Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Fluorescent fusion protein knockout mediated by anti-GFP nanobody

Abstract

The use of genetic mutations to study protein functions in vivo is a central paradigm of modern biology. Recent advances in reverse genetics such as RNA interference and morpholinos are widely used to further apply this paradigm. Nevertheless, such systems act upstream of the proteic level, and protein depletion depends on the turnover rate of the existing target proteins. Here we present deGradFP, a genetically encoded method for direct and fast depletion of target green fluorescent protein (GFP) fusions in any eukaryotic genetic system. This method is universal because it relies on an evolutionarily highly conserved eukaryotic function, the ubiquitin pathway. It is traceable, because the GFP tag can be used to monitor the protein knockout. In many cases, it is a ready-to-use solution, as GFP protein-trap stock collections are being generated in Drosophila melanogaster and in Danio rerio.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustration of deGradFP.
Figure 2: NSlmb-vhhGFP4 mediates degradation of H2B-GFP in mammalian cells and His2Av::EYFP in Drosophila.
Figure 3: Kinetics of target protein degradation by deGradFP in Drosophila.
Figure 4: deGradFP phenocopies loss-of-function mutations.
Figure 5: deGradFP is able to target the intracytoplasmic, but not the extracytoplasmic, part of transmembrane proteins.

Similar content being viewed by others

Accession codes

Accessions

NCBI Reference Sequence

References

  1. Inoue, T., Heo, W.D., Grimley, J.S., Wandless, T.J. & Meyer, T. An inducible translocation strategy to rapidly activate and inhibit small gtpase signaling pathways. Nat. Methods 2, 415–418 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Haruki, H., Nishikawa, J. & Laemmli, U.K. The anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol. Cell 31, 925–932 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Rothbauer, U. et al. A versatile nanotrap for biochemical and functional studies with fluorescent fusion proteins. Mol. Cell. Proteomics 7, 282–289 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Schornack, S. et al. Protein mislocalization in plant cells using a gfp-binding chromobody. Plant J. 60, 744–754 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Pauli, A. et al. Cell-type-specific tev protease cleavage reveals cohesin functions in Drosophila neurons. Dev. Cell 14, 239–251 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harder, B. et al. Tev protease-mediated cleavage in Drosophila as a tool to analyze protein functions in living organisms. Biotechniques 44, 765–772 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Dohmen, R.J., Wu, P. & Varshavsky, A. Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science 263, 1273–1276 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Zhou, P., Bogacki, R., McReynolds, L. & Howley, P.M. Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol. Cell 6, 751–756 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Sakamoto, K.M. et al. Protacs: chimeric molecules that target proteins to the skp1-cullin-f box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA 98, 8554–8559 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang, J., Zheng, N. & Zhou, P. Exploring the functional complexity of cellular proteins by protein knockout. Proc. Natl. Acad. Sci. USA 100, 14127–14132 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Banaszynski, L.A., Chen, L.-C., Maynard-Smith, L.A., Ooi, A.G.L. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T. & Kanemaki, M. An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nat. Methods 6, 917–922 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. Taxis, C., Stier, G., Spadaccini, R. & Knop, M. Efficient protein depletion by genetically controlled deprotection of a dormant n-degron. Mol. Syst. Biol. 5, 267 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J. 17, 7151–7160 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ciechanover, A. & Ben-Saadon, R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103–106 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Jiang, J. & Struhl, G. Regulation of the hedgehog and wingless signalling pathways by the F-box/wd40-repeat protein slimb. Nature 391, 493–496 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Saerens, D. et al. Identification of a universal vhh framework to graft non-canonical antigen-binding loops of camel single-domain antibodies. J. Mol. Biol. 352, 597–607 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Rothbauer, U. et al. Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat. Methods 3, 887–889 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Silljé, H.H.W., Nagel, S., Körner, R. & Nigg, E.A. Hurp is a ran-importin beta-regulated protein that stabilizes kinetochore microtubules in the vicinity of chromosomes. Curr. Biol. 16, 731–742 (2006).

    Article  PubMed  Google Scholar 

  20. Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

    CAS  PubMed  Google Scholar 

  21. Tabata, T., Eaton, S. & Kornberg, T.B. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev. 6, 2635–2645 (1992).

    Article  CAS  PubMed  Google Scholar 

  22. Caussinus, E., Colombelli, J. & Affolter, M. Tip-cell migration controls stalk-cell intercalation during Drosophila tracheal tube elongation. Curr. Biol. 18, 1727–1734 (2008).

    Article  CAS  PubMed  Google Scholar 

  23. Shaner, N.C., Steinbach, P.A. & Tsien, R.Y. A guide to choosing fluorescent proteins. Nat. Methods 2, 905–909 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Royou, A., Field, C., Sisson, J.C., Sullivan, W. & Karess, R. Reassessing the role and dynamics of nonmuscle myosin ii during furrow formation in early Drosophila embryos. Mol. Biol. Cell 15, 838–850 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Karess, R.E. et al. The regulatory light chain of nonmuscle myosin is encoded by spaghetti-squash, a gene required for cytokinesis in Drosophila. Cell 65, 1177–1189 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Young, P.E., Richman, A.M., Ketchum, A.S. & Kiehart, D.P. Morphogenesis in Drosophila requires nonmuscle myosin heavy chain function. Genes Dev. 7, 29–41 (1993).

    Article  CAS  PubMed  Google Scholar 

  27. Kiehart, D.P., Galbraith, C.G., Edwards, K.A., Rickoll, W.L. & Montague, R.A. Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J. Cell Biol. 149, 471–490 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gohl, D., Müller, M., Pirrotta, V., Affolter, M. & Schedl, P. Enhancer blocking and transvection at the Drosophila apterous locus. Genetics 178, 127–143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Huang, J., Zhou, W., Dong, W., Watson, A.M. & Hong, Y. Directed, efficient, and versatile modifications of the Drosophila genome by genomic engineering. Proc. Natl. Acad. Sci. USA 106, 8284–8289 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oda, H. & Tsukita, S. Real-time imaging of cell-cell adherens junctions reveals that Drosophila mesoderm invagination begins with two phases of apical constriction of cells. J. Cell Sci. 114, 493–501 (2001).

    CAS  PubMed  Google Scholar 

  31. Morin, X., Daneman, R., Zavortink, M. & Chia, W. A protein trap strategy to detect gfp-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kelso, R.J. et al. Flytrap, a database documenting a gfp protein-trap insertion screen in Drosophila melanogaster. Nucleic Acids Res. 32, D418–D420 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Buszczak, M. et al. The carnegie protein trap library: a versatile tool for Drosophila developmental studies. Genetics 175, 1505–1531 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quiñones-Coello, A.T. et al. Exploring strategies for protein trapping in Drosophila. Genetics 175, 1089–1104 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Asakawa, K. & Kawakami, K. The tol2-mediated gal4-uas method for gene and enhancer trapping in zebrafish. Methods 49, 275–281 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kawakami, K. et al. zTrap: zebrafish gene trap and enhancer trap database. BMC Dev. Biol. 10, 105 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bischof, J., Maeda, R.K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific phic31 integrases. Proc. Natl. Acad. Sci. USA 104, 3312–3317 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Warming, S., Costantino, N., Court, D.L., Jenkins, N.A. & Copeland, N.G. Simple and highly efficient bac recombineering using galk selection. Nucleic Acids Res. 33, e36 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wodarz, A. Extraction and immunoblotting of proteins from embryos. Methods Mol. Biol. 420, 335–345 (2008).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Santamaria, L. Fava and M. Müller for technical assistance; A. Olichon (Paul Sabatier University) for providing pAOD2-vhhGFP4; Y. Blum (University of Basel, UB) for providing pcDNA3_EGFP-3xNLS; E. Nigg (UB) for providing the HeLa S3 cell line expressing H2B-GFP; B. Bello (UB), W. Gehring (UB), C. Gonzalez (Institute for Research in Biomedicine), R. Karess (Institut Jacques Monod), T. Kornberg (University of California, San Francisco), Y. Hong (University of Pittsburgh), H. Oda (Biohistory Research Hall), R. Schuh (Max Planck Institute for Biophysical Chemistry) and the Bloomington Drosophila stock center (Indiana University), for providing fly stocks. E.C. was supported by an EMBO long-term postdoctoral fellowship (ALTF 737-2005). Work in our laboratory is supported by grants from the Kantons Basel-Stadt and Basel-Land, the Swiss National Science Foundation and the SystemsX.ch initiative within the framework of the WingX project.

Author information

Authors and Affiliations

Authors

Contributions

E.C. created the basic concept of deGradFP, designed all experiments and conducted all experiments except the ones depicted in Figure 4a and Supplementary Figure 3b,c. O.K. generated the ap::GFP flies and conducted the experiments depicted in Figure 4a and Supplementary Figure 3b,c. E.C., O.K. and M.A. wrote the manuscript.

Corresponding authors

Correspondence to Emmanuel Caussinus or Markus Affolter.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Table 1 (PDF 572 kb)

Supplementary Data 1 (RTF 16 kb)

Supplementary Movie 1

deGradFP mediates degradation of His2Av::EYFP in Drosophila. Confocal life imaging of an embryo having the following genotype, ubiHis2Av::EYFP; His2Av::RFP1/enGal4; UAS_NSlmb-vhhGFP4/+. Two channels, corresponding to His2Av::EYFP (green) and His2Av::RFP1 (red), were acquired simultaneously for better time resolution. Lateral views (z–stack maximum projections) were taken at 10 min intervals from stage 6 to 16. Anterior is to the left. Scale bar, 100 μm. (AVI 2570 kb)

Supplementary Movie 2

Wild type dorsal closure.Confocal life imaging of an embryo having the following genotype, sqhAX3; sqhSqh::GFP/+. Sqh::GFP appears in shades of gray. Dorsal views (z–stack maximum projections) were taken at 10 min intervals from stage 12 to 16. Anterior is to the left. Scale bar, 100 μm. (AVI 1851 kb)

Supplementary Movie 3

Sqh::GFP targeting by deGradFP in the amnioserosa cells causes a dorsal open phenotype.Confocal life imaging of an embryo having the following genotype, sqhAX3; sqhSqh::GFP/Gal4332.3; UAS_NSlmb–vhhGFP4/+. Sqh::GFP appears in shades of gray. Dorsolateral views (z–stack maximum projections) were taken at 10 min intervals from stage 12 to 16. Anterior is to the left. Scale bar, 100 μm. (AVI 2008 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caussinus, E., Kanca, O. & Affolter, M. Fluorescent fusion protein knockout mediated by anti-GFP nanobody. Nat Struct Mol Biol 19, 117–121 (2012). https://doi.org/10.1038/nsmb.2180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.2180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing