruction. Annu. Rev. Biochem. 80, 587–612 (2011).

    Article  CAS  PubMed  Google Scholar 

  4. Grimaud, R., Kessel, M., Beuron, F., Steven, A.C. & Maurizi, M.R. Enzymatic and structural similarities between the Escherichia coli ATP-dependent proteases, ClpXP and ClpAP. J. Biol. Chem. 273, 12476–12481 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Guo, F., Maurizi, M.R., Esser, L. & Xia, D. Crystal structure of ClpA, an Hsp100 chaperone and regulator of ClpAP protease. J. Biol. Chem. 277, 46743–46752 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Wang, F. et al. Structure and mechanism of the hexameric MecA–ClpC molecular machine. Nature 471, 331–335 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Liu, J. et al. Structural dynamics of the MecA-ClpC complex: a type II AAA+ protein unfolding machine. J. Biol. Chem. 288, 17597–17608 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Doyle, S.M. & Wickner, S. Hsp104 and ClpB: protein disaggregating machines. Trends Biochem. Sci. 34, 40–48 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Roll-Mecak, A. & McNally, F.J. Microtubule-severing enzymes. Curr. Opin. Cell Biol. 22, 96–103 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Wolf, D.H. & Stolz, A. The Cdc48 machine in endoplasmic reticulum associated protein degradation. Biochim. Biophys. Acta 1823, 117–124 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, C., Smith, E.C. & Whiteheart, S.W. Requirements for the catalytic cycle of the N-ethylmaleimide-sensitive factor (NSF). Biochim. Biophys. Acta 1823, 159–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Katayama, Y. et al. The two-component, ATP-dependent Clp protease of Escherichia coli: purification, cloning, and mutational analysis of the ATP-binding component. J. Biol. Chem. 263, 15226–15236 (1988).

    CAS  PubMed  Google Scholar 

  13. Kress, W., Mutschler, H. & Weber-Ban, E.U. Both ATPase domains of ClpA are critical for processing of stable protein structures. J. Biol. Chem. 284, 31441–31452 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aubin-Tam, M.E., Olivares, A.O., Sauer, R.T., Baker, T.A. & Lang, M.J. Single-molecule protein unfolding and translocation by an ATP-fueled proteolytic machine. Cell 145, 257–267 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Maillard, R.A. et al. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Cell 145, 459–469 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sen, M. et al. The ClpXP protease unfolds substrates using a constant rate of pulling but different gears. Cell 155, 636–646 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cordova, J.C. et al. Stochastic but highly coordinated protein unfolding and translocation by the ClpXP proteolytic machine. Cell 158, 647–658 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carrion-Vazquez, M. et al. Mechanical and chemical unfolding of a single protein: a comparison. Proc. Natl. Acad. Sci. USA 96, 3694–3699 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kenniston, J.A., Baker, T.A., Fernandez, J.M. & Sauer, R.T. Linkage between ATP consumption and mechanical unfolding during the protein processing reactions of an AAA+ degradation machine. Cell 114, 511–520 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Martin, A., Baker, T.A. & Sauer, R.T. Protein unfolding by a AAA+ protease is dependent on ATP-hydrolysis rates and substrate energy landscapes. Nat. Struct. Mol. Biol. 15, 139–145 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Miller, J.M., Lin, J., Li, T. & Lucius, A.L. E. coli ClpA catalyzed polypeptide translocation is allosterically controlled by the protease ClpP. J. Mol. Biol. 425, 2795–2812 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weber-Ban, E.U., Reid, B.G., Miranker, A.D. & Horwich, A.L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90–93 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Glynn, S.E., Martin, A., Nager, A.R., Baker, T.A. & Sauer, R.T. Structures of asymmetric ClpX hexamers reveal nucleotide-dependent motions in a AAA+ protein-unfolding machine. Cell 139, 744–756 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Stinson, B.M. et al. Nucleotide binding and conformational switching in the hexameric ring of a AAA+ machine. Cell 153, 628–639 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nager, A.R., Baker, T.A. & Sauer, R.T. Stepwise unfolding of a β-barrel protein by the AAA+ ClpXP protease. J. Mol. Biol. 413, 4–16 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cranz-Mileva, S. et al. The flexible attachment of the N-domains to the ClpA ring body allows their use on demand. J. Mol. Biol. 378, 412–424 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Martin, A., Baker, T.A. & Sauer, R.T. Rebuilt AAA+ motors reveal operating principles for ATP-fuelled machines. Nature 437, 1115–1120 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Hinnerwisch, J., Fenton, W.A., Furtak, K.J., Farr, G.W. & Horwich, A.L. Loops in the central channel of ClpA chaperone mediate protein binding, unfolding, and translocation. Cell 121, 1029–1041 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Smith, D.M., Fraga, H., Reis, C., Kafri, G. & Goldberg, A.L. ATP binds to proteasomal ATPases in pairs with distinct functional effects, implying an ordered reaction cycle. Cell 144, 526–538 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Flynn, J.M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. Proc. Natl. Acad. Sci. USA 98, 10584–10589 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dougan, D.A., Reid, B.G., Horwich, A.L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    Article  CAS  PubMed  Google Scholar 

  32. Farrell, C.M., Grossman, A.D. & Sauer, R.T. Cytoplasmic degradation of ssrA-tagged proteins. Mol. Microbiol. 57, 1750–1761 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Moore, S.D. & Sauer, R.T. The tmRNA system for translational surveillance and ribosome rescue. Annu. Rev. Biochem. 76, 101–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Koodathingal, P. et al. ATP-dependent proteases differ substantially in their ability to unfold globular proteins. J. Biol. Chem. 284, 18674–18684 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gur, E., Vishkautzan, M. & Sauer, R.T. Protein unfolding and degradation by the AAA+ Lon protease. Protein Sci. 21, 268–278 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. De La Cruz, E.M. & Ostap, E.M. Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol. 16, 61–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Kerssemakers, J.W. et al. Assembly dynamics of microtubules at molecular resolution. Nature 442, 709–712 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Werbeck, N.D., Schlee, S. & Reinstein, J. Coupling and dynamics of subunits in the hexameric AAA+ chaperone ClpB. J. Mol. Biol. 378, 178–190 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. Maglica, Z., Striebel, F. & Weber-Ban, E. An intrinsic degradation tag on the ClpA C-terminus regulates the balance of ClpAP complexes with different substrate specificity. J. Mol. Biol. 384, 503–511 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Gur, E. & Sauer, R.T. Recognition of misfolded proteins by Lon, a AAA+ protease. Genes Dev. 22, 2267–2277 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bewley, M.C., Graziano, V., Griffin, K. & Flanagan, J.M. The asymmetry in the mature amino-terminus of ClpP facilitates a local symmetry match in ClpAP and ClpXP complexes. J. Struct. Biol. 153, 113–128 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Maurizi, M.R., Singh, S.K., Thompson, M.W., Kessel, M. & Ginsburg, A. Molecular properties of ClpAP protease of Escherichia coli: ATP-dependent association of ClpA and ClpP. Biochemistry 37, 7778–7786 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Aubin-Tam, M.E. et al. Adhesion through single peptide aptamers. J. Phys. Chem. A 115, 3657–3664 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kim, Y.I., Burton, R.E., Burton, B.M., Sauer, R.T. & Baker, T.A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Mol. Cell 5, 639–648 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Howard Hughes Medical Institute (HHMI) (T.A.B.) and US National Institutes of Health (grant AI-16892; R.T.S.). T.A.B. is supported as an employee of HHMI. We thank T. L. Sherpa for help, S. Calmat, A. Torres-Delgado and E. Vieux (Massachusetts Institute of Technology) for providing proteins and M. Aubin-Tam (Technische Universiteit Delft) and M. Lang (Vanderbilt University) for discussions and advice.

Author information

Authors and Affiliations

Authors

Contributions

A.O.O. performed and analyzed optical-trapping experiments, performed biochemical experiments and constructed and purified ClpA variants. A.R.N. constructed, purified and assembled the biotinylated, mixed-ring ClpP enzyme used for single-molecule studies. O.I. constructed and purified the multidomain titin-GFP substrate. All authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Robert T Sauer or Tania A Baker.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olivares, A., Nager, A., Iosefson, O. et al. Mechanochemical basis of protein degradation by a double-ring AAA+ machine. Nat Struct Mol Biol 21, 871–875 (2014). https://doi.org/10.1038/nsmb.2885

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2885

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing