Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The solution structure of an HMG-I(Y)–DNA complex defines a new architectural minor groove binding motif

Abstract

The solution structure of a complex between a truncated form of HMG-I(Y), consisting of the second and third DNA binding domains (residues 51–90), and a DNA dodecamer containing the PRDII site of the interferon-β promoter has been solved by multidimensional nuclear magnetic resonance spectroscopy. The stoichiometry of the complex is one molecule of HMG-I(Y) to two molecules of DNA. The structure reveals a new architectural minor groove binding motif which stabilizes B-DNA, thereby facilitating the binding of other transcription factors in the opposing major groove. The interactions involve a central Arg-Gly-Arg motif together with two other modules that participate in extensive hydrophobic and polar contacts. The absence of one of these modules in the third DNA binding domain accounts for its 100 fold reduced affinity relative to the second one.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bustin, M. & Reeves, R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. Progr. Nucl. Acids Res. 54, 35–100 (1996).

    CAS  Google Scholar 

  2. Thanos, D. & Maniatis, T. The high mobility group protein HMG I(Y) is required for NF-κB-dependent virus induction of the human IFN-β gene. Cell 71, 777–789 (1992).

    CAS  PubMed  Google Scholar 

  3. Du, W., Thanos, D. & Maniatis, T. Mechanisms of transcriptional synergism between distinct virus-inducible enhancer elements. Cell 74, 887–898 (1993).

    CAS  PubMed  Google Scholar 

  4. Falvo, J.V., Thanos, D. & Maniatis, T. Reversal of intrinsic DNA bends in the IFN-β gene enhancer by transcription factors and the architectural protein HMGI(Y). Cell 83, 1101–1111 (1995).

    CAS  PubMed  Google Scholar 

  5. Farnet, C.M. & Bushman, F.D. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 88, 483–492 (1997).

    CAS  PubMed  Google Scholar 

  6. Zeleznik-Le, N.J., Harden, A.M. & Rowley, J.D. 11q23 translations split the ‘AT-hook’ cruciform DMA-binding region and the transcriptional repression domain from the activation domain of the mixed-lineage leukemia (MLL) gene. Proc. Natl. Acad. Sci. U.S.A. 91, 10610–10614 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou, X., Benson, K.F., Ashar, H.R. & Chada, K. Mutation responsible for the mouse pygmy phenotype in the developmentally regulated factor HMGI-C. Nature 376, 771–774 (1995).

    CAS  PubMed  Google Scholar 

  8. Ashar, H.R. et al. Disruption of the architectural factor HMGI-C: DNA-binding AT hook motifs fused in lipomas of distinct transcriptional regulatory domains. Cell 82, 57–65 (1995).

    CAS  PubMed  Google Scholar 

  9. Schoenmakers, E.F.P.M., Wanschura, S., Mols, R., Bullerdiek, J., Van den Berghe, H. & Van de Ven, W.J.M. Recurrent rearrangements in the high mobility group protein gene, HMGI-C, in benign mesenchymal tumours. Nature Genet. 10, 436–444 (1995).

    CAS  PubMed  Google Scholar 

  10. Reeves, R. & Nissen, M.S. The A·T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. J. Biol. Chem. 265, 8573–8582 (1990).

    CAS  PubMed  Google Scholar 

  11. Claus, P., Schulze, E. & Wisniewski, J.R. Insect proteins homologous to mammalian high mobility group proteins I/Y (HMG I/Y). J. Biol. Chem. 269, 33042–33048 (1994).

    CAS  PubMed  Google Scholar 

  12. Tjandra, N., Wingfield, P., Stahl, S. & Bax, A. Anisotropic rotational diffusion of perdeuterated HIV protease from 15N NMR relaxation measurements at two magnetic fields. J. Biomol. NMR 8, 273–284 (1996).

    CAS  PubMed  Google Scholar 

  13. Clore, G.M. & Gronenborn, A.M. Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy. Science 252, 1390–1399 (1991).

    CAS  PubMed  Google Scholar 

  14. Bax, A. & Grzesiek, S. Methodological advances in protein NMR Acct. Chem. Res. 26, 131–138 (1993).

    CAS  Google Scholar 

  15. Gronenborn, A.M. & Clore, G.M. Structures of protein complexes by multidimensional heteronuclear magnetic resonance spectroscopy. CRC Crit Rev. Biochem. Mol. Biol. 30, 351–385 (1995).

    CAS  Google Scholar 

  16. Bax, A. et al. Measurement of homo- and hetero-nuclear J couplings from quantitative J correlation. Meth. Enz. 239, 79–106 (1994).

    CAS  Google Scholar 

  17. Geierstanger, B.H., Volkman, B.F., Kremer, W. & Wemmer, D.E. Short peptide fragments derived from HMG-I(Y) proteins bind specifically to the minor groove of DNA. Biochemistry 33, 5347–5355 (1994).

    CAS  PubMed  Google Scholar 

  18. Solomon, M.J., Strauss, F. & Varshavsky, A. A mammalian high mobility group protein recognizes any stretch of six A·T base pairs in duplex DNA. Proc. Natl. Acad. Sci. U.S.A. 83, 1276–1280 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, Y., Geiger, J.H., Hahn, S. & Sigler, P.B. Crystal structure of a yeast TBP/TATA-box complex. Nature 365, 512–520 (1993).

    CAS  PubMed  Google Scholar 

  20. Kim, J.L., Nikolov, D.B. & Burley, S.K. Co-crystal structure of TBP recognizing the minor groove of a TATA element. Nature 365, 520–527 (1993).

    CAS  PubMed  Google Scholar 

  21. Werner, M.H., Huth, J.R., Gronenborn, A.M. & Clore, G.M. Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex. Cell 81, 705–714 (1995).

    CAS  PubMed  Google Scholar 

  22. Love, J.J. et al. Structural basis for DNA bending by the architectural transcription factor LEF-1. Nature 376, 791–795 (1995).

    CAS  PubMed  Google Scholar 

  23. Rice, P.A., Yang, S.-W., Mizuuchi, K. & Nash, H.A. Crystal structure of an IHF-DNA complex: a protein-induced DNA U-turn. Cell 87, 1295–1306 (1996).

    CAS  PubMed  Google Scholar 

  24. Pearson, W.R. & Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. U.S.A. 85, 2444–2448 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Levinger, L. & Varshavsky, A. Protein D1 preferentially binds A+T-rich DNA in vitro and is a component of Drosophila melanogaster nucleosomes containing A+T-rich satellite DNA. Proc. Natl. Acad. Sci. U.S.A. 79, 7152–7156 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Meluh, P.B. & Koshland, D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere. Mol. Biol. Cell. 6, 793–807 (1997).

    Google Scholar 

  27. Prasad, R. et al. Leucine-zipper dimerization motif encoded by the AF17 gene fused to ALL-1 (MLL) in acute leukemias. Proc. Natl. Acad. Sci. U.S.A. 91, 8107–8111 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Maher, J.F. & Nathans, D. Multivalent DNA-binding properties of the HMG-I proteins. Proc. Natl. Acad. Sci. U.S.A. 93, 6716–6720 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Goodsell, D.S., Kopka, M.L. & Dickerson, R.E. Refinement of netropsin bound to DNA: bias and feedback in electron density map interpretation. Biochemistry 34, 4983–4993 (1995).

    CAS  PubMed  Google Scholar 

  30. Mrksich, M., Parks, M.E. & Dervan, P.B. A new class of oligopeptides for sequence-specific recognition in the minor groove of double helical DNA. J. Am. Chem. Soc. 116, 7983–7988 (1994).

    CAS  Google Scholar 

  31. Gronenborn, A.M. et al. A novel, highly stable fold of the immunoglobulin binding domain of Streptococcal protein G. Science 253, 657–661 (1991).

    CAS  PubMed  Google Scholar 

  32. Hu, J.-S. & Bax, A. Measurement of three-bond 13C-13C J couplings between carbonyl and carbonyl/carboxyl carbons in isotopically enriched proteins. J. Am. Chem. Soc. 118, 8170–8171 (1996).

    CAS  Google Scholar 

  33. Hu, J.-S. & Bax, A. Determination of Φ and χ1 angles in proteins from 13C-13C three-bond J couplings measured by three-dimensional heteronuclear NMR. How planar is the peptide bond. J. Am. Chem. Soc., in press (1997).

  34. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomolec. NMR 6, 277–293 (1995).

    CAS  Google Scholar 

  35. Garrett, D.S., Powers, R., Gronenborn, A.M. & Clore, G.M. A common sense approach to peak picking in two-, three- and four-dimensional spectra using automatic computer analysis of contour diagrams. J. Magn. Reson. 95, 214–220 (1991).

    CAS  Google Scholar 

  36. Omichinski, J.G., Pedone, P.V., Felsenfeld, G., Gronenborn, A.M. & Clore, G.M. The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nature Struct. Biol. 4, 122–132 (1997).

    CAS  PubMed  Google Scholar 

  37. Nilges, M., Clore, G.M. & Gronenborn, A.M. Determination of three-dimensional structures of proteins from interproton distance data by hybrid distance geometry-dynamical simulated annealing calculations. FEBS Lett. 229, 317–324 (1988).

    CAS  PubMed  Google Scholar 

  38. Brünger, A.T. X-PLOR Version 3.1: A system for X-ray crystallography and NMR. (Yale University Press, New Haven, Connecticut; 1993).

  39. Garrett, D.S. et al. The impact of direct refinement against three-bond HN-CαH coupling constants on protein structure determination by NMR. J. Magn. Reson. Series B 104, 99–103 (1994).

    CAS  Google Scholar 

  40. Kuszewski, J., Qin, J., Gronenborn, A.M. & Clore, G.M. The impact of direct refinement against 13Cα and 13Cβ chemical shifts on protein structure determination by NMR. J. Magn. Reson. Series B 106, 92–96 (1995).

    CAS  Google Scholar 

  41. Kuszewski, J., Gronenborn, A.M. & Clore, G.M. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases. Prot Sci. 5, 1067–1080 (1996).

    CAS  Google Scholar 

  42. Kuszewski, J., Gronenborn, A.M. & Clore, G.M. Improvements and extensions in the conformational database potential for the refinement of NMR and X-ray structures of proteins and nucleic acids. J. Magn. Reson. 125, 171–177 (1997).

    CAS  PubMed  Google Scholar 

  43. Lavery, R. & Skelnar, H. Defining the structure of irregular nucleic acids: conventions and principles. J. Biomol. Struct. Dyn. 6, 655–667 (1989).

    CAS  PubMed  Google Scholar 

  44. Nilges, M. A calculational strategy for the structure determination of symmetric dimers by 1H NMR. Prot. Struct. Funct. Genet. 17, 297–309 (1993).

    CAS  Google Scholar 

  45. Nicholls, A., Sharp, K.A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Prot. Struct. Funct. Genet. 11, 281–296 (1991).

    CAS  Google Scholar 

  46. Brooks, B.R. CHARMM: a program for macromolecular energy minimization and dynamics calculations. J. Comput. Chem. 4, 187–217 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huth, J., Bewley, C., Nissen, M. et al. The solution structure of an HMG-I(Y)–DNA complex defines a new architectural minor groove binding motif. Nat Struct Mol Biol 4, 657–665 (1997). https://doi.org/10.1038/nsb0897-657

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0897-657

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing