Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A trimeric structural domain of the HIV-1 transmembrane glycoprotein

Abstract

Infection with HIV-1 is initiated by fusion of cellular and viral membranes. The gp41 subunit of the HIV-1 envelope plays a major role in this process, but the structure of gp41 is unknown. We have identified a stable, proteinase-resistant structure comprising two peptides, N-51 and C-43, derived from a recombinant protein fragment of the gp41 ectodomain. In isolation, N-51 is predominantly aggregated and C-43 is unfolded. When mixed, however, these peptides associate to form a stable, α-helical, discrete trimer of heterodimers. Proteolysis experiments indicate that the relative orientation of the N-51 and C-43 helices in the complex is antiparallel. We propose that N-51 forms an interior, parallel, homotrimeric, coiled-coil core, against which three C-43 helices pack in an antiparallel fashion. We suggest that this α-helical, trimeric complex is the core of the fusion-competent state of the HIV-1 envelope.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bour, S., Geleziunas, R. & Wainberg, M.A. The human immunodeficiency virus type 1 (HIV-1) CD4 receptor and its central role in promotion of HIV-1 infection. Micriobiol. Rev. 59, 63–93 (1995).

    CAS  Google Scholar 

  2. Nara, P.L., Garrity, R.R. & Goudsmit, J. Neutralization of HIV-1: a paradox of humoral proportions. FASEB J. 5, 2437–2455 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Klatzmann, D. et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312, 767–768 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. McDougal, J.S. et al. Binding of the HTLV-III/LAV to T4+ T cells by a complex of the 100 K viral protein and the T4 molecule. Science 231, 382–385 (1986).

    Article  CAS  PubMed  Google Scholar 

  5. Gallaher, W.R. Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50, 327–328 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Gallaher, W.R., Ball, J.M., Garry, R.R., Griffin, M.C. & Montelaro, R.C. A general model for the transmembrane proteins of HIV and other retroviruses. AIDS Res. Hum. Retroviruses 5, 431–440 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. White, J.M. Membrane fusion. Science 258, 917–924 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Stegmann, T., Delfino, J.M., Richards, F.M. & Helenius, A. The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. J. biol. Chem. 266, 18404–18410 (1991).

    CAS  PubMed  Google Scholar 

  9. Tsurudome, M. et al. Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. J. biol. Chem. 267, 20225–20232 (1992).

    CAS  PubMed  Google Scholar 

  10. Delwart, E.J., Mosialos, G. & Gilmore, T. Retroviral envelope glycoproteins contain a leucine zipper like repeat. AIDS Res. Hum. Retroviruses 6, 703–706 (1990).

    Article  CAS  PubMed  Google Scholar 

  11. Chambers, P., Pringle, C.R. & Easton, A.J. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J. Gen. Virol. 71, 3075–3080 (1990).

    Article  CAS  PubMed  Google Scholar 

  12. Hughson, F.M. Structural characterization of viral fusion proteins. Cur. Biol. 5, 265–274 (1995).

    Article  CAS  Google Scholar 

  13. Moore, J.P., McKeating, J.A., Weiss, R.A. & Sattentau, Q.J. Dissociation of gp120 from HIV-1 virions induced by soluble CD4. Science 250, 1139–1142 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Hart, T.K. et al. Binding of soluble CD4 proteins to human immunodeficiency virus type 1 and infected cells induces release of envelope glycoprotein gp120. Proc. natn. Acad. Sci. U.S.A. 88, 2189–2193 (1991).

    Article  CAS  Google Scholar 

  15. Sattentau, Q.J. & Moore, J.P. Conformational changes induced in the human immunodeficiency virus envelope glycoprotein by soluble CD4 binding. J. Exp. Med. 174, 407–415 (1991).

    Article  CAS  PubMed  Google Scholar 

  16. Allan, J.S. Receptor-mediated activation of immunodeficiency viruses in viral fusion. Science 252, 1322–1323 (1991).

    Article  CAS  PubMed  Google Scholar 

  17. Moore, J.P., McKeating, J.A., Weiss, R.A., Clapham, P.R. & Sattentau, Q.J. Receptor-mediated activation of immunodeficiency viruses in viral fusion. Science 252, 1322–1323 (1991).

    Article  Google Scholar 

  18. Carr, C.M. & Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73, 823–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Sullivan, N., Sun, Y., Li, J., Hofmann, W. & Sodroski, J. Replicative function and neutralization sensitivity of envelope glycoproteins from primary and T-cell line-passaged human immunodeficiency virus type 1 isolates. J. Virol. 69, 4413–4422 (1985).

    Google Scholar 

  20. Lupas, A., VanDyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Berger, B.A., Wilson, D.B., Wolf, E., Tonchev, T., Milla, M. & Kim, P.S. Predicting coiled coils using pairwise residue correlations. Proc. natn. Acad. Sci. U.S.A. 92, 8259–8263 (1995).

    Article  CAS  Google Scholar 

  22. Jaenicke, R. & Rudolph, R. Refolding and association of oligomeric proteins. Meth. Enzymol. 131, 218–250 (1986).

    Article  CAS  Google Scholar 

  23. Blacklow, S.C., Lu, M. & Kim, P.S. A trimeric subdomain of the simian immunodeficiency virus envelope glycoprotein. Biochemistry in the press.

  24. Dubay, J.W., Roberts, S.J., Brody, B. & Hunter, E. Mutations in the leucine zipper of the human immunodeficiency virus type 1 transmembrane glycoprotein affect fusion and infectivity. J. Virol. 66, 4748–4756 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen, S.S., Lee, C.N., Lee, W.R., Mclntosh, K. & Lee, T.H. Mutational analysis of the leucine zipper-like motif of the human immunodeficiency virus type 1 envelope transmembrane glycoprotein. J. Virol. 67, 3615–3619 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wild, C.T., Oas, T., McDanal, C.B., Bolognesi, D. & Matthews, T.J. A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc. natn. Acad. Sci. U.S.A. 89, 10537–10541 (1992).

    Article  CAS  Google Scholar 

  27. Jiang, S., Lin, K., Strick, N. & Neurath, A.R. HIV-1 inhibition by a peptide. Nature 365, 113 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B. & Matthews, T.J. Peptides corresponding to a predictive α-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. natn. Acad. Sci. U.S.A. 91, 9770–9774 (1994).

    Article  CAS  Google Scholar 

  29. Hodges, R.S., Sodek, J., Smillie, L.B. & Jurasek, L. Tropomyosin: amino acid sequence and coiled-coil structure. Cold Spring Harb. Symp. Quant. Biol. 37, 299–310 (1972).

    Article  Google Scholar 

  30. McLachlan, A.D. & Stewart, M. Tropomyosin coiled-coil interactions: evidence for an unstaggered structure. J. molec. Biol. 98, 293–304 (1975).

    Article  CAS  PubMed  Google Scholar 

  31. O'Shea, E.K., Klemm, J.D., Kim, P.S. & Alber, T. X-ray structure of the GCN4 leucine zipper, a two-stranded, parallel, coiled coil. Science 254, 539–544(1991).

    Article  CAS  PubMed  Google Scholar 

  32. Wilson, I.A., Skehel, J.J. & Wiley, D.C. Structure of the hemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289, 366–373 (1981).

    Article  CAS  PubMed  Google Scholar 

  33. Harbury, P.B., Zhang, T., Kim, P.S. & Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 262, 1401–1407 (1993).

    Article  CAS  PubMed  Google Scholar 

  34. Harbury, P.B., Kim, P.S. & Alber, T. Crystal structure of an isoleucine-zipper trimer. Nature 371, 80–83 (1994).

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, S., Lin, K., Strick, N. & Neurath, A.R. Inhibition of HIV-1 infection by a fusion domain binding peptide from the HIV-1 envelope glycoprotein gp41. Biochem. Biophys. Res. Commun. 195, 533–538 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Neurath, A.R., Lin, K., Strick, N. & Jiang, S. Two partially overlapping antiviral peptides from the external portion of HIV type 1 glycoprotein 41, adjoining the transmembrane region, affect the glycoprotein 41 fusion domain. AIDS Res. Hum. Retroviruses 11, 189–190 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Wild, C.T., Greenwell,T., Shugars, D., Rimsky-Clarke, L. & Matthews, T. The inhibitory activity of an HIV-1 type peptide correlates with its ability to interact with a leucine zipper structure. AIDS Res. Hum. Retroviruses 11, 323–325 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Herskowitz, I. Functional inactivation of genes by dominant negative mutations. Nature 329, 219–222 (1987).

    Article  CAS  PubMed  Google Scholar 

  39. Chen, C.H., Matthews, T.J., McDanal, C.B., Bolognesi, D.P. & Greenberg, M.L. A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J. Virol. 69, 3771–3777 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gelderblom, H.R. et al. Fine structure of human immunodeficiency virus (HIV), immunolocalization of structural proteins and virus-cell relation. Micron. Microsc. Acta 19, 41–60 (1988).

    Article  Google Scholar 

  41. Weiss, C.D., Levy, J.A. & White, J.M. Oligomeric organization on infectious human immunodeficiency virus type 1 particles. J. Virol. 64, 5674–5677 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schawaller, M., Smith, G.E., Skehel, J.J. & Wiley, D.C. Studies with crosslinking reagents on the oligomeric structure of the env glycoprotein of HIV. Virology 172, 367–369 (1989).

    Article  CAS  PubMed  Google Scholar 

  43. Pinter, A. et al. Oligomeric structure of gp41, the transmembrane protein of human immunodeficiency virus type 1. J. Virol. 63, 267–279 (1989).

    Google Scholar 

  44. Earl, P.L., Doms, R.W. & Moss, B. Oligomeric structure of the human immunodeficiency virus type 1 envelope glycoprotein. Proc. natn. Acad. Sci. U.S.A. 87, 648–652 (1990).

    Article  CAS  Google Scholar 

  45. Thomas, D.J. et al. gp160, the envelope glycoprotein of human immunodeficiency virus type 1, is a dimer of 125-kilodalton subunits stabilized through interactions between their gp41 domains. J. Virol. 65, 3797–3803 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Fass, D. & Kim, P.S. Dissection of a retrovirus envelope reveals structural similarity to influenza hemagglutinin. Curr. Biol. in the press.

  47. Carr, C.M. & Kim, P.S. Flu virus invasion: halfway there. Science 266, 234–236 (1994).

    Article  CAS  PubMed  Google Scholar 

  48. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza hemagglutinin at the pH of membrane fusion. Nature 371, 37–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Doering, D. Functional and Structural Studies of a Small f-actin Binding Protein. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts (1992).

  50. Kunkel, T.A., Roberts, J.D. & Zakour, R.A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Meths. Enzymol. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  51. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).

    Google Scholar 

  52. Peng, Z.Y. & Kim, P.S. A protein dissection study of a molten globule. Biochemistry 33, 2136–2141 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Edelhoch, H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry 6, 1948–1954 (1967).

    Article  CAS  PubMed  Google Scholar 

  54. Cantor, C. & Schimmel, P. Biophysical Chemistry, Part III. W.H. Freeman and Company, New York, 1131–1132 (1980).

    Google Scholar 

  55. O'Shea, E.K., Rutkowski, R. & Kim, P.S. Evidence that the leucine zipper is a coiled coil. Science 243, 538–542 (1989).

    Article  CAS  PubMed  Google Scholar 

  56. Laue, T.M., Shah, B.D., Ridgeway, T.M. & Pelletier, S.L. Computer-aided interpretation of analytical sedimentation data for proteins. In Analytical Ultracentrifugation in Biochemistry and Polymer Science (Harding, S.E., Rowe, A.J. & Horton, J.C eds) 90–125 (Royal Society of Chemistry, Cambridge, 1992).

    Google Scholar 

  57. Kozarsky, K. et al. Glycosylation and processing of the human immunodeficiency virus type 1 envelope protein. AIDS 2, 163–169 (1989).

    CAS  Google Scholar 

  58. Harada, S., Koyanagi, Y. & Yamamoto, N. Infection of HTLV-III/LAV in HTLV-1-carrying cells MT-2 and MT-4 and application in a plaque assay. Science 229, 563–566 (1985).

    Article  CAS  PubMed  Google Scholar 

  59. Schagger, H. & von Jagow, G. Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochemistry 166, 368–379 (1987).

    Article  CAS  Google Scholar 

  60. Allan, J.S., Strauss, J. & Buck, D.W. Enhancement of SIV infection with soluble receptor molecules. Science 247, 1084–1088 (1990).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, M., Blacklow, S. & Kim, P. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Mol Biol 2, 1075–1082 (1995). https://doi.org/10.1038/nsb1295-1075

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb1295-1075

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing