Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9

Abstract

Phosphorylation and small ubiquitin-like modifier (SUMO) conjugation contribute to the spatial and temporal regulation of substrates containing phosphorylation-dependent SUMO consensus motifs (PDSMs). Myocyte-enhancement factor 2 (MEF2) is a transcription factor and PDSM substrate whose modification by SUMO drives postsynaptic dendritic differentiation. NMR analysis revealed that the human SUMO E2 interacted with model substrates for phosphorylated and nonphosphorylated MEF2 in similar extended conformations. Mutational and biochemical analysis identified a basic E2 surface that enhanced SUMO conjugation to phosphorylated PDSM substrates MEF2 and heat-shock transcription factor 1 (HSF1), but not to nonphosphorylated MEF2 or HSF1, nor the non-PDSM substrate p53. Mutant ubiquitin-conjugating enzyme UBC9 isoforms defective in promoting SUMO conjugation to phosphorylated MEF2 in vitro and in vivo also impair postsynaptic differentiation in organotypic cerebellar slices. These data support an E2-dependent mechanism that underlies phosphorylation-dependent SUMO conjugation in pathways that range from the heat-shock response to nuclear hormone signaling to brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Phosphorylation-dependent SUMO conjugation is mediated by the SUMO E2.
Figure 2: Model for PDSM recognition by the E2 UBC9.
Figure 3: Kinetic and mutational analyses for UBC9 amino acid residues involved in PDSM discrimination.
Figure 4: UBC9 Lys65 is important for PDSM discrimination of HSF1 but not for the non-PDSM substrate p53.
Figure 5: Amino acid side chains that constitute the basic surface on UBC9 are important for PDSM discrimination of MEF2 in vivo.
Figure 6: UBC9 mutants deficient in PDSM discrimination are also deficient for dendritic claw differentiation in the cerebellar cortex.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Johnson, E.S. Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Geiss-Friedlander, R. & Melchior, F. Concepts in sumoylation: a decade on. Nat. Rev. Mol. Cell Biol. 8, 947–956 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Dasso, M. Emerging roles of the SUMO pathway in mitosis. Cell Div. 3, 5 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Dye, B.T. & Schulman, B.A. Structural mechanism underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36, 131–150 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Capili, A.D. & Lima, C.D. Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Curr. Opin. Struct. Biol. 17, 726–735 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Sampson, D.A., Wang, M. & Matunis, M.J. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J. Biol. Chem. 276, 21664–21669 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Bernier-Villamor, V., Sampson, D.A., Matunis, M.J. & Lima, C.D. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345–356 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Lin, D. et al. Identification of a substrate recognition site on Ubc9. J. Biol. Chem. 277, 21740–21748 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Reverter, D. & Lima, C.D. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687–692 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yunus, A.A. & Lima, C.D. Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nat. Struct. Mol. Biol. 13, 491–499 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Pfander, B., Moldovan, G.L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Lin, D.Y. et al. Role of SUMO-interacting motif in Daxx SUMO modification, subnuclear localization, and repression of sumoylated transcription factors. Mol. Cell 24, 341–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Meulmeester, E., Kunze, M., Hsiao, H.H., Urlaub, H. & Melchior, F. Mechanism and consequences for paralog-specific SUMOylation of ubiquitin-specific protease 25. Mol. Cell 30, 610–619 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Mohideen, F. & Lima, C.D. SUMO takes control of a ubiquitin-specific protease. Mol. Cell 30, 539–540 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gong, X. et al. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33–46 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Kang, J., Gocke, C.B. & Yu, H. Phosphorylation-facilitated sumoylation of MEF2C negatively regulates its transcriptional activity. BMC Biochem. 7, 5 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang, X.J. & Gregoire, S. A recurrent phospho-sumoyl switch in transcriptional repression and beyond. Mol. Cell 23, 779–786 (2006).

    Article  PubMed  Google Scholar 

  21. Hietakangas, V. et al. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc. Natl. Acad. Sci. USA 103, 45–50 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Ohshima, T., Koga, H. & Shimotohno, K. Transcriptional activity of peroxisome proliferator-activated receptor γ is modulated by SUMO-1 modification. J. Biol. Chem. 279, 29551–29557 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Shalizi, A. et al. A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311, 1012–1017 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Lyons, G.E., Micales, B.K., Schwarz, J., Martin, J.F. & Olson, E.N. Expression of Mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J. Neurosci. 15, 5727–5738 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shalizi, A. et al. PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J. Neurosci. 27, 10037–10046 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grégoire, S. et al. Control of MEF2 transcriptional activity by coor-dinated phosphorylation and sumoylation. J. Biol. Chem. 281, 4423–4433 (2006).

    Article  PubMed  Google Scholar 

  27. Yamashita, D. et al. The transactivating function of peroxisome proliferator-activated receptor γ is negatively regulated by SUMO conjugation in the amino-terminal domain. Genes Cells 9, 1017–1029 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Yang, S.H., Galanis, A., Witty, J. & Sharrocks, A.D. An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J. 25, 5083–5093 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Riquelme, C., Barthel, K.K.B. & Liu, X. SUMO-1 modification of MEF2A regulates its transcriptional activity. J. Cell. Mol. Med. 10, 132–144 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Verdecia, M.A., Bowman, M.E., Lu, K.P., Hunter, T. & Noel, J.P. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat. Struct. Biol. 7, 639–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. Yunus, A.A. & Lima, C.D. Purification and activity assays for Ubc9, the ubiquitin conjugating enzyme for the small ubiquitin-like modifier SUMO. Methods Enzymol. 398, 74–87 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Lois, L.M. & Lima, C.D. Structures of the SUMO E1 provide mechanistic insights into SUMO activation and E2 recruitment to E1. EMBO J. 24, 439–451 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yunus, A.A. & Lima, C.D. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. Methods Mol. Biol. 497, 167–186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Johnson, B.A. & Blevins, R.A. NMR View: a computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  PubMed  Google Scholar 

  36. Liu, Q., Shen, B., Chen, D.J. & Chen, Y. Backbone resonance assignments of human UBC9. J. Biomol. NMR 13, 89–90 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Edwards, T.A. et al. Solution structure of the Vts1 SAM domain in the presence of RNA. J. Mol. Biol. 356, 1065–1072 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Gaudillière, B., Konishi, Y., de la Iglesia, N., Yao, G. & Bonni, A.A. CaMKII-NeuroD signaling pathway specifies dendritic morphogenesis. Neuron 41, 229–241 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NMR staff, particularly K. Dutta, at the New York Structural Biology Center (NYSBC) for assistance in NMR data collection and processing. We also thank A. Shalizi and A. Yunus for helpful discussions, and N. Arango for help with 293T transfection assays. NMR resources at NYSBC are supported by the US National Institutes of Health (NIH) grant P41 GM66354. The work was supported in part by NIH grants GM075695 (A.D.C.), NS041021 (A.B.) and GM065872 (C.D.L.).

Author information

Authors and Affiliations

Authors

Contributions

F.M. designed, performed and interpreted the experiments in Figures 1,2,3,4,5 and in the Supplementary Information, except for NMR experiments; A.D.C. designed, performed and interpreted NMR experiments; P.M.B. and T.Y. designed, performed and interpreted the experiments in Figure 6; A.B. supervised the research by P.M.B. and T.Y. and made contributions intellectually and to manuscript editing; C.D.L. supervised F.M. and A.D.C., designed experiments and interpreted data; F.M. and C.D.L. wrote the manuscript.

Corresponding author

Correspondence to Christopher D Lima.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohideen, F., Capili, A., Bilimoria, P. et al. A molecular basis for phosphorylation-dependent SUMO conjugation by the E2 UBC9. Nat Struct Mol Biol 16, 945–952 (2009). https://doi.org/10.1038/nsmb.1648

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsmb.1648

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing